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Abstract
Satisfiability Modulo Theory (SMT) solvers have significantly advanced automated reasoning due to their
effectiveness in solving problems across various fields. With the advancement in SMT solvers, there is growing
interest in exploring capabilities beyond mere satisfiability, similar to the progression observed in Boolean
satisfiability solvers that expanded into counting and sampling. In this study, we investigate the following
question: Can we rely on modern CNF model counters and CNF samplers to extend a modern SMT solvers to handle
the problems of counting and sampling over bit-vectors?

The main contribution of this work is the development of an efficient approximate model counter along with
the first almost-uniform and uniform-like samplers for the theory of bit-vectors. Our tool1 csb converts the
bit-vector formula into a CNF formula using bit-blasting techniques before applying CNF model counters or
samplers to perform counting or sampling. Our tool enhances the SMT solver STP with an approximate model
counter ApproxMC, an almost-uniform sampler UniGen, and a uniform-like sampler CMSGen. Our experiments
demonstrate significant performance improvements over existing methods.

1. Introduction

The paradigm of Satisfiability Modulo Theory (SMT) solving has been central to advances in hardware
and software verification over the past two decades. Over time, the community has developed several
scalable state-of-the-art SMT solvers. For many problem instances, satisfiability alone does not suffice,
and one is often interested in computations over the solution set. Two such problems are computing
an estimate of the cardinality of the solution set and uniformly sampling a solution from the entire
solution set. As a starting point, we focus on the case when the underlying formula is expressed in
QF_BV, or quantifier-free bit-vector arithmetic (referred to as bit-vectors hereafter). Our choice of QF_BV
stems from its being one of the first theories to be investigated in the context of SMT solving, as well
as recent empirical studies showing the importance of counting problems over bit-vector formulas in
domains such as cryptography [1] and software verification [2, 3].

The problem of counting and sampling over bit-vectors can be addressed through two methods: (i)
reasoning directly over bit-vectors, or (ii) reducing the problem to CNF. While the former approach has
been studied in recent years using lifting techniques for word-level constraints [4, 5, 6, 7], the latter has
not been thoroughly assessed. In this paper, we focus on whether a modern SMT solver can be extended
with CNF-based model counters and CNF samplers to efficiently address the problems of counting and
sampling over bit-vectors. Our investigation into the design of a counting tool for bit-vector formulas
relies on bit-blasting, followed by the use of CNF-based samplers and counters, leveraging the latter’s
scalability.

To test the scalability of our system, we compiled a collection of 679 benchmarks from various
practical domains, such as cryptography and software verification, encoded as the problem of bit-vector
model counting. The primary contribution of this paper is the development of an efficient bit-vector
counting and sampling tool. Specifically,

1. We introduce csb, a bit-vector model counter that extends the SMT solver STP to incorporate
off-the-shelf CNF-counters. Out of a set of 679 bit-vector counting problems, csb successfully

1Open source tool available at: https://github.com/meelgroup/csb
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counts 643 benchmarks, surpassing the previous state-of-the-art counter, SMTApproxMC, which
counts 135 benchmarks.

2. Furthermore, we extend csb to function as a sampler by integrating CNF-samplers. On average,
it takes 7.4 seconds and 273.6 seconds to generate 500 uniform-like and almost-uniform samples,
respectively, from our benchmark set in these modes.

The rest of the paper is organized as follows: We introduce the preliminaries and related work in
Section 2. In Section 3, we present an overview of our framework, csb. We describe our experimental
methodology and results in Section 4. Finally, we conclude in Section 5.

2. Background

A word (or bit-vector) is a vector of bits of a given size. Let 𝑋 be the set of word-level variables, and let
𝐹 be a formula in the theory of quantifier free bit-vectors. A model or solution of 𝐹 is an assignment
of word-level constants to variables in 𝑋 such that 𝐹 evaluates to True. Let Sol(𝐹 ) denote the set of
models of 𝐹 . The problem of counting is to compute |Sol(𝐹 )|.

An approximate model counter takes in a formula 𝐹 , tolerance parameter 𝜀, confidence parameter
𝛿 and returns 𝑐 such that Pr

[︁
|Sol(𝐹 )|
1+𝜀 ≤ 𝑐 ≤ (1 + 𝜀)|Sol(𝐹 )|

]︁
≥ 1− 𝛿. An almost uniform sampler 𝐺

takes a tolerance parameter 𝜀 along with 𝐹 , and guarantees ∀𝑦 ∈ Sol(𝐹 ), 1
(1+𝜀)|Sol(𝐹 )| ≤ Pr[𝐺(𝐹, 𝜀) =

𝑦] ≤ (1+𝜀)
|Sol(𝐹 )| . An uniform-like sampler also takes in a Boolean formula 𝐹 and returns 𝜎 ∈ Sol(𝐹 ), and is

designed to behave like a uniform sampler, albeit without theoretical guarantees. Instead of theoretical
analysis, the design of these samplers are influenced by recently proposed distribution testing-based
tool, Barbarik [8, 9].

Related Work. The success of propositional model counters, especially approximate ones, led to the
adaptation of these techniques for word-level constraints. Chistikov et al. [4] extended hashing-based
model counting from the approximate CNF model counter ApproxMC [10] to word-level benchmarks
using bit-blasting. Chakraborty et al. [5] developed SMTApproxMC, which lifts hash functions to
handle word-level constraints. Kim et al. introduced a system for statistical estimation to continuously
refine the probabilistic estimate of model counts, although it lacks (𝜀, 𝛿)-guarantees [11].

In the sampling domain, the need for uniform samplers and those achieving high coverage is well-
established. There have been considerable efforts to sample from SMT formulas with high coverage [6,
7, 12], yet uniform sampling from these formulas remains largely unexplored, representing a significant
challenge. The technique of lifting hash functions, as used in [5], is ineffective for uniform sampling
due to the need for 3-wise independence, whereas the lifted hash functions in [13] only ensure 2-wise
independence.

3. Approach

We develop csb, a model counting and sampling tool for the quantifier-free fragment of the theory of
bit-vectors. To achieve this, csb first bit-blasts the formula to a Boolean CNF formula, then applies
an off-the-shelf CNF model counter or CNF sampler to solve the problems of model counting and
sampling, respectively. By reducing the problem to CNF, our tool csb leverages ongoing improvements
in propositional model counting and sampling.

3.1. Model Counting

As shown in Figure 1, the model counting part of csb comprises two primary components: (i) a tool for
bit-blasting SMT2 formulas into CNFs, and (ii) an off-the-shelf model counter.
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Figure 1: The architecture for counting and sampling in csb.

Phase 1: Bit-blasting. The bit-blasting component takes an input bit-vector formula 𝐹 and outputs
a CNF formula 𝐹bit such that |Sol(𝐹bit)| = |Sol(𝐹 )|. The most commonly used method for converting
a bit-vector formula into a propositional Boolean formula involves representing the formula as an
And-Inverter Graph (AIG) circuit, which is subsequently converted into conjunctive normal form (CNF).
There are multiple techniques available for converting an AIG to CNF, with the two most commonly used
being: (i) TseitinEnc: the standard Tseitin encoding [14] and (ii) TechMap: technology mapping-based
logic synthesis [15]. The TseitinEnc method uses auxiliary variables for sub-circuits of AIG, whereas
the TechMap method performs various optimizations on the circuit to produce a minimized CNF. From
the perspective of satisfiability, studies have revealed that the performance of the encoding scheme is
reliant on the benchmark set being investigated, with TseitinEnc exhibiting superior results in some
benchmark sets and TechMap being more effective in others [16]. In context of csb, TseitinEnc and
TechMap showed similar performance, and we use TechMap for bit-blasting.

Phase 2: Propositional Model Counting. The second phase of csb involves a propositional model
counter that takes the CNF formula 𝐹bit and returns 𝑐, an approximation of |Sol(𝐹bit)|. We investigated
various approaches to model counting, including both compilation-based counters and hashing-based
approximate counters. In recent years, there has been a proliferation of model counters, and the
annual model counting competitions have demonstrated that different model counters have distinct
strengths and weaknesses for various problem types. In the context of this research, we examine the
applicability of five model counters within the framework of csb: four compilation-based counters
SharpSAT-TD [17], Ganak [18], ADDMC [19], and ExactMC [20], and a hashing-based approximate
counter ApproxMC [21]. In csb, we use ApproxMC as the model counter because it shows the best
performance on the test instances.

3.2. Sampling

As shown in Figure 1, the sampling mode of csb comprises three primary components: (i) a tool for
bit-blasting SMT2 formulas into CNFs, (ii) a CNF sampler to sample solutions (almost) uniformly from
the solution space, and (iii) constructing the bit-vector model from the sampled CNF solution. In the
following part of this section, we briefly describe the task and available tools for each component.

Phase 1: Bit-blasting. The bit-blasting component generates a propositional formula 𝐹bit from
the input bit-vector formula 𝐹 , such that there is a one-to-one correspondence between Sol(𝐹 ) and
Sol(𝐹bit). The techniques used in this part are the same as those in the bit-blasting component of
the model counting mode. At this stage, the underlying SMT solver maintains the mapping between



variables of 𝐹 and 𝐹bit, allowing it to map an element of Sol(𝐹bit) to the corresponding element of
Sol(𝐹 ).

Phase 2: CNF Sampling. The bit-blasted formula 𝐹bit is passed to a CNF sampler to generate a
sample 𝑆bit, a randomly selected element from Sol(𝐹bit). UniGen [22] uses hashing-based techniques
to achieve almost-uniform sampling. On the other hand, CMSGen [9] incorporates randomization at
various stages of a SAT solver’s process, effectively making the solver’s output mimic that of a uniform
sampler. This approach resembles uniform sampling and meets distribution tests [23], validating its
utility. In practical scenarios, uniform-like samplers often exhibit superior performance, although some
applications necessitate strict uniformity guarantees. Depending on the specific sampling requirements,
we employ different CNF samplers: for almost-uniform sampling, we utilize UniGen; for uniform-like
sampling, we select CMSGen.

Phase 3: Model Construction. Once the CNF sampler returns a solution 𝑆bit, it is passed to the
SMT solver, which generates the corresponding bit-vector solution 𝑆. The SMT solver uses the variable
mapping from phase 1 to perform this operation.

3.3. Preprocessing

In model counting and sampling, preprocessors attempt to simplify the original problem instance. In
practical scenarios, the problem instances are typically rooted in circuits within a specific domain. These
circuits are comprised of gates, and the variables correspond to either input or output variables, with the
output variables being determined by the input variables. Preprocessing techniques have been developed
to effectively handle the input-output bipartition property, as discussed in several studies [24, 25, 26]. In
csb, we utilize Arjun [26] as a preprocessor.

3.4. Implementation

A simple approach to build the tool is to use a standalone shell script that interfaces with an SMT solver
to generate a CNF file, followed by processing with a model counter or sampler. However, using shell
scripts could lead to performance bottlenecks due to the overhead of file read-writes, complicate error
handling, and create challenges in deployment and portability by requiring specific environmental
setups and external binaries. Therefore, we chose a tightly integrated approach, embedding the counter
and samplers directly within the SMT solver as a library. This integration yields a single binary that
efficiently produces both model counts and samples.We implement csb using STP as the underlying
SMT solver. We integrate ApproxMC to implement the model counter, and UniGen and CMSGen to
implement the samplers. We also integrate Arjun as a preprocessor. The default parameters for the
approximate model counting mode are 𝜀 = 0.8 and 𝛿 = 0.2, adhering to the standard values used in
the model counting community.

4. Experimental Evaluation

The evaluation procedure was conducted using the following setup. We conducted all our experiments
on a high-performance computer cluster, with each node consisting of an AMD EPYC 7713 CPU. We set
the memory limit to 16 GB for all configurations and ran each solver instance on a single core. To adhere
to the standard timeout used in model counting competitions, we set the timeout for all experiments to
3600 seconds.

Baseline. For the problem of model counting, we compare our performance with the prior state-of-
the-art bit-vector model counter, SMTApproxMC. As noted in the related works, there are no available
uniform samplers for bit-vectors, so we evaluate the relative performance of uniform samplers based
on the total number of benchmarks.



Counter Instances Counted Average Runtime (s)

SMTApproxMC 135 5854.8
csb 643 653.5

Sampling Mode in csb Instances Sampled Average Runtime (s) Median Runtime (s)

Almost-uniform sampling 641 273.6 74.6
Uniform-like sampling 662 7.4 1.24

Table 1
Number of instances finished by counting and sampling mode of csb, out of 679 instances.

Benchmarks. We collected a substantial set of benchmarks that pertain to the problem of model
counting and naturally encode them into bit-vector formulas. The benchmarks were produced using
several software tools for various purposes. These include CounterSharp [3], which is a quantitative
software reliability estimation tool; an algorithm designed for testing robust reachability [2]; Delphinium,
which is a cryptographic tool for automating chosen ciphertext attacks [1]; and SMC, a previous work
on bit-vector counting [11]. The total number of benchmarks used in our evaluation amounts to 679.
In this work, we sought to answer the following questions:

RQ1. How does csb’s performance compare with the existing state-of-the-art?

RQ2. How do the various components of csb, such as model counting, sampling, and bit-blasting,
impact its overall performance?

Summary of Results. In model counting mode, csb can solve over four times more instances than
SMTApproxMC. Out of a total of 679 instances, csb can count 643, whereas SMTApproxMC is able
to count 135. In sampling mode, csb generated samples from almost all the problem formulas. The
uniform-like sampling mode showed better efficiency in generating samples.

RQ1. Comparison with Prior State-of-the-Art

We experimented with configurations for csb and compared its performance with SMTApproxMC,
the current state-of-the-art bit-vector model counter. Table 1 shows the improvement in performance
demonstrated by csb. In the cactus plot in Figure 2, we compare the performance. The 𝑥-axis represents
the number of instances, while the 𝑦-axis shows the time taken. A point (𝑖, 𝑗) in the plot indicates that
a counter counted 𝑗 benchmarks out of the total benchmarks in a set in less than or equal to 𝑖 seconds.
The results indicate that csb counted 643 instances, which is four times the number of instances counted
by SMTApproxMC, which could count 135 instances.

As there is no existing uniform bit-vector sampling tool, we do not have a baseline for comparing csb
against. We tested csb on our benchmarks in both sampling modes by asking it to generate 500 samples
for each input formula. In Table 1, we compare the performance in terms of number of instances solved
and average runtime1. Out of 679 instances, in almost-uniform sampling mode csb generated samples
for 641 instances, while in uniform-like sampling mode, it solved 662 instances.

RQ2. Impact of Different Components

As shown in Section 3, there are multiple components for csb, and there are multiple tools available
for each component. To determine which tools to use for each component, we performed experiments.
Below, we summarize the impact of each component.

1We use the PAR-2 score as a proxy for average runtime. PAR-2 score (penalized average runtime) assigns a runtime of two
times the time limit for each benchmark not solved by a counter.
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Figure 2: Performance of csb model counter w.r.t. state-of-the-art

Impact of CNF Counters. In the cactus plot of Figure 3, we compare the performance of the
model counters. When csb is combined with the best possible preprocessing settings for each model
counter, the best performance is shown by ApproxMC, solving 643 out of 679 benchmarks. The model
counter SharpSAT-TD shows the second-best performance, solving 409 benchmarks. Conversely, the
performance of other model counters such as ExactMC, ADDMC, and Ganak was poorer, with each
solving nearly 300 benchmarks.

Impact of CNF Samplers. Both CNF samplers demonstrate strong performance, solving over 94%
of instances. The average runtime is significantly improved when CMSGen is used as the sampler.
In Table 1, we compare the performance metrics. Using CMSGen as the sampler, csb solves 21 more
instances and reduces the average runtime to 3% of that with UniGen.

Impact of Preprocessing. The preprocessors had a minimal positive impact on the performance
of exact model counting tools, and in a few cases, they even showed a slight negative effect. For
the approximate model counting tool ApproxMC, Arjun demonstrated a positive impact, enabling the
solving of 643 instances, which is 473 more than without preprocessing.

5. Conclusion

This paper introduces csb, an extension of the SMT solver STP that leverages CNF counters, and
samplers for bit-vector formulas. csb enhances performance, achieving a fourfold improvement in
bit-vector model counting and efficiently solving uniform sampling of bit-vector constraints. We identify
optimal methods for bit-vector counting and explore uniform sampling from SMT formulas.
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