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Abstract
In the rapidly evolving landscape of Natural Language Processing (NLP), there is a growing demand for agile and intuitive
tools due to the increasing model capabilities, primarily in the field of Large Language Models (LLMs). In recent months, we
have seen great progress in the Natural Language Generation (NLG) landscape, with proliferation of generative AI applications
leveraging LLMs for a vast number of tasks. The power of LLMs resides in their ability to generalize almost any NLP task to
the problem of next token prediction, thus simplifying the traditional NLP pipelines consisting in intensive data labeling and
domain-specific fine-tuning for a single task. Moreover, LLMs are enhanced (1) with external knowledge bases, which improve
their reasoning and domain understanding and (2) with external tools, which improve their ability to perform actions.

We present a novel approach that harnesses the power of LLMs to transform natural language inputs into structured
data representations, facilitating seamless interaction with custom APIs for real-time data visualization. We explore the
integration of Flythings® Technologies API for Internet of Things (IoT) device solutions in the Industry 4.0 domain. This
system demonstration presents a chat-based virtual assistant that allows users to query the status of monitored machines
and devices. The core component of the application is a LLM that serves as a bridge between user queries and machine-
readable JSON objects, which adhere to a predefined schema following the Flythings standard. Our LLM output facilitates the
interaction with the Flythings API, leading to the generation of visualizations that illustrate IoT device status in real time.
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1. Introduction
Undoubtedly, Large Language Models (LLMs) are here
to stay. Their emergence has marked the beginning of
an era in which natural language can be used to perform
any Natural Language Processing (NLP) task following
prompting techniques [1], which normally required large
amount of labeled datasets for fine-tuning ad hoc models
for a single task. LLMs, with their remarkable language
understanding and generation capabilities, have the po-
tential to dramatically ease the continuous iteration of
common NLP workflows including, but not limited to,
data labeling, data augmentation or fine-tuning. More-
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over, production-ready systems using LLMs require less
time than the traditional approaches [2], thanks to the
generalization of almost any NLP task to the problem of
Causal Language Modeling (CLM) [3, 4, 5, 6]. By provid-
ing such text interface, we communicate with machines
in a natural way, allowing for intuitive interactions.

In this context, our system demonstration paper in-
troduces a novel application that leverages the strengths
of LLMs in industrial monitoring and Internet of Things
(IoT) domains. We integrate our fine-tuned LLMs in the
Flythings® Technologies platform1. Our chat-based ap-
plication allows users to submit queries using natural
language. Then, these are processed by our model, whose
task is to extract the relevant information from the in-
put query by identifying and mapping the Flythings API
input fields, generating a well-formed JSON output fol-
lowing a specific schema. This enables us to easily inter-
act with the Flythings API, sending the corresponding
JSON objects to their services for real-time monitoring
and visualization of IoT device details.

In Section 2, we conduct a comprehensive review of the
existing research, establishing a solid foundation and con-
text for our work. In Section 3, we present our pipeline
and infrastructure, describing the design details and all
the steps involved, including the data augmentation, fine-

1You have a brief description of the FlyThings® Technolo-
gies services in the Appendix A, check at https://itg.es/en/
monitoring-iot-platform-flythings/ for additional information.
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tuning and deployment of the optimized and production-
ready LLM. In Section 4, we illustrate the practical ex-
amples carried out and the real world utility of our tool,
presenting its limitations in Section 5. We conclude with
Section 6 by summarizing our findings and outlining the
future directions of our research.

2. Related Work
In recent months, we have seen a myriad of LLM re-
search papers addressing the topic of context-aware
LLMs through in-context learning. This capability en-
ables them to generalize to almost any NLP task, com-
monly unseen during pre-training and fine-tuning stages
[3, 5, 6]. This direction has led the research commu-
nity to explore the integration of LLMs with external
tools such as document stores [7] or APIs [8], enhancing
their generalization capabilities even more. LLM agents
[9] are a new concept arised from providing LLMs with
(1) extensive up-to-date data pools beyond their fixed
knowledge representations and (2) functions or tools to
perform actions and automate processes [10, 11, 12, 13].
Such two-fold strategy reduces the need for regular re-
training. For example, Gorilla [8] leverages a multitude
of APIs and documentation through document retrievers,
highlighting the effectiveness of this framework.

Moreover, the reasoning capabilities of LLMs are in-
fluenced by the prompt strategies followed [5, 14, 15],
where how natural language instructions are written
significantly affects the performance [16]. More com-
plex prompting strategies like ReAct [9] became popular,
combining reasoning and planning techniques by adding
reasoning traces and task-specific actions to the prompt.
These strategies benefit the integration of the LLM with
external sources. In this new landscape, new benchmark
frameworks were proposed [17, 18], which aim at design-
ing reliable and robust evaluation methodologies.

The introduction of Generative Information Extraction
(GIE) has further boosted the NLP field [19]. Recent stud-
ies [20] propose LLMs to generate structured information
from natural language. Some closely-related tasks, like
text-to-SQL [21, 22], involve the transformation of nat-
ural language into SQL language for querying external
tools (i.e., databases). This generative approach proves to
be effective even in scenarios involving complex schemas
with millions of entities involved [23]. The ability of
LLMs to manage these large schemas without dropping
performance (effectively generating the target query fol-
lowing a specific format) is particularly significant for
our research. We propose a generation step aiming at
transforming natural language queries (sent to our virtual
assistant) into structured JSON objects with the relevant
parameters for the integration of the FlyThings®API.

3. Proposed Method
In this section, we present our methodology, covering
all the steps involved in our pipeline. We describe our
data preparation stage, including the seed data creation
and data augmentation process. We also formulate our
supervised fine-tuning (SFT) method for our information
extraction task, as well as the inference optimizations
taken into account for our LLM deployment. The overall
process is depicted in Figure 1.

3.1. Seed Data
In the absence of pre-existing user data for our task, de-
pendent on the FlyThings® technology, we started creat-
ing a dataset. We collected feedback from the Flythings
team, who provided us with the initial examples of poten-
tial user inputs and expected outputs. In this way, we got
a seed dataset consisting of 6 outputs, each of them with 3
different ways of expressing the input in accordance with
the Flythings team. Given these pairs, we agreed on a
specification, defining a JSON schema as the golden rule.
Our pipeline starts with (1) a template-based method for
generating new JSON outputs as described in Figure 1,
randomly selecting one of the available options for each
of the JSON fields, following the schema depicted in Fig-
ure 2. In this way, we got a pool of examples for the next
data augmentation step.

3.2. Data Augmentation
Our seed dataset was scarce and limited in scope, lacking
from input query diversity. Therefore, we followed a data
augmentation approach. We created a custom pipeline for
generating alternative input queries, given the reference
(input, output) pairs from the seed data. For this task,
we leveraged the Mixture of Experts (MoE) LLM Mixtral-
8x7B-Instruct-v0.1 model from Mistral AI [24].

We aimed at generating variant inputs for each JSON
output from the previous pool depicted in Figure 1, so that
we could increase the available (input, output) pairs. We
used the original seed as reference within the instruction
illustrated in Figure 3, generating 3 variations of the input
for each target through few-shot in-context learning [6].
This process corresponds to the (2) data augmentation
step depicted in Figure 1. We increased our dataset up to
355 curated samples for the following SFT stage.

3.3. Supervised Fine-Tuning
Before diving into the details of the fine-tuning process,
it is important to understand why supervised fine-tuning
was necessary in the first place. While zero-shot or few-
shot (i.e., in-context) learning [25] can be effective for
general NLP tasks, it entails challenges when the task
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Figure 1: Our pipeline begins with the design of the JSON schema with the formatting rules, used as the specification for (1)
a template-based method for the generation of random JSON output targets for our task. These outputs are fed into (2) a data
augmentation phase utilizing a LLM to generate multiple inputs corresponding to each previously generated JSON output,
so that we add diversity to how users convey queries. Subsequently, (3) the supervised fine-tuning task for our information
extraction task, (4) the quantization stage for the model inference optimization and (5) the deployment phase culminating
with the integration of the FlyThings® endpoint for the creation of a virtual assistant enhanced with visualizations.

{
    "series":[
        {
            "property": String,
            "foi": String,
            "module": String,
            "asIncremental": Boolean
        }
    ],
    "visualization":{
        "config":{
            "type": Enum,
            "subtype": Enum
        },
        "body":{
            "period": Enum,
             (...)

     (...)
    "temporalScaleType": Enum

        }
    }
}

Json Schema

Figure 2: Overview of the JSON schema used for output vali-
dation. Notice that, according to this specification, each JSON
output will have two main parts: (1) the series field, which
includes information about the specific Flythings IoT devices
been queried and (2) the visualization properties, which in-
clude the required information for the visual representation
of the series data in the virtual assistant.

is very specific and requires a thorough generation pro-
cess, limiting hallucinations [26]. In our case, we faced
some issues with the in-context learning approach for
classifying and extracting the corresponding fields for
the Flythings® task. On the one hand, (1) zero-shot learn-
ing, which involves making direct predictions without
any previous examples in the training distribution, had
problems with detailed input queries requiring complex
JSON outputs, in which the corresponding JSON schema
in the instruction was not enough. These led to classifi-
cation inaccuracies in the generation step. Similarly, (2)
few-shot learning, which relies on providing the model

Instruction: Your task is to generate 3 alternative inputs for a
specific JSON output. {rules_to_follow}
This is the output schema: 
{"series": [{ "property": "tap 2", "foi": "greehouse water",
"asIncremental": True }], "visualization": {"config": {"type":
"chart", "subtype": "line"}, "body":{ "temporalScale": "DAILY",
"temporalScaleType": "CHANGES" }}}

Input1: View the accumulated status changes for tap 2 of the
greenhouse water device on a daily graph.
Input2: Observe the daily graph that displays the collective
status alterations of tap 2 in the greenhouse watering device.
Input3: Examine the daily chart showing the aggregate
changes in the status of greenhouse water device's tap 2. 

Figure 3: The few-shot data augmentation task. We designed
the following prompt: (1) the system instruction (displayed
in black), including the rules (in bold curly brackets) with the
seed pairs as reference guiding the generation with few-shot
examples (omitted for clarity). Then, we present (2) one output
from the pool as the target (highlighted in blue) and (3) we
generate three new input queries (highlighted in green).

with some examples of the task in the initial instruction,
was limited and biased by the quality and expressiveness
of the provided sequences at inference time. In short,
these two methods neither captured the complexity nor
the specificity of our domain, leading us to sub-optimal
performance in terms of both accuracy and reliability.

Recognized these limitations, we transitioned to a fine-
tuning approach to tailor the model for our specific needs.
During the fine-tuning stage, we assessed multiple mod-
els up to 7 billion parameters, considering the trade-
off between the model performance and our hardware
limitations. We finally chose the instruction fine-tuned
model teknium/OpenHermes-2.5-Mistral-7B2 based on the
mistralai/Mistral-7B-Instruct-v0.1 model3. We leveraged
the dataset from our previous data augmentation step

2https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1


from Section 3.2, following the QLoRA [27] approach
for efficient fine-tuning. Similar to LoRA (Low-Rank
Adaptation of large language models) [28], which freezes
the pre-trained model weights and adds trainable rank
decomposition matrices to each transformer block (elim-
inating the need for full fine-tuning), QLoRA goes a step
further by quantizing the weights of the frozen backbone
LLM, adding the LoRA adapters with paged optimizers to
manage memory spikes. This results in a more efficient
memory management for fine-tuning [27].

3.4. Inference Optimization
After the supervised fine-tuning stage of our model, we
had to determine the inference requirements under a
production environment, considering (1) our hardware
limitations and (2) the need for low latency supporting
real-time queries. In this way, we explored the available
options for reducing the computational requirements,
while maintaining (or minimally decreasing) the LLM
performance. We opted for the vLLM [29] library, specif-
ically designed for fast and efficient serving of LLMs in-
cluding, but not limited to, paged attention optimizations,
continuous batching of incoming requests and optimized
CUDA kernels. We compared the performance of differ-
ent quantization techniques supported by vLLM, such
as GPTQ [30] and AWQ [31]. We chose AWQ because it
offered the best throughput while maintaining the perfor-
mance4. We deployed our LLM service in the proprietary
ITG clusters, using a RTX A6000 48 GB GDDR6 GPU.

4. Chatbot Experimentation
For our experimentation, we implemented a new vir-
tual assistant view in the FlyThings® framework. The
front-end of the chatbot is in charge of loading the user
contexts, which is the list of their IoT devices available.
With the environment all set, each input query is sent
to the LLM service, which generates the corresponding
JSON output following the schema described in Figure 2.
We identify the closest IoT device information matching
the extracted device and property (and optionally module,
if present) JSON fields. Then, we follow these steps: (1) if
there are no matches, the user is prompted to try again;
(2) if there is exclusively one match, the next step is exe-
cuted; (3) if there are more than one match, a radio button
is displayed for the user to choose among them. Depend-
ing on the visualization format (graph, table, indicator
and so on), a request to the observation API endpoints5 is
processed, including all the chart configuration. Finally,

4The AWQ quantization method consistently outperforms
GPTQ across different model scales in their evaluation benchmark.
Check the original work for more details.

5https://deviot.flythings.io/api/apidocs/index.html#
api-03-Request_Observations

the visual widget is loaded, showing the results to the
user. We include an example in Figure 4. We also provide
a video demonstration6 of the virtual assistant.

5. Limitations
In this paper we introduce the first version of the sys-
tem as a proof-of-concept demo, still in its early stage
of development. We focused on the data augmentation,
fine-tuning and deployment stages mainly due to time
constraints. We did not perform thorough evaluation
and we acknowledge the importance of this process, but
since the project is linked to a new market product by the
Flythings® company, we aligned with the team require-
ments, which were more oriented to fast prototyping for
a first usable version of the chat interface.

6. Conclusions and Future Work
In this paper we present a novel approach for query-
ing the Flythings® framework. We described the system
architecture and the NLP pipeline for the dataset prepara-
tion, LLM fine-tuning and inference optimization stages.
Our approach is generalizable to any text-to-JSON or text-
to-API task following the proposed pipeline. We handle
user queries in natural language with a virtual assistant,
considering visual feedback. Our next steps include re-
fining the fine-tuned LLM using preference data from
users interacting with the system. We will study in more
detail both the helpfulness and the accuracy of our model
outputs by means of thorough evaluation and benchmark-
ing. We plan to explore Reinforcement Learning from
Human Feedback (RLHF) [32] and Directed Preference
Optimization (DPO) [33] for further alignment with hu-
man preferences. We also foresee future applications of
Virtual Reality (VR), which would improve usability un-
der real conditions and enhance user experience. We aim
to broaden the current functionality beyond querying IoT
devices, adding more complex Flythings® IoT operations,
such as managing device actions, alerts or dashboards.
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Figure 4: An end-to-end example of the FlyThings® virtual assistant, integrating the LLM service with the API services.
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tors. It is designed for the analysis and forecasting of
data records of IoT devices, considering any of the data
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