
Towards fully automated axiom extraction
for finite-valued logics

João Marcos and Dalmo Mendonça

DIMAp/CCET, UFRN, Brazil
jmarcos@dimap.ufrn.br,dalmo3@gmail.com

Abstract. We implement an algorithm for extracting appropriate col-
lections of classic-like sound and complete tableaux rules for a large class
of finite-valued logics. Its output consists of Isabelle theories.1

Key words: Many-valued logics, tableaux, automated theorem proving.

1 Introduction

This note will report on the first developments towards the implementation
of a fully automated system for the extraction of adequate proof-theoretical
counterparts for sufficiently expressive logics characterized by way of a finite
set of finite-valued truth-tables. The underlying algorithm was first described
in [2]. Surveys on tableaux for many-valued logics can be found in [4, 1]. The
implementation has been performed in ML, and its application gives rise to an
Isabelle theory (check [5]) formalizing a given finite-valued logic in terms of
two-signed tableau rules.

The survey paper [4] points at a few very good theoretical motivations for
studying tableaux for many-valued logics, among them:
– tableau systems are a particularly well-suited starting point for the develop-

ment of computational insights into many-valued logics;
– a close interplay between model-theoretic and proof-theoretic tools is neces-

sary and fruitful during the development of proof procedures for non-classical
logics.

Section 2, right below, recalls the relevant definitions and results concerning
many-valued logics as well as their homologous presentation in terms of biva-
lent semantics defined by clauses of a certain format we call ‘gentzenian’. An
algorithm for endowing any sufficiently expressive finite-valued logic with an
adequate bivalent semantics is exhibited and illustrated for the case of L3, the
well-known 3-valued logic of Lukasiewicz.

The concepts concerning tableau systems in general and the particular re-
sults that allow one to transform any computable gentzenian semantics into a
corresponding collection of tableau rules are illustrated in section 3, for the case
of L3.
1 A snapshot of the corresponding code can be checked in
http://tinyurl.com/5cakro.

46

Section 4 discusses our current implementation, carefully explaining its ex-
pected inputs and outputs, and again illustrates its functioning for the case of L3.
Advantages and shortcomings of our system, in its present state of completion,
as well as conclusions and some directions for future work are mentioned in
section 5.

2 Many-valued logics

Given a denumerable set At of atoms and a finite family Cct = { c©i
j}j∈J of

connectives, where arity(c©i
j) = i, let S denote the term algebra freely generated

by Cct over At. Here, a semantics Sem for the algebra S will be given by any
collection of mappings {§Vk }k∈K where dom(§Vk) = S and codom(§Vk) = Vk, and
where each collection of truth-values Vk is partitioned into sets of designated val-
ues, Dk, and undesignated ones, Uk. The mappings §Vk themselves may be called
(ν-valued) valuations, where ν = Card(Vk). A bivalent semantics is any seman-
tics where Dk and Uk are singleton sets, for any k ∈ K. For bivalent semantics,
valuations are often called bivaluations.

The canonical notion of (single-conclusion) entailment |=Sem ⊆ Pow(S) ×
S induced by a semantics Sem is defined by setting Γ �Sem ϕ iff §Vk (ϕ) ∈
Dk whenever §Vk (Γ) ⊆ Dk, for every §Vk ∈ Sem. The pair 〈S, |=Sem〉 may be
called a generic ν-valued logic, where ν = Maxk∈K(Card(Vk)).

If one now fixes the sets of truth-values V, D and U , and considers, for each
connective c©i

j an interpretation ĉ©i
j : Vi −→ V, one may immediately build

from that an associated algebra of truth-values T V = 〈V,D, { ĉ©i
j}j∈J〉 (in the

present paper, whenever there is no risk of confusion, we shall not differentiate
notationally between a connective symbol c© and its interpretation ĉ©). A truth-
functional semantics is then defined by the collection of all homomorphisms of
S into T V. In this paper, the shorter expression ν-valued logic will be used to
qualify any generic ν-valued truth-functional logic, for some finite ν, where ν is
the minimal value for which the mentioned logic can be given a truth-functional
semantics characterizing the same associated notion of entailment.

The canonical notion of entailment of any given semantics, and in particular
of any given truth-functional semantics, may be emulated by a bivalent seman-
tics. Indeed, consider V2 = {T, F} and D2 = {T}, and consider the ‘binary
print’ of the algebraic truth-values produced by the total mapping t : V −→ V2,
defined by t(v) = T iff v ∈ D. For any ν-valuation §V of a given semantics Sem,
consider now the characteristic total function b§ = t ◦ §V . Now, collect all such
bivaluations b§’s into a new semantics Sem(2), and note that Γ �Sem(2) ϕ iff
Γ �Sem ϕ. The standard 2-valued notion of inference of Classical Logic is char-
acterized indeed by a bivalent truth-functional semantics. In general, though, a
bivalent characterization of a logic with a ν-valued truth-functional semantics
explores the trade-off between the ‘algebraic perspective’ of many-valuedness,
with its many ‘algebraic truth-values’ and its semantic characterization in terms
of a set of homomorphisms, on the one hand, and the classic-inclined ‘logical
perspective’, with its emphasis on characterizations based on 2 ‘logical values’,

47

on the other hand (for more detailed discussions of this issue, check [2, 7]). Our
interest in this paper is to probe some of the practical advantages of the bi-
valent classic-like perspective as applied to the wider domain of finite-valued
truth-functional logics.

Our running example in this paper will involve Lukasiewicz’s well-known
3-valued logic L3, characterized by the algebra of truth-values 〈{1, 1

2 , 0}, {1},
{¬,→,∨,∧}〉, where the interpretation of the unary negation connective ¬ sets
¬v1 = 1 − v1 and the interpretation of the binary implication connective →
sets (v1 → v2) = Min(1, 1 − v1 + v2). The binary symbols ∨ and ∧ can be
introduced as primitive interpreting them through (v1 ∨ v2) = Max(v1, v2) and
(v1∧v2) = Min(v1, v2), but they can also more simply be introduced by definition
just like in Classical Logic, setting α∨β def

== (α→ β)→ β and α∧β def
== ¬(¬α∨¬β).

The binary print of an arbitrary atom of L3 and of its negation is illustrated in
the table below.

v t(v) ¬v t(¬v)

1 T 0 F
1
2 F 1

2 F

0 F 1 T

(1)

Given some finite-valued logic L based on a set of truth-values V, we say
that L is functionally complete over V if any n-valued operation, for n = Card(V),
may be defined with the help of a suitable combination of its primitive opera-
tors { ĉ©i

j}j∈J . When L is not functionally complete from the start, we may
consider Lfc as any functionally complete n-valued conservative extension of L.
Given truth-values v1, v2 ∈ V, we say that they are separated, and we write
v1]v2, in case v1 and v2 belong to different classes of truth-values, that is, in
case either v1 ∈ D and v2 ∈ U , or v1 ∈ U and v2 ∈ D. Given a unary, primitive
or defined, connectives of a given truth-functional logic, with interpretation ŝ,
we say that s separates v1 and v2 in case ŝ(v1)]ŝ(v2). Obviously, for any pair
of truth-values of Lfc it is possible to find or to define in the corresponding term
algebra an appropriate separating connective s. When that separation can be
done exclusively with the help of the original language of L, we say that V is
effectively separable and the logic L, in that case, will be considered to be suffi-
ciently expressive for our purposes. It should be noticed that the vast majority
of the most well-known finite-valued logics enjoy this expressivity property.

Notice in particular, from Table 1, how the negation connective of L3 sepa-
rates the two undesignated truth-values. Based on Table 1, one may in fact easily
provide a unique identification to each of the 3 initial algebraic truth-values, by
way of the following statements:

v = 1 iff t(v) = T (I)
v = 1

2 iff t(v) = F and t(¬v) = F
v = 0 iff t(v) = F and t(¬v) = T

48

One can also use this separating connective s : λu.¬u in order to provide
a bivalent description of each of the operators of the language. Consider for
instance the cases of A : λvw.(v → w) and B : λvw.¬(v → w) (that is, B
is sA):

A 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2

0 1 1 1

B 1 1
2 0

1 0 1
2 1

1
2 0 0 1

2

0 0 0 0

(2)

From those tables it is clear for instance that:

§(¬(α→ β)) = 1 iff §(α) = 1 and §(β) = 0 (II)

Let’s write T : ϕ and F : ϕ, respectively, as abbreviations for t(§(ϕ)) = T and
t(§(ϕ)) = F . Then, the statement (II) may be described in bivalent form, with
the help of (I), by writing:

T : ¬(α→ β) iff T : α and (F : β and T : ¬β) (III)

In [2] an algorithm that constructively specifies a bivalent semantics for any
sufficiently expressive finite-valued logic was proposed. The output of the al-
gorithm is a computable class of clauses governing the behavior of all the bi-
valuations that together will define a notion of entailment that coincides with
the original entailment defined with the help of the algebra of truth-values T V.
Moreover, all those clauses are in a specific format we call gentzenian, namely,
they are conditional expressions of the form (Φ ⇒ Ψ) where both Φ and Ψ are
(meta)formulas of the form > (top), ⊥ (bottom) or a clause of the form
b(ϕ1

1) = w1
1 & . . .& b(ϕn1

1) = wn1
1 | . . . | b(ϕ1

m) = w1
m & . . .& b(ϕnm

m) = wnm
m .(G)

Here, wj
i ∈ {T, F}, each ϕj

i is a formula of L, the symbol ⇒ represents impli-
cation (and ⇔ shall represent bi-implication, abbreviating the conjunction of
two clauses of the form (G)), the symbol & represents conjunction, and | rep-
resents disjunction. The (meta)logic governing these clauses is fol, First-Order
Classical Logic. One may alternatively represent a clause of the form (G) as∨

1≤k≤m

∧
1≤s≤nm

(b(ϕs
k) = ws

k).
With a slight notational change and using fol, one can see (III) as a descrip-

tion done in an abbreviated gentzenian format:

T : ¬(α→ β)⇔ T : α & F : β & T : ¬β (IV)

Following the above line of reasoning, it is also correct to write, for instance, the
clause:

F : (α→ β)⇔ T : α & F : β & F : ¬β | (V)
T : α & F : β & T : ¬β |
F : α & F : ¬α & F : β & T : ¬β

49

According to the reductive algorithm described in [2], a sound and complete
bivalent version of any sufficiently expressive finite-valued logic L is obtained if:
(i) the above illustrated procedure is iterated in order to obtain clauses de-
scribing exactly in which situation one may assert T : c©i

j(α1, . . . , αi) and
F : c©i

j(α1, . . . , αi), as well as T : s c©i
j(α1, . . . , αi) and F : s c©i

j(α1, . . . , αi),
for each c©i

k ∈ Cct and each one of the separating connectives s of L;
(ii) to all those clauses one adds the following extra axioms governing the be-
havior of the admissible collection of bivaluations:

(C1) > ⇒ T : α | F : α (C2) T : α & F : α ⇒ ⊥
(C3) T : α ⇒

∨
d∈D

∧
1≤m<n≤Card(D) w

d
mn : smn(α)

(C4) F : α ⇒
∨

u∈U
∧

1≤m<n≤Card(U) w
u
mn : smn(α)

for every α ∈ S, where smn is the unary (primitive or defined) connective that
we use to separate the truth-values m and n, and wv

mn = t(smn(v)).

3 Tableaux

Generic tableau systems for finite-valued logics are known at least since [3]. In
the corresponding tableaux, however, formulas may receive as many labels as the
number of truth-values in V, and that somewhat obstructs the task of comparing
for instance the associated notions of proof and of consequence relation to the
corresponding classical notions. But with the help of the bivalent semantics
illustrated in the previous section it is now straightforward to produce sound
and complete collections of classic-like two-signed tableau rules (i.e., each formula
appears with exactly one of two labels at the head of each rule).

The basic idea, explained in [2], is to dispose the gentzenian clauses governing
the admissible bivaluations in an appropriate way. For that matter, clauses such
as (IV) and (V) can be rendered, respectively, as the following tableau rules:

(IV)tab T : ¬(α→ β)

T : α
F : β
T : ¬β

F : (α→ β)

T : α
F : β
F : ¬β

T : α
F : β
T : ¬β

F : α
F : ¬α
F : β
T : ¬β

(V)tab

To those rules corresponding to the truth-tables of the operators and the sep-
arating connectives, one should also add rules corresponding to the extra ax-
ioms (C1)–(C4). In practical cases, however, axioms (C3) and (C4) can often be
proven from the remaining ones. Moreover, axiom (C2) expresses just the usual
closure condition on tableau branches. On the other hand, axiom (C1) gives rise
in general to the following ‘dual-cut’ branching rule, for arbitrary α:

T : α F : α

50

All other definitions and concepts concerning the construction of tableaux are
standard (check [6]).

One might be worried, with good reason, that the unrestrained use of the
branching rule may potentially make the corresponding tableaux non-analytic.
We will discuss that in the conclusion. The tableau rules originated from the
above procedure can naturally be used in order to prove theorems, check con-
jectures and suggest counter-models, but also, in the meta-theory, to formulate
and prove derived rules that can be used to simplify the original presentation of
the logic as originated by our algorithm. So, for instance, the above illustrated
complex three-branching rule for F : (α → β) can eventually be simplified into
one of the following equivalent two-branching rules:

(V∗)tab F : (α→ β)

T : α
F : β

F : α
F : ¬α
F : β
T : ¬β

F : (α→ β)

T : α
F : β

F : ¬α
T : ¬β

(V∗∗)tab

4 Implementation

We used the functional programming language ML to automate the axiom ex-
traction process. ML provides us, among other advantages, with an elegant and
suggestive syntax, and a very handy compile-time type checking and type infer-
ence that guarantees that we never run into unexpected run-time problems with
our program, once it is proved correct with respect to the specification.

The relevant inputs of our program include the detailed definition of a finite-
valued logic, such as the logic L3 presented in the previous sections, together
with an appropriate set of separating connectives for that logic.

Here’s an example of a input for the logic L3, presented above, where the func-
tions CSym, CAri and CTab take a connective and return its symbol (for printing),
arity and truth-table, respectively. A truth-table of a given connective c© is rep-
resented as the list of all pairs ([x1, . . . , xn], y) such that c©(x1, . . . , xn) = y.

(* PROGRAM SIGNATURE *) (* EXAMPLE OF L3 *)

signature LOGIC =

sig

type cct datatype cct = Neg | Imp

val Values ["0", "1/2", "1"];

val Designated ["1"];

val Connectives [Neg, Imp];

val SeparatingD [];

val SeparatingND [Neg];

val CSym fun CSym Neg = "~"

| CSym Imp = "-->";

val CAri fun CAri Neg = 1

| CAri Imp = 2;

51

val CTab fun CTab Neg = [(["0"], "1"),

(["1/2"], "1/2"),

(["1"], "0")]

| CTab Imp = [(["0", "0"], "1"),

(["0", "1/2"], "1"),

(["0", "1"], "1"),

(["1/2", "0"], "1/2"),

(...)

(["1", "1"], "1")]

end;

To perform the extraction, our program first generates a list of all necessary
rules, as explained in section 2.

val rulesList = [T "~(A0)", T "A0 --> A1",

T "~(~(A0))", T "~(A0 --> A1)",

F "~(A0)", F "A0 --> A1",

F "~(~(A0))", F "~(A0 --> A1)"];

Next, the program converts each connective’s truth-table, here given by the
function CTab, into a table where each value is exchanged by its binary print. The
binary print of a value is calculated based on the separating connectives given as
input (SeparatingD for designated values and SeparatingND for undesignated
values). For instance, for the case of the connective Neg, the clauses are the
following:

(* A0 *) (* ~(A0) *)

([F "A0",T "~(A0)"], [T "~(A0)"])

([F "A0",F "~(A0)"], [F "~(A0)",F "~(~(A0))"])

([T "A0"], [F "~(A0)",T "~(~(A0))"])

Now, for each formula in the list of rules, a search is performed through all
tables generated in the latter step, and all clauses in which the given formula
appears on the right hand side are returned. The left hand side of these clauses
represents the branches of the desired tableau rule. For instance, the rules for
T:~A and F:~A are:

(* T:~A *) ([[F "A0",T "~(A0)"]], T "~(A0)")

(* F:~A *) ([[F "A0",F "~(A0)"], [T "A0"]], F "~(A0)")

The next steps include the calculus of axioms (C3) and (C4), and the printing
of all definitions, concrete syntax and rules into a text file containing the full
theory ready to use in Isabelle. Isabelle, also written in ML, is a generic
theorem-proving environment based on a higher-order meta-logic in which it
is quite simple to create theories with rules and axioms for various kinds of
deductive formalisms, and equally straightforward to define tacticals for the
automation of routine tasks and to prove theorems about these systems.

For the case of L3, here is the corresponding theory produced as output by
our program:

52

theory TL3

imports Sequents

begin

typedecl a

consts

Trueprop :: "(seq’=>seq’) => prop"

True :: o

False :: o

TR :: "a => o" ("T:_" [20] 20)

FR :: "a => o" ("F:_" [20] 20)

Neg :: "a => a" ("~ _" [40] 40)

Imp :: "[a,a] => a" ("_-->_" [24,25] 25)

syntax

"@Trueprop" :: "(seq) => prop" ("[_]" 5)

ML

{*

fun seqtab_tr c [s] = Const(c,dummyT) $ seq_tr s;

fun seqtab_tr’ c [s] = Const(c,dummyT) $ seq_tr’ s;

*}

parse_translation {* [("@Trueprop", seqtab_tr "Trueprop")] *}

print_translation {* [("Trueprop", seqtab_tr’ "@Trueprop")] *}

local

axioms

axC1: "[| [$H, T:A] ; [$H, F:A] |] ==> [$H]"

axC21: "[$H, T:A, $E, F:A, $G]"

axC22: "[$H, F:A, $E, T:A, $G]"

axC3: "[| [$H, T:A, $G] |] ==> [$H, T:A, $G]"

axC4: "[| [$H, T:~(A), $G] ; [$H, F:~(A), $G] |]

==> [$H, F:A, $G]"

ax0: "[| [$H, F:A0, T:~(A0), $G] |] ==> [$H, T:~(A0), $G]"

ax1: "[| [$H, F:A0, F:~(A0), $G] ; [$H, T:A0, $G] |]

==> [$H, F:~(A0), $G]"

ax2: "[| [$H, F:A0, F:~(A0), $G] |] ==> [$H, F:~(~(A0)), $G]"

ax3: "[| [$H, T:A0, $G] |] ==> [$H, T:~(~(A0)), $G]"

ax4: "[| [$H, F:A0, T:~(A0), F:A1, T:~(A1), $G] ;

[$H, T:A0, T:A1, $G] ;

[$H, F:A0, F:~(A0), T:A1, $G] ;

[$H, F:A0, F:~(A0), F:A1, F:~(A1), $G] ;

[$H, F:A0, T:~(A0), T:A1, $G] ;

[$H, F:A0, T:~(A0), F:A1, F:~(A1), $G] |]

==> [$H, T:A0 --> A1, $G]"

53

ax5: "[| [$H, F:A0, F:~(A0), F:A1, T:~(A1), $G] ;

[$H, T:A0, F:A1, F:~(A1), $G] ;

[$H, T:A0, F:A1, T:~(A1), $G] |]

==> [$H, F:A0 --> A1, $G]"

ax6: "[| [$H, F:A0, F:~(A0), F:A1, T:~(A1), $G] ;

[$H, T:A0, F:A1, F:~(A1), $G] |]

==> [$H, F:~(A0 --> A1), $G]"

ax7: "[| [$H, T:A0, F:A1, T:~(A1), $G] |]

==> [$H, T:~(A0 --> A1), $G]"

ML {* use_legacy_bindings (the_context ()) *}

end

In this theory, consts lists the formula constructors. TR :: "a => o" means
that the constructor TR takes a formula (typed a) and returns a signed formula
(typed o). We also extract from the logic received as input each constructor’s
name to use as syntactic sugar, as well as its associativity rules and priority
order.

In the generated axioms corresponding to the tableau rules, T:X and F:X are
(signed) formulas, $H and $E are sequences of such formulas (contexts) that are
not directly involved in the rule, each sequence between square brackets repre-
sents a tableau branch, and a collection of branches is delimited by [| and |].
The symbol ==> denotes Isabelle’s meta-implication. In Isabelle, the appli-
cation of a rule means that is possible to achieve the goal (sequence on the right
of the meta-implication) once it’s possible to prove the hypotheses (sequences on
the left of the meta-implication), which constitute the collection of new subgoals
at each step. The branching rule corresponds to axiom axC1, and the closure
rule for a branch of the tableau corresponds to the axioms axC21 and axC22.

Note for instance that ax5 corresponds to rule (V)tab from the last section.
The simpler rule (V∗∗)tab, mentioned in the same section, can of course be written
in Isabelle as:

ax5SS: "[| [$H, T:A0, F:A1, $E] ;

[$H, F:~(A0), T:~(A1), $E] |]

==> [$H, F:A0 --> A1, $E]"

The proof that ax5 and ax5S are indeed equivalent tableau rules, i.e., that one
can derive one from the other in the presence of the remaining rules of our theory,
can now be done directly with the help of Isabelle’s meta-logic. One might
notice that, while in [3] the number of rules for each given primitive connective
is exponential in its arity, here the number of rules for each such connective is
always polynomial both in the arity and in the number of separating connectives
of the input logic. The worst-case number of nodes involved in each tableau rule,
however, using our algorithm, is exponential in the arity of the corresponding
connective. Using Isabelle’s meta-logic to prove simplifications such as the one
illustrated above, for the case of rule (V), the number of nodes involved in each
tableau rule may be substantially reduced.

54

5 Epilogue

The present note has reported on the first concrete implementation of a cer-
tain constructive procedure for obtaining adequate two-signed tableau systems
for a large number of finite-valued logics. Expressing a variety of logics in the
same framework is quite useful for the development of comparisons between such
logics, including their expressive and deductive powers.

There still remains some room for improvement and extension of both our
algorithm (which should still, for instance, be upgraded in order to deal in general
with first-order truth-functional logics) and its implementation. By way of an
example, we have assumed from the start that the logics received as inputs to
our program came together with a suitable collection of separating connectives.
This second input, however, could be dispensed with, as the set of all definable
unary connectives can in fact be automatically generated in finite time from
any given initial set of operators of the input logic. That generation, however,
may be costly for logics with a large number of truth-values and is not as yet
performed by our system. Another direction that must be better explored, from
the theoretical perspective, concerns the conditions for the admissibility or at
least for the explicit control of the application of the dual-cut branching rule.
On the one hand, the elimination of dual-cut has an obvious favorable effect on
the definition of completely automated theorem-proving tacticals for our logics.
If that result cannot be obtained in general but if we can at least guarantee,
on the other hand, that this branching rule will never be needed, in each case,
for more than a finite number of known formulas —say, the ones related to the
original goal as constituting its subformulas or being the result of applying the
separating connectives to its subformulas— then again this will make it possible
to devise tacticals for obtaining fully automated derivations using the above
described tableaux for our finite-valued logics.

References

1. Matthias Baaz, Christian G. Fermüller, and Gernot Salzer. Automated deduction for
many-valued logics. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, pages 1355–1402. Elsevier and MIT Press, 2001.

2. Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Two’s
company: “The humbug of many logical values”. In J.-Y. Béziau, editor, Logica
Universalis, pages 169–189. Birkhäuser Verlag, Basel, Switzerland, 2005.
URL = http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf.

3. Walter A. Carnielli. Systematization of the finite many-valued logics through the
method of tableaux. The Journal of Symbolic Logic, 52(2):473–493, 1987.

4. Reiner Hähnle. Tableaux for many-valued logics. In M. D’Agostino et al., editors,
Handbook of Tableau Methods, pages 529–580. Springer, 1999.

5. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

6. Raymond M. Smullyan. First-Order Logic. Dover, 1995.
7. Heinrich Wansing and Yaroslav Shramko. Suszko’s thesis, inferential many-valued-

ness, and the notion of a logical system. Studia Logica, 88(3):405–429, 2008.

55

