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1 Introduction

The ESHOL sessions of the PAAR workshop focussed on the use of higher-order
reasoning systems. A particular focus was on means to evaluate higher-order
reasoning systems. The notion of higher-order included, but was not limited to,
ramified type theory, simple type theory, intuitionistic and constructive type
theory, and logical frameworks. The notion of reasoning systems included auto-
mated and semi-automated provers, model generators, as well as proof and model
checkers. There were two parts to the ESHOL sessions: (i) higher-order system
demonstrations, and (ii) a panel discussion. Additionally, one of the PAAR in-
vited speakers, Rob Arthan, gave a talk in the ESHOL topic area.

2 Higher-order System Demonstrations

The following higher-order systems were demonstrated in the system demon-
stration sessions. Each presenter gave a 10 minute “talk” slot to present the
system to the audience in the traditional laptop+projector mode (giving a brief
overview of the system and a demonstration of it running and solving some of
the problems in Appendix A). Following the 10 minute presentations there was
an open forum during which presenters were all available to give individual and
more detailed information and demonstrations.

– Coq, Guillaume Melquiond
– Delphin, Carsten Schürmann
– HOL, Joe Hurd
– Isabelle, Stefan Berghofer
– IsaPlanner, Lucas Dixon
– LEO-II, Christoph Benzmüler and Frank Theiss
– Mizar, Josef Urban
– Omega, Frank Theiss and Christoph Benzmüller
– ProofPower, Rob Arthan
– TPS, Mark Kaminski
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3 Panel Discussion

The ESHOL panelists were Rob Arthan, Lucas Dixon, and Joe Hurd. The panel
discussed ideas, suggestions, and potential problems related to:

– The buildup of an higher-order TPTP infrastructure.
– The development of automated reasoning systems for higher-order logic (or

fragments of it).
– Promising application areas for automated higher-order reasoning systems.
– The planned organization of a higher-order CASC at CADE-22 in 2009.
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A Sample Problems for System Demonstrations

The two first problems should be simple enough for every system, to provide
a starting point for comparisons and discussion. The third example is Cantor’s
Theorem, which might be more difficult. The problems are presented in the
TPTP “THF” language for simple type theory, which was recently developed by
the organizers [1]. The language is based on Church’s simple type theory, and is
a syntactically conservative extension of the untyped first-order TPTP language.
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A.1 Puzzle Example

%------------------------------------------------------------------------

thf(islander,type,( islander: $i )).

thf(knight,type,( knight: $i )).

thf(knave,type,( knave: $i )).

thf(says,type,( says: $i > $o > $o )).

thf(zoey,type,( zoey: $i )).

thf(mel,type,( mel: $i )).

thf(is_a,type,( is_a: $i > $i > $o )).

thf(kk_6_1,axiom,(

! [X: $i] :

( ( is_a @ X @ islander )

=> ( ( is_a @ X @ knight )

| ( is_a @ X @ knave ) ) ) )).

thf(kk_6_2,axiom,(

! [X: $i] :

( ( is_a @ X @ knight )

=> ! [A: $o] :

( ( says @ X @ A ) => A ) ) )).

thf(kk_6_3,axiom,

! [X: $i] :

( ( is_a @ X @ knave )

=> ! [A: $o] :

( ( says @ X @ A ) => ~ ( A ) ) )).

thf(kk_6_4,axiom,

( ( is_a @ zoey @ islander )

& ( is_a @ mel @ islander ) )).

thf(kk_6_5,axiom,

( says @ zoey @ ( is_a @ mel @ knave ) )).

thf(kk_6_6,axiom,

( says @ mel

@ ~ ( ( is_a @ zoey @ knave )

| ( is_a @ mel @ knave ) ) )).

thf(query,theorem,(

? [Y: $i,Z: $i] :

( ( ( Y = knight )

<~> ( Y = knave ) )

& ( ( Z = knight )

<~> ( Z = knave ) )

& ( is_a @ mel @ Y )

& ( is_a @ zoey @ Z ) ) )).

%------------------------------------------------------------------------
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A.2 Set Theory Example

%-----------------------------------------------------------------------

%----Signatures for basic set theory predicates and functions.

thf(const_in,type,(

in: $i > ( $i > $o ) > $o )).

thf(const_intersection,type,(

intersection: ( $i > $o ) > ( $i > $o ) > ( $i > $o ) )).

thf(const_union,type,(

union: ( $i > $o ) > ( $i > $o ) > ( $i > $o ) )).

%----Some axioms for basic set theory.

thf(ax_in,axiom,(

( in

= ( ^ [X: $i,S: ( $i > $o )] :

( S @ X ) ) ) )).

thf(ax_intersection,axiom,(

( intersection

= ( ^ [S1: ( $i > $o ),S2: ( $i > $o ),U: $i] :

( ( in @ U @ S1 )

& ( in @ U @ S2 ) ) ) ) )).

thf(ax_union,axiom,(

( union

= ( ^ [S1: ( $i > $o ),S2: ( $i > $o ),U: $i] :

( ( in @ U @ S1 )

| ( in @ U @ S2 ) ) ) ) )).

%----The distributivity of union over intersection.

thf(thm_distr,conjecture,(

! [A: ( $i > $o ),B: ( $i > $o ),C: ( $i > $o )] :

( ( union @ A @ ( intersection @ B @ C ) )

= ( intersection @ ( union @ A @ B ) @ ( union @ A @ C ) ) ) )).

%------------------------------------------------------------------------

A.3 Cantor’s Theorem

%------------------------------------------------------------------------

thf(surjectiveCantorThm,conjecture,(

~ ( ? [G: $i > $i > $o] :

! [F: $i > $o] :

? [X: $i] :

( ( G @ X )

= F ) ) )).

%------------------------------------------------------------------------
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