
So�ware language translation by example
Q. Xue1, Kevin Lano1

1King’s College London, Strand, London, UK

Abstract
In order to improve the usability, �exibility and agility of model-driven engineering (MDE), various
approaches have been adopted to facilitate the creation and adaptation of MDE tools by end-user software
practitioners, and to reduce the level of MDE skills necessary for such tasks. Two important techniques
are the use of examples to specify MDE tools such as model transformations, and the use of speci�cations
based on the concrete syntax of the software languages being processed by transformations, instead
of the language metamodels. In this paper we combine these two techniques with symbolic machine
learning, in order to derive language-to-language transformations from sets of examples expressed using
concrete syntax. The approach is demonstrated on a program abstraction task (i.e., reverse engineering),
a DSL-to-code code generation task, and a refactoring task.
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1. Introduction

Model-driven engineering has become a widely-adopted practice across several application
areas of software systems, however barriers to MDE use remain in many industries because of
the specialised skills and knowledge needed to apply MDE or to use MDE tools [1, 2, 3, 4].
In [5] we introduced the idea of using code generation by example (CGBE) to derive MDE

code generators (mapping from UML models to a target executable language such as Java) from
paired source-target examples. CGBE is a search-based software engineering technique which
searches for plausible model-to-code transformations which map the source element of each
pair in a provided set of example translation pairs to the target element of the pair. This process
is also a form of symbolic machine learning (ML) which induces precise mapping rules from
training data (the example pairs). The resulting transformation is expressed in concrete textual
syntax using the 𝒞𝒮𝒯 ℒ text-to-text transformation language [6].

For instance, the general OCL-to-Java mapping rule

_1->union(_2) |-->Ocl.union(_1,_2)

can be learnt from 3 paired examples of the mapping.
This process reduces the e�ort of manually constructing code generators, and reduces the

knowledge required by the user: they only need to know the concrete syntax of the source and
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target languages, in order to express the examples. Knowledge of the source/target language
grammars, language metamodels or of 𝒞𝒮𝒯 ℒ syntax/semantics is not needed.

However, the CGBE process of [5] is mainly oriented to the case where the source language is
UML/OCL and the target language is a programming language, with the source language syntax
and grammar structure being less complex than that of the target language. In this paper we
generalise the procedure to language translation by example (LTBE) to support the construction
of a wider range of MDE transformation tools, in particular to support reverse engineering or
program abstraction from programming language code to UML, design refactoring, and code
synthesis from a DSL to programs.
Subsequently to [5], there have been signi�cant advances in non-symbolic ML approaches

for language transformation synthesis, using large language models (LLMs) such as GPT-3 [7].
These have been applied in particular to learn translations between programming languages,
i.e., program translation [8, 9, 10]. Thus it is important to compare CGBE and LTBE with LLM
approaches for language transformation.

In Section 2 we describe our generalised procedure, and the 𝒞𝒮𝒯 ℒ language, and in Section 3
show how this can be applied to a practical reverse engineering task of learning a Pascal-to-UML
abstraction transformation. Section 4 applies LTBE to the synthesis of a DSL-to-Python code
generator, Section 5 applies LTBE to the synthesis of a design refactoring transformation, and
Section 6 compares the results of LTBE with manually-coded translators and application of the
GPT-3.5 LLM. Section 7 considers limitations and future work.

2. Language translation by example (LTBE)

The goal of LTBE is to automatically derive a 𝒞𝒮𝒯 ℒ transformation 𝜏 mapping a software
language L1 to a language L2 (possibly the same as L1), based on a set D of examples of
corresponding texts from L1 and L2. D should be functional from source to target, and each
example should be valid according to its language grammar.
We require that the synthesised 𝜏 should be correct wrt D, i.e., it should correctly translate

the source part of each example d ∈ D to the corresponding target part of d.
In addition, 𝜏 should also be able to correctly translate the source elements of an independent

validation dataset V of (L1, L2) examples, disjoint from D.

2.1. 𝒞𝒮𝒯 ℒ syntax and semantics

𝒞𝒮𝒯 ℒ speci�cations or scripts consist of a set of named rulesets with the syntax

RulesetName::
(rule)+

I.e., each ruleset consists of one or more rules. The ordering of rules represents their relative
priority: higher-priority and more specialised rules are listed before more general/default rules.
The names of rulesets are usually the same as the source language grammar non-terminal

symbols (i.e., the names of the syntactic categories recognised by a parser for the grammar).
However, user-de�ned rulesets can also be added to a 𝒞𝒮𝒯 ℒ script. These rulesets can de�ne



custom functions to derive speci�c information from source elements – e.g., to test if a certain
kind of language item occurs anywhere within the source element, or to derive a list of identi�ers
used within the source element. Context-speci�c mappings can also be performed by user-
de�ned rulesets.

Rulesets named by a grammar non-terminal are applied to parse trees whose outermost tag
equals the name (i.e., they were produced as a result of parsing input text using a grammar
production for that tag/non-terminal).
Each rule in a ruleset has the syntax

LHS |-->RHS (<when> conditions)? (<action> actions)?

The left-hand side (LHS) is schematic text in the source language concrete syntax, and the right-
hand side (RHS) is schematic text in the target language syntax. E.g., to express a translation
from the Pascal ‘not equal’ operator <> to the OCL operator / =, we could write the rule

_1 <> _2 |-->_1 /= _2

The 1 and 2 are metavariables representing subparts of the source element being processed
by the rule. In the result text produced by the rule (the RHS) the metavariables are replaced by
the text which the entire transformation produces for these elements.

The optional <when> and <action> clauses contain conditions and actions, each of these are
comma-separated sequences of pairs argument predicate which either (in the case of conditions)
test if the argument, such as a metavariable, satis�es a condition predicate (such as being of a
type named by the predicate, or being equal to a given value denoted by the predicate), or (for
actions) assert that the argument does satisfy predicate. Condition predicates can also be parse
tree tag names, to test if the source element is of the syntactic category named by the tag. All
conditions of a rule must evaluate to true in order for the rule to be applied to a source element,
which must also syntactically match the rule LHS.

For example, the rules:

_1 + _2 |-->_1->union(_2)<when> _1 Set
_1 + _2 |-->_1 + _2

map Pascal expressions a+ b either to a′→union(b′) if a is known to be Set-typed, or to a′ + b′

otherwise, where e′ is the result of translating e.
Actions are mainly used when processing declarations of elements, such as variables, types

or operations, in order to retain information about the elements for use in processing other
parts of a source language text, such as behaviour speci�cations or code. Users may de�ne their
own predicate names to use in actions and conditions, but there are standard names int, double,
Set, Sequence, Map, etc, corresponding to OCL datatype names.

User-de�ned rulesets f can be explicitly invoked (in the RHS of a rule) by the notation i‘f
on a metavariable i.

Rules can be ordered according to a specialisation partial order <. Rules satisfy r1 < r2 if:

• r1, r2 have the same conditions, but the LHS of r2 is more general than that of r1: the same
pattern but with more metavariables. In other words, the LHS of r1 is an instantiation or
special case of the LHS of r2



• The LHS of r1, r2 are the same, but the conditions of r1 include those of r2 and extend
these.

Rules within a ruleset should be listed in < order.

2.2. Extensions of CGBE for program abstraction and design refactoring

To learn 𝒞𝒮𝒯 ℒ scripts mapping from text examples in the concrete syntax of language L1 to
text examples in L2 concrete syntax, these examples are parsed by parsers for the respective
languages, producing parse trees of the texts. For example, parse trees for the Pascal example
expression 3 <> 1 and corresponding OCL expression 3 / = 1 are shown respectively on the
left and right side of Figure 1.

Figure 1: Pascal and OCL parse trees

The parse trees can be written in the form of nested lists, e.g., as

(equalityExpression
(additiveExpression
(factorExpression (factor2Expression (basicExpression 3)))) /=

(additiveExpression
(factorExpression (factor2Expression (basicExpression 1)))))

for the OCL version of the inequality expression. We refer to the terminal nodes of parse trees
(such as ‘1’, ‘3’ and ‘/=’) as symbols: they are instances of terminal symbols of the language
grammar.
The CGBE process de�ned in [5] used a series of six strategies to examine the parse trees

s, t of paired source and target examples, to discover systematic rules to map the source tree
structures to target tree structures. Table 1 summarises these strategies.
The strategies are oriented to the situation where the source parse tree is generally simpler

in structure than the target: they search for embeddings of the source tree within the target
tree. However, when learning language-to-language mappings such as program abstractions,
the reverse situation may hold: the source (program) parse tree will often be more complex in
structure than the target (UML/OCL) parse tree, as in Figure 1. Thus we need to include the
case that one subelement of the source elements consistently maps to the entire target: sj ↦−→ t.



Table 1
Tree-to-tree mapping strategies for CGBE

Strategy Conditions Mapping
1 All source trees s have same tag tag1 Target subtrees ti at each position i : 1..n in ts

and same arity k > 0. are constants or mapped from source trees sj
All target trees t have same tag tag2 at some fixed j : 1..k, or are mapped
and same arity n > 0. from the entire s trees.

2 Source and target terms can have varying Target subtrees ti at each position i in each t
arity, but each s has same arity as are mapped from source subtrees si at
paired t. Tags as for 1. position i in each s.

3 As for 2, but s, t are only i-th non-symbol subtree of t
required to have the same number corresponds to i-th non-symbol subtree
of non-symbol subtrees. of s. s symbols can be consistently

replaced in t or deleted, new symbols
can be inserted in the t.

4 Source s all have same tag and arity k > 0. Conditional mapping based on si value,
Subtrees si at position i are always if mappings found for sets of s, t pairs
symbols, which may vary. which have each di�erent si value.

5 As 3, but the s trees may have All non-symbol direct subtrees of t are
more non-symbol subtrees mapped from non-symbol subtrees of s,
than the paired ts. in ascending order. Symbols of s

may be deleted/replaced in t, and
new symbols inserted.

6 Source s all have same tag, arity k > 0, Target subsequences tp..tq correspond
t have same tag, possibly to some sj , for fixed
di�erent arities. p, q > p, j : 1..k.

The learning of conditional mappings

LHS |-->RHS<when> _i p

also needs to be generalised. Strategy 4 of Table 1 only considers equality-test conditions where
p denotes a value for a source symbol (e.g., to give di�erent mappings for a + b and a − b).
But for general language mappings, the case of tests on typing predicates p are also needed
(because the same syntactic source text may translate di�erently depending upon the types
of its elements, as with the conditional example of Section 2.1). Similarly, tests on syntactic
category (tag name) predicates need to be considered.
Thus we have extended and modi�ed the strategies as follows (Table 2).
The analysis of [5] regarding the time complexity of the CGBE search procedure still holds

true for the extended LTBE search. Thus the overall complexity of the search is of the order of

(N * n *m)max(P,Q)

where N is the number of examples, m, n are the maximum tree widths at any level within
the source, target examples, respectively, and P , Q are the maximum tree depths of the source,
target examples.



Table 2
Extended mapping strategies for LTBE

Strategy Conditions Mapping
7 All source trees s have same tag tag1 Entire target trees t are

and same arity k > 0. mapped from source trees sj
All target trees t have same tag tag2. at some fixed position j : 1..k

8 Source s all have same tag, arity. Conditional mapping based on si tag
Subtree si is always a non-symbol, if mappings found for pairs with each
with a tag, which may vary. di�erent si tag value.

This result indicates that the simplest examples should be used which are su�cient to learn
the required mappings.
Finally, in order to reduce the e�ort required by symbolic ML, it is possible to split a LTBE

task into parts, whereby distinct sublanguages of a given source L1 are processed separately:
L1 is partitioned into subsets LS1, ..., LSn, with the LSi having disjoint sets of outermost tags in
parse trees of L1 elements, and the mappings LSi to L2 are learnt separately, resulting in 𝒞𝒮𝒯 ℒ
scripts 𝜏1, ..., 𝜏n. Typical partitions could be the expression, type, statement and declaration
sublanguages of a software language.
This process may result in rulesets with the same name occurring in two or more 𝜏i. Such

rulesets should be merged by taking the union of the ruleset rules and listing them in <-order.

3. Program abstraction by example: Pascal to UML/OCL

This language translation task is a program abstraction or reverse-engineering transformation
from Pascal programs to UML/OCL class diagram speci�cations. The key idea is to abstract
Pascal record types P to UML classes consisting of attributes for each �eld of P , and containing
operations for each Pascal procedure or function that operates on P instances. Pascal state-
ments are translated to procedural OCL statements, Pascal expressions are translated to OCL
expressions, and Pascal types translated to OCL types. Thus the abstraction can be naturally
subdivided into parts for the expression, type, statement and declaration subparts of the Pascal
language.

Table 3
Pascal to UML/OCL using LTBE

Dataset Size ML time Ruleset size Accuracy
(examples) (ms) (LOC)

Expressions 102 1592 105 0.9
Statements 29 3603 100 1.0
Types 20 121 126 1.0
Declarations 20 455 71 0.7
Averages 43 1443 100.5 0.9

Table 3 summarises the results of LTBE for the Pascal to UML/OCL abstraction task. An
example statement rule derived by LTBE is:



repeat _2 until _4 |-->( _2 ; while _4 do _2 )

ML training times are computed as the average of 3 complete training sessions, on an i7 64-bit
laptop running Windows 10 OS. Accuracy is computed as the proportion of correct translations
on the validation dataset. This dataset consists of 51 examples split into 4 parts for the separate
language subparts.
The accuracy of the expression translation could be increased to 100% by adding two more

examples for the set non-terminal.

4. DSL code-generation by example: Collection expressions to
Python

This language translation task is a re�nement, mapping from a simple OCL sublanguage for
collection expressions of the forms

s->select( x | P )
s->reject( x | P )
s->collect( x | e )

to the corresponding Python expression forms

[ x for x in s where P ]
[ x for x in s where not P ]
[ e for x in s ]

Table 4 shows the results for this application of LTBE. Training times are calculated as for
Table 3.

Table 4
OCL collection expressions to Python using LTBE

Size ML time Ruleset size Accuracy
(examples) (ms) (LOC)
12 557 115 1.0

5. Refactoring by example: Design reduction

Program reduction [11] is an established technique to simplify code in order to facilitate program
analysis. A similar transformation can be speci�ed at the design model level, either by manually-
coded rules in 𝒞𝒮𝒯 ℒ or using LTBE. Unlike the previous transformation examples, this is a
case of an endogenous transformation, where the source and target languages (UML/OCL) are
the same.
An example rule of the transformation is:

if true then _1 else _2 |-->_1

Table 5 gives the results of applying LTBE to learn this transformation.



Table 5
Learning OCL statement refactoring using LTBE

Size ML time Ruleset size Accuracy
(examples) (ms) (LOC)
26 118 44 0.7

6. Evaluation and comparisons

The results of Tables 3, 4, 5 show that the LTBE procedure is able to learn accurate abstrac-
tion, refactoring and re�nement language mappings in a practical time, from relatively small
sets of examples. However, as Table 6 shows, the LTBE-synthesised Pascal abstractor is less
complete and less accurate than the manually-constructed 𝒞𝒮𝒯 ℒ transformation pascal2UML
of [12], while consuming less resources to create and execute. Completeness is measured as
the proportion of source language grammar productions which have corresponding 𝒞𝒮𝒯 ℒ
rules in the transformation. Accuracy is measured as the percentage of correct translations by
each transformation, applied to the same validation set of 51 Pascal examples used for Table 3.
Performance is the total execution time taken for processing the validation examples.

Table 6
Pascal to UML/OCL transformations

Transformation Completeness E�ort Accuracy Performance
(coverage) (person days) (ms)

LTBE 40% 2 0.94 1029
Manual [12] 95% 25 0.96 2243

Table 7 compares the manually-produced and LTBE synthesised versions of the refactoring
transformation. As with the Pascal abstraction case, the learnt transformation is inferior to
the manual version in terms of completeness and accuracy, but took signi�cantly less time
to develop. Accuracy is measured as the percentage of correct translations of the validation
examples used in Table 5. Performance is also measured on these examples.

Table 7
OCL refactoring transformations

Transformation Completeness E�ort Accuracy Performance
(coverage) (person days) (ms)

LTBE 60% 0.5 0.7 123
Manual [13] 90% 5 1.0 183

We conclude from these results that the LTBE production of 𝒞𝒮𝒯 ℒ transformations can be
useful to quickly build initial versions of a complex transformation, but that manual re�ne-
ment remains necessary to achieve high accuracy and completeness. In this respect complete
automation is not yet possible.
Large language models (LLMs) have been used for code generation, program translation

and many other kinds of software processing [14]. Thus it is interesting to evaluate their



performance on tasks such as reverse engineering and refactoring. We evaluated the ability of
GPT-3.51 to correctly abstract Pascal functions to OCL operations, and compared the results to
those of the LTBE-synthesised and manually-created Pascal to UML translators (second column
of Table 8). The instruction

“Translate the following Pascal function to an OCL operation de�nition"

was used as a prompt for the abstraction task.
We also evaluated the capability of the LLM for the refactoring task. The instruction

“Refactor this Pascal code fragment into a simpli�ed equivalent form"

was used as a GPT prompt for the refactoring task. The results for this task are shown in the
third column of Table 8.

Table 8
Comparison of LLM results with rule-based translators

Translator Abstraction Refactoring
version accuracy accuracy
LTBE synthesised 0.7 0.8
Manually coded 1.0 1.0
GPT-3.5 LLM 0.8 0.6

Unlike the rule-based translators, GPT-3.5 is ‘creative’ in its responses – the responses may
di�er if the same instruction and input example are re-submitted at di�erent times, and spurious
details may be added in the result, or assumptions made about the input, which the rule-based
approaches do not make.
As an example, for the abstraction task, the input Pascal function

function findpi : Real ;
begin

findpi := arctan(0.5)
end

is translated to

context AnyClass::findpi() : Real
pre: true
post: result = (3.141592653589793 / 180) *

(180 - (180 * atan(0.5) / 3.141592653589793))

by GPT-3.5.
The refactoring task illustrates that GPT 3.5 has partial but not complete understanding of

program semantics. For example, the input

for j := 2 to 1 do x := x+1

is recognised as a loop that never executes, but the answer to the prompt is the incorrect x
:= x+1. We found similar results with the MetaAI (LLama3), Gemini and Mistral LLMs. All
artefacts used in this evaluation are provided at zenodo.org/records/11654783.

1chat.openai.com



7. Limitations and future work

As with CGBE, the LTBE process does not learn rule actions, however default actions could be
added to each rule that processes a source language declaration, for example:

_1 : _2 |-->RHS<action> _1 _2

in the case of a Pascal parameter declaration.
For the learning of rule conditions (strategy 4 in Table 1 and 8 in Table 2), only syntactic

conditions based on the value or syntactic category (tag name) of argument places can be learnt.
Semantic conditions based on type predicates cannot be directly learnt, because this information
is not available in the training dataset. A possible solution would be to use triples as training
data instead of pairs, with an additional �rst item that gives the contextual type of the identi�ers
in the source example. This would lead to more precise learnt rules, but at the cost of a more
complex training process and more complex datasets.
Instead, we recommend the use of syntactic proxies for semantic categories where possible.

This means adopting a particular tag as a marker for a semantic category in training data. Thus
examples involving Pascal sets would use explicit set values (which have the tag set ). The
above example would therefore be expressed as

[x]+t Set{x}->union(t)

The induced rule would use the syntax category in its condition:

_1 + _2 |-->_1->union(_2)<when> _1 set_

Because the syntactic predicate set is a proxy for the semantic predicate Set, we can also
derive the rule

_1 + _2 |-->_1->union(_2)<when> _1 Set

Summary

In this paper we have considered how the use of example-based speci�cation and concrete-syntax
transformation can lead to simpler use of MDE. We improved the CGBE process to generalise
and extend this to a process, LTBE, to build a wider range of text-to-text transformations from
examples, including program abstraction and refactoring transformations. The evaluation
results show that LTBE can reduce the e�ort required to construct transformations, however
full automation of complete and highly-accurate transformations is not achieved. We found
that while LLMs are able to partly perform abstraction and refactoring tasks, they also have
de�ciencies in terms of accuracy and reliability.
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