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1. Introduction

Our emotional state influences our daily performance. Recent reports have highlighted a 
hormetic relationship between stress and cognitive performance [1, 2], suggesting that 
understanding the optimal balance of emotional states, rather than adopting a simple negative-
positive emotion perspective, could potentially enhance the optimization of behavioral 
performance. Our ultimate goal is to construct a system that discerns individual emotional states 
from physiological information, and generates music, visuals, or conversations as means to 
facilitate the individual's transition toward their desired emotional state. To achieve this, it is 
essential to evaluate complex emotional states on different emotional axes and assess possibly 
continuously fluctuating emotional states in real-time as possible. 

2. Related works

There are several studies on emotion estimation using physiological data (ECG, GSR, EEG), such 
as predicting depressive mood when listening to news audio [3], and predicting the dynamics of 
mood during video game play [4, 5]. Particularly, the method of Ishikawa et al. [6] accomplished 
simultaneous estimation of emotional states along six axes, namely, Sad-Happy, Nervous-Relaxed, 
Fear-Relieved, Lethargic-Excited, Depressed-Delighted, and Angry-Serene, by incorporating 
cross-modal factors across multiple physiological modalities into the prediction model. 
Evaluating its accuracy by the mean absolute percentage error (MAPE), the method achieved less 
than 25% and 36% error rates for the Angry-Serene and the Fear-Relieved axes, respectively. 

3. Emotion Estimation System During Music Listening

Here, we present an emotion estimation system that provides predicted emotional values on six 
emotional axes, similar to Ishikawa et al. [6]. In our system, notably, we have incorporated the 
real-time prediction capability, allowing us to update the predicted values every 0.5 seconds. 
Model construction: We trained our model on 2,322 instances from 54 participants, each giving 
physiological (EEG and ECG) and emotional rating data. Participants listened to music for a 
minute while recording EEG and ECG, then rated their emotion on a 15-point scale for six 
emotional axes. Explanatory variables were taken from the 10 seconds of EEG and ECG data 
immediately preceding the emotion rating, and the emotion ratings served as the objective 
variables. The model was trained using XGboost due to its computational efficiency, smaller 
resource requirement, and faster training speed, enabling real-time estimation. 
Implementation of emotion estimation: Users wear EEG and ECG devices and transmit the 
measured data to a computer via a smartphone using Bluetooth. Once the computer accumulates 
10 seconds of data, it begins estimating the emotional state. The emotional state estimate is then 
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updated every 0.5 seconds based on the preceding 10 seconds of data. This system, as shown in 
Figure 1, enables the real-time estimation of emotional state transitions during music or visual 
content consumption. 

Figure 1: Schematic diagram of our system 
design: The model uses EEG, ECG, and 
emotion ratings for training. Implementation 
involves continuously transferring these 
data via Bluetooth to a computer, updating 
emotion predictions every 0.5 seconds based 
on the previous 10 seconds of data. 

4. Prospects and potential applications

In the future, we plan a comprehensive evaluation of our models' accuracy using metrics, such as 
MAPE and other relevant measures, aiming for less than 20% error in both training and real-
world application. Future developments will merge AI to generate music or visuals, guiding users 
to their desired emotional states, potentially enhancing presentations, work efficiency, and 
mental health. 
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