
Combining Theorem Proving with Natural
Language Processing

Björn Pelzer1 and Ingo Glöckner2

1 Department of Computer Science, Artificial Intelligence Research Group
University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz

bpelzer@uni-koblenz.de
2 Intelligent Information and Communication Systems Group (IICS),

University of Hagen, 59084 Hagen, Germany
ingo.gloeckner@fernuni-hagen.de

Abstract. The LogAnswer system is an application of automated rea-
soning to the field of open domain question answering, which aims at
finding answers to natural language questions regarding arbitrary top-
ics. In our system we have integrated an automated theorem prover in
a framework of natural language processing tools to allow for deductive
reasoning over an extensive knowledge base derived from textual sources.
For this purpose we had to intertwine two opposing approaches: on the
one hand formal logic with its precision but brittleness, and on the other
hand, machine learning applied to shallow linguistic features, which are
robust but less precise. In the paper we present implementation details
and discuss obstacles and their proposed solutions.

1 Introduction

Question answering (QA) systems generate natural language (NL) answers in
response to NL questions, using a large collection of textual documents.3 Simple
factual questions can be answered using only information retrieval and shallow
linguistic methods like named entity recognition [1]. More advanced cases, like
questions involving a temporal description, call for deduction based question
answering which can provide support for temporal reasoning and other natural
language related inferences [2]. Complete QA systems which integrate question
answering and logical reasoning are [3,4,5]. The junctures of logic and answer
validation are also addressed in research on recognizing textual entailment [6,7].

Our LogAnswer system uses first order logic to represent an extensive knowl-
edge base, and a combination of NL processing tools and an automated theorem
prover to derive answers within a few seconds, i.e. in a time frame appropriate
for ad-hoc question answering on the web. The fields of automated reasoning
and natural language processing (NLP) differ greatly in their methodologies. A

3 A survey on the progress in question answering technology is provided by the QA
track of the TREC conference series (see http://trec.nist.gov) and by the CLEF
workshops (see http://www.clef-campaign.org/).

71



Fig. 1. Screenshot of the LogAnswer prototype. The system is available online at
www.loganswer.de.

theorem prover generally implements a sound and complete deduction calcu-
lus which can produce complex proofs using hundreds of inference steps, and it
operates on a set of clauses or formulas where consistency or lack thereof is crit-
ical for the result. By contrast, natural language is ambiguous, textual sources
may be imperfect, and as a consequence a knowledge base derived from such
sources cannot be expected to be consistent. Moreover, it is not feasible to pro-
vide a complete formalization of the background knowledge used by persons in
understanding natural language. A practical NLP approach must take this into
account and employ robustness-enhancing methods to overcome the flaws and
deliver useful results.

Merging the reasoning depth of an automated theorem prover with the ro-
bustness of NL processing presents a number of difficulties. We will provide a
short overview of our LogAnswer system and then address the obstacles and
solutions in detail.

2 Description of the LogAnswer System

LogAnswer is a QA-system supporting the German language. A full system de-
scription is presented in [8]. LogAnswer operates on a knowledge base consisting
of general semantic background rules as well as factual knowledge derived from
the German Wikipedia and a corpus of newspaper articles. This knowledge is
represented by semantic networks in the MultiNet formalism [9]. The user inter-
acts with LogAnswer via the user interface, where a NL question can be entered
into a search box, as shown in Figure 1. The query is then processed in several
stages. The WOCADI parser module [10] translates the query into a MultiNet

72



representation. The formalized text passages from the MultiNet knowledge base
are then searched for the query terms, and the matching network fragments are
returned as the basis for generating answer candidates. Each retrieved fragment
corresponds to a text passage which may contain an answer to the question.
Currently, 200 MultiNet passage representations are retrieved for each question.
Shallow linguistic methods provide additional filtering, further cutting down the
number of candidate passages.

At this stage the deduction-based processing begins. The automated reason-
ing component of LogAnswer is E-KRHyper [11], an automated theorem prover
for first order logic with equality, based on the hyper tableaux calculus [12,13].
E-KRHyper is an in-house system, developed for embedding in knowledge rep-
resentation applications. It has been equipped with several features, commands
and modes of operation for this purpose. Our familiarity with the system allows
us to perform deep modifications when required. Because of our experience in
adapting this prover to numerous systems in the past, it was a natural choice
for a reasoner in LogAnswer. Its performance is roughly comparable to Otter
[14], a system which generally serves as a benchmark among automated theorem
provers.

The query and the MultiNet candidate passages are converted into first order
logic representations. For each answer candidate the theorem prover E-KRHyper
attempts to refute the negated query representation in conjunction with the
background knowledge rules and the respective candidate. A successful refutation
indicates that an answer has been found, and the queried information is extracted
from the refutational proof.

If answers are found for multiple candidate passages, then they are ranked
according to features extracted from logic processing and from shallow linguistic
analysis (e.g. lexical overlap). The five best answers are presented to the user.
Depending on user choice, the answers are given only in the form of snippets from
the textual sources or as precise answers together with the snippets providing
context. The quality score shown with each result is an estimate of the correct-
ness probability of the answer determined by a machine learning approach.

3 Knowledge Representation

MultiNet (Multilayered Extended Semantic Networks) [9] is a formalism for
knowledge representation via semantic networks, which is particularly suited for
the meaning representation of natural language. Characteristic of MultiNet is
its stable inventory of pre-defined relations (edge labels), which made possible
the long-term development of a computational lexicon based on MultiNet [15],
and the introduction of so-called layer attributes. These attributes are used in
multi-dimensional node descriptions which serve to capture quantification and
other aspects of meaning that cannot be expressed using the relational means of
a semantic network.

The formalism is generally independent of any particular natural language,
although the tools for translating NL into MultiNet are only available for German

73



(and in a rudimentary form for English) at this time.4 The knowledge base of
LogAnswer was therefore derived from textual sources in German, namely the
German Wikipedia and a corpus of newspaper articles. All in all about 12 million
sentences have been translated into semantic networks, which are stored using
Scheme syntax.

For the deduction-based processing in LogAnswer this knowledge base is fur-
ther translated into first-order logic, stored in the TPTP format [16], a standard
among automated theorem provers. The MultiNet nodes and attributed arcs can
be translated in a fairly straightforward manner into relations and constants,
and the same holds for the logical MultiNet rules which express the semantics of
words and the logical properties of the MultiNet relations. However, it should be
noted that MultiNet goes beyond the expressivity of pure first-order logic and
TPTP. For example, MultiNet networks can contain generalized quantifiers like
‘most’ or ‘almost all’. These aspects of the MultiNet representation are lost in
the translation to logical expressions. In fact, our current translation from Multi-
Net to logic results in Horn logic (plus arithmetic expressions). It is planned to
translate into a more powerful logic including equality in order to better capture
the actual meaning of the natural language sentences. In order to allow such
an extension, the E-KRHyper prover for full first-order logic with equality was
chosen, which also supports arithmetic expressions.

4 Query Representation

For our purposes of logic-based question answering, the NL question must be
translated into a conjunctive list of query literals. Synonyms are normalized by
replacing all lexical concepts with canonical synset representatives. If the ques-
tion asks for specific information, then this is represented by a special FOCUS
variable. In a successful proof this variable will be instantiated with the desired
information from the knowledge base.

For example, Rudy Giuliani war Bürgermeister welcher US-Stadt?5 translates
into the following logical query:

attr(X1, X2), attr(X1, X3), val(X2, rudy.0), sub(X2, vorname.1.1),

val(X3, giuliani.0), sub(X3, nachname.1.1), sub(FOCUS, usstadt.1.1),

attch(FOCUS, X1), sub(X1, bürgermeister.1.1)

5 Deduction-based Query Processing

Each of the candidate passages retrieved from the knowledge base may contain
an answer to the query, so a separate proof attempt is made for each candidate.
4 In order to adapt the system to another language, a computational lexicon and a

parser for generating MultiNet representations from expressions in that language
must be provided. While the logical core of LogAnswer can remain the same, the
lexical-semantic relations (synonyms, nominalizations etc.) used by LogAnswer must
also be adapted to the language of interest.

5 Rudy Giuliani was the mayor of which city in the USA?

74



The proof is done by refutation, with the logical query representation being
treated as a negated conjecture. E-KRHyper operates on a clause normal form
(CNF) representation and converts its first order input accordingly. To continue
our example, E-KRHyper uses the following representation of the query:

¬ attr(X1, X2) ∨ ¬ attr(X1, X3) ∨ ¬ val(X2, rudy.0) ∨ ¬ sub(X2, vorname.1.1)∨
¬ val(X3, giuliani.0) ∨ ¬ sub(X3, nachname.1.1) ∨ ¬ sub(FOCUS, usstadt.1.1)∨
¬ attch(FOCUS, X1) ∨ ¬ sub(X1, bürgermeister.1.1) .

The prover keeps track of the FOCUS variable throughout all clause trans-
formations and inference steps, so that its binding can be extracted from a proof
even if it has been renamed.

As its derivation E-KRHyper builds a hyper tableau in the form of a literal
tree, using the hyper extension inference: if the negative literals of a clause unify
with complementary literals from a tableau branch, then the positive literals of
the clause are added as leaves. A branch is closed once it is found to contain a
contradiction. In a derivation for LogAnswer this is the case when all the negative
literals from the query unify with the branch; given that the query has no positive
literals, the branch gets closed. The term bound to the FOCUS variable in the
unifying substitution used in the refutational proof then represents the queried
information.

The current logical background knowledge consists of Horn formulas only, but
with the ongoing translation of the MultiNet knowledge the logical rules will
eventually contain non-Horn formulas as well. In a hyper tableaux derivation
these can lead to tableau branching, with multiple closed branches and thus
multiple closing unifiers. In such a case E-KRHyper extracts all the bindings for
the FOCUS variable from the proof and presents them as different answers to
the main LogAnswer system.

6 Ensuring Robustness

A knowledge base derived from textual sources is bound to have imperfections.
Furthermore, the logical background knowledge provided to the prover will never
completely cover the actual background knowledge of a person who reads the
text. Finally, the candidate passages are not guaranteed to contain an answer to
the query, since they have only been selected by relatively simple filtering. For
these reasons it is not certain that E-KRHyper can find a proof within an answer
candidate, even if the corresponding NL source actually contains the queried
information. Given that LogAnswer is supposed to provide answers in a short
amount of time, the maximum time slot dedicated to a single proof attempt is
constrained severely to ensure that all answer candidates can be tested. However,
while a time limit ensures that the prover will not work indefinitely on one futile
candidate when answers would be readily available in others, it does not help
against missing an answer due to minor mismatches. When the formulas being
reasoned upon have all been derived from imperfect textual sources and by

75



imperfect tools for linguistic analysis, then formal logic may be too rigorous in
demanding a perfect proof for an answer, and small compromises may actually
be acceptable.6

For this reason E-KRHyper is embedded in a relaxation loop: if no proof
is found within a time limit, then the query is relaxed by dropping a query
literal and restarting the prover with the shortened query.7 In theory this can
be continued until a proof of the simplified query succeeds, but since LogAnswer
aims to produce useful answers the loop will be stopped before all literals are
skipped.

Also, rather than skipping a random query literal, the derivation progress
during the failed refutation attempt can be used to guide the choice of which
literal to drop. Given a negated query clause ¬Q1∨· · ·∨¬Qn, E-KRHyper tries to
unify the query literals with fresh variants B1, . . . , Bn of complementary branch
literals from the current tableau branch b by testing the query literals from left to
right. The unifying substitution is extended in every step such that starting with
the empty substitution σ0, σk is a substitution with Qiσk = Bi,∀i ∈ {1 . . . k},
with k ∈ {1 . . . n}. If one query literal ¬Ql fails to find a matching partner in
the branch which would allow an extension of the current substitution σl−1 to
σl, then the remaining literals ¬Ql+1, . . . ,¬Qn are not tested under σl−1.

Instead E-KRHyper generates a partial result. A partial result is represented
by a triple ({Q1, . . . , Ql−1}, σl−1, {Ql, . . . , Qn}), consisting of the list of success-
fully unified query literals, the unifying substitution, and the list of query literals
that were not unified, the first of which being the one that failed, whereas the
remaining were not tested at all. If E-KRHyper fails to find a proof within the
time limit, then all partial results generated so far are returned to the main Log-
Answer system. One of the best partial results is selected (i.e. one of the partial
results with the highest number of refuted query literals), the failed literal ¬Ql

is removed from the negated query clause and E-KRHyper restarts its derivation
with the new query clause ¬Q1 ∨ · · · ∨ ¬Ql−1 ∨ ¬Ql+1 ∨ · · · ∨ ¬Qn. When two
partial results have the same number of failed literals, then additional criteria
are used for selecting the best partial result: (a) partial results which provide a
binding to the FOCUS variable are considered better than partial results which
do not bind the queried variable (this criterion is important since the system
can only generate answers when the FOCUS variable has been bound); and (b)
a binding of the FOCUS variable to a constant is preferable to a binding of the
FOCUS variable to a complex term (at the moment, the system is unable to
generate answers for skolem terms, so answer extraction will only succeed when
the queried variable is bound to a constant which directly represents a discourse
entity).

6 A training set is used to learn a useful interpretation of results for failed proofs [17].
7 See Sect. 8 for an example. Another system which uses relaxation for achieving more

robustness in logic-based QA is COGEX [3].

76



7 A Theorem Prover as a Reasoning Server

At the time of this writing LogAnswer is deployed as a web-based QA-system
with an interface analogous to that of a typical search engine. This usage places
certain demands on the performance of LogAnswer which must be able to re-
spond to numerous queries from multiple users in a short time. The reasoning
stage within E-KRHyper can easily be the most time-consuming phase in the
processing of a query, even with relaxation. Cutting back on operations here is
crucial for maintaining responsiveness. Fortunately there are several opportuni-
ties for such measures.

To summarize, the clause input for a single proof attempt consists of:

– background knowledge: 10,200 CNF clauses,
– query: the negated query clause, on average 8 literals before relaxation,
– answer candidate: the logic representation of the candidate passage, circa

230 unit clauses.8

E-KRHyper maintains this clause set with the help of several dicrimination-
tree indexes [18]. The time required for the construction of these extensive tree
data structures can exceed the allotment for the reasoning phase. Repeating this
for each proof attempt would be prohibitive, in particular when considering that
there may be m answer candidates to check for a single query, with n relaxation
steps for each candidate, resulting in m× n proof attempts for each query.

However, the clause sets and their indexing trees differ only very slightly
between any two reasoning tasks. Only the current query and answer candi-
date can change between two proof attempts. The background knowledge, which
comprises approximately 97% of every clause set, remains the same. Therefore
LogAnswer does not restart E-KRHyper for each reasoning task. Instead the
prover is started once and provided with the background knowledge, so that the
construction of the bulk of the indexing structures is only done once during this
initialization. The task-specific clauses are then added and retracted again as
needed. This is done using the mechanism of layered discrimination-trees: the
task-specific clauses are not actually added to the same tree structures as the
background knowledge. Instead additional trees (the layers) will be created to
store the new clauses. Index reading operations access all layers, whereas writ-
ing operations only use the latest layer intended for new clauses. Once a proof
attempt is completed, the index layers with the now unnecessary clauses are
simply discarded. This avoids a lengthy extraction of these clauses from a single,
shared tree.

There is even less difference between the clause sets used in two consecutive
relaxation steps. The only change here is the removal of one query literal. This
allows us to reuse even more clauses. Given an (interrupted) hyper tableaux
derivation, all derived literals which were added to the initial branch before the
8 The problem set used for determining these numbers consists of 1806

query/candidate passage combinations for the CLEF 2007 questions for German.

77



first branch split can be treated as lemmas. Since the current logic representation
of the knowledge base is Horn only, the set of lemmas actually corresponds to
all derived branch literals, although this is bound to change in the future. The
lemmas are then kept for the next relaxation step. Thus a repetition of inferences
is avoided, and even if a relaxation step is not successful in finding an answer, it
still makes use of its limited time slot to add new lemmas. This way we combine
relaxation with incremental reasoning [19].

8 Prover Result Evaluation

The input for E-KRHyper is selected and updated by the LogAnswer main sys-
tem, and the operation of the prover is also directed and controlled as described
above. Given that many supporting text passages will be analysed for a query,
the results of E-KRHyper must be subjected to further evaluation as well in
order to select those answers that are most suitable for the user.

For this we apply a machine learning approach which combines both logic-
based and shallow syntactic features [17]: whenever E-KRHyper terminates with
a refutation, then the respective text passage is regarded as containing an answer
to the query. All such passages are ranked by an aggregated score, computed from
logic-based criteria regarding the respective proofs, like the number of relaxation
steps required, as well as from shallow syntactic features, like the relative pro-
portion of lexical concepts and numerals in the question which find a match in
the candidate passage. If the user has opted to receive answers in the form of
text snippets, then the five best passages are selected for presentation.

On the other hand, if precise answers are desired, then further processing
is necessary. The queried information is extracted directly from a refutational
proof as the binding of the FOCUS variable. The context of this instantiating
answer value within the semantic network underlying the candidate passage is
used to phrase the actual answer that can be presented to the user.

Continuing our running example we take a look at one of the candidate pas-
sages for which E-KRHyper will terminate: Hinter der Anklage stand der spätere
Bürgermeister von New York, Rudolph Giuliani.9 The logical representation of
the passage is shown here (actually, only the fragment of the representation
which models the relational structure):

hinter(c221, c210) ∧ sub(c220, nachname.1.1) ∧ val(c220, giuliani.0) ∧
sub(c219, vorname.1.1) ∧ val(c219, rudolph.0) ∧ prop(c218, spät.1.1) ∧ attr(c218, c220) ∧
attr(c218, c219) ∧ sub(c218, bürgermeister.1.1) ∧ val(c216, new york.0) ∧
sub(c216, name.1.1) ∧ sub(c215, stadt.1.1) ∧ attch(c215, c218) ∧ attr(c215, c216) ∧
subs(c211, stehen.1.1) ∧ loc(c211, c221) ∧ scar(c211, c218) ∧ sub(c210, anklage.1.1)

A full proof of the query fails since the system is lacking knowledge that Rudy is a
short form of Rudolph. Moreover, the fact that New York is a US city is not known
to the system. Therefore two query literals cannot be proved, viz val(X2, rudy.0)
9 Responsible for the charges was the future mayor of New York, Rudolph Giuliani.

78



and sub(FOCUS,usstadt.1.1). After two relaxation steps, which skip these two
literals, a proof is found with a constant c215 bound to the FOCUS variable,
which corresponds to an entity mentioned in the text. The information about
the position of the entity in the text string is then used to extract the answer
New York.

Some answers generated this way are discarded immediately. This includes
trivial answers which return the term from the query (Who is Virginia Kelley? -
Virginia Kelley) and non-informative answers (the mother instead of the mother
of Bill Clinton). Of those answers passing these sanity checks the five best in
the aforementioned ranking are selected and then displayed together with the
supporting passages.

9 Conclusions

In this paper we have explored an application of automated reasoning to open
domain question answering. With the ever growing amounts and availability of
digitally stored information the utilization of this data is becoming an important
but difficult task. Question answering systems strive to find specific information
in a significantly more goal-directed manner than search engines. This requires
deep reasoning over the semantics of stored data. Our approaches bridge the
gaps between the precision yet brittleness of deduction and the robustness but
limited accuracy of shallow linguistic techniques. This is achieved by combin-
ing the results of both levels using machine learning. We have shown how the
difficulties of a theorem prover dealing with imperfect NL-derived data can be
solved by embedding the deduction component in a robust knowledge processing
framework, which uses as feedback loop to gradually relax the logical query.

The proposed approach to ensuring robustness has been evaluated in [17].
The task was that of identifying the correct answer passages in a set of 12,337
retrieved candidate passages. A baseline system using shallow features but no
logical reasoning achieved an F-score of 42.7% in this experiment (other criteria
for filtering quality were also studied). When combining shallow features and
strict proofs, the F-score increased by 7.3%. Adding relaxation achieved another
7.9% improvement of the F-score. The best results were obtained in a configu-
ration which allowed three relaxation steps. This experiment demonstrates that
the performance of our QA system profits from the automated reasoning capa-
bilities of the logic prover and from the proposed relaxation technique. Another
benefit of the logic-based approach is that the answer bindings determined by
the prover provide the basis for answer extraction.

In the future we intend to further improve the translation of the MultiNet
formalism into first-order logic, enabling us to fully exploit the expressivity of
the semantic networks in combination with automated reasoning.

References

1. Prager, J., Brown, E., Coden, A., Radev, D.: Question-answering by predictive
annotation. In: SIGIR ’00: Proceedings of the 23rd Annual International ACM

79



SIGIR Conference on Research and Development in Information Retrieval, New
York, NY, ACM Press (2000) 184–191

2. Moldovan, D., Bowden, M., Tatu, M.: A temporally-enhanced PowerAnswer in
TREC 2006. In: Proc. of TREC-2006, Gaithersburg, MD (2006)

3. Moldovan, D., Clark, C., Harabagiu, S., Maiorano, S.: COGEX: A logic prover for
question answering. In: Proc. of NAACL-HLT 2003. Volume 1., Morristown, NJ
(2003) 87–93

4. Saias, J., Quaresma, P.: The Senso question answering approach to Portuguese
QA@CLEF-2007. In: Working Notes for the CLEF 2007 Workshop, Budapest,
Hungary (2007)

5. Glöckner, I., Hartrumpf, S., Leveling, J.: Logical validation, answer merging and
witness selection: A study in multi-stream question answering. In: Proc. of RIAO-
07, Pittsburgh (2007)

6. Bos, J., Markert, K.: When logical inference helps determining textual entailment
(and when it doesn’t). In: Proc. of 2nd PASCAL RTE Challenge Workshop. (2006)

7. Bobrow, D., Condoravdi, C., Crouch, R., de Paiva, V., Kaplan, R., Karttunen,
L., King, T., Zaenen, A.: A basic logic for textual inference. In: Proceedings of
the AAAI Workshop on Inference for Textual Question Answering, Pittsburgh, PA
(Jul 2005)

8. Furbach, U., Glöckner, I., Helbig, H., Pelzer, B.: LogAnswer - A Deduction-Based
Question Answering System. In: IJCAR 2008 - 4th International Joint Conference
on Automated Reasoning, Sydney, Australia, 10th - 15th August, 2008, Proceed-
ings, to appear. Lecture Notes in Computer Science, Springer (2008)

9. Helbig, H.: Knowledge Representation and the Semantics of Natural Language.
Springer (2006)

10. Hartrumpf, S.: Hybrid Disambiguation in Natural Language Analysis. Der Andere
Verlag, Osnabrück, Germany (2003)

11. Pelzer, B., Wernhard, C.: System Description: E-KRHyper. In: Automated De-
duction - CADE-21, Proceedings. (2007) 508–513

12. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: JELIA’96, Pro-
ceedings. (1996) 1–17

13. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper Tableaux with Equality. In:
Automated Deduction - CADE-21, Proceedings. (2007)

14. McCune, W.: OTTER 3.3 Reference Manual. Argonne National Laboratory, Ar-
gonne, Illinois (2003)

15. Hartrumpf, S., Helbig, H., Osswald, R.: The semantically based computer lexicon
HaGenLex. Traitement automatique des langues 44(2) (2003) 81–105

16. Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Jour-
nal of Automated Reasoning 21(2) (1998) 177–203

17. Glöckner, I., Pelzer, B.: Exploring robustness enhancements for logic-based passage
filtering. In: KES2008, Proceedings, to appear. Lecture Notes in Computer Science,
Springer (2008)

18. McCune, W.: Experiments with Discrimination-Tree Indexing and Path Indexing
for Term Retrieval. Journal of Automated Reasoning 9(2) (1992) 147–167

19. Beckert, B., Pape, C.: Incremental theory reasoning methods for semantic tableaux.
In: Proceedings, 5th International Workshop on Theorem Proving with Analytic
Tableaux and Related Methods. Lecture Notes in Computer Science, Springer
(1996)

80


