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Abstract
Modular Petri nets provide a way to alleviate the state-space explosion problem. However, Petri nets are usually

not described as a modular structure. In order to benefit from the advantages of modular state space analysis,

the Petri net has to be decomposed into modules in advance. In this paper, we discuss various approaches to

automatic modularization. One approach focuses on finding replicated modules in a Petri net, since the state

space for those replications needs to be computed only once during analysis. An implementation based on

the graph isomorphism problem shows the validity of this idea. The effectiveness of state space reduction by

modularization is significantly influenced by the size of the individual modules and the size of the interfaces

between them. If possible, the modules should exhibit internal behavior, i.e. have a certain minimum size and

produce nontrivial strongly connected components in their reachability graphs. The interfaces should be as

small as possible to avoid an overhead of synchronization behavior at the interfaces. To this end, we firstly

present an approach that produces modules with meaningful internal behavior based on T-invariants. Secondly,

we explain two approaches that use hypergraph cuts to minimize the size of interfaces.
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1. Introduction

A modular Petri net consists of subnets that act independently of each other and are synchronized

via interfaces. Modularization is the concept of transforming a Petri net system into an equivalent

modular Petri net with independent components but common interfaces. Sometimes Petri net system

models describe systems that consist of such components anyway. However, this encapsulation is not

represented by the conventional Petri net system formalism. Modularization offers the possibility to

make this information exploitable for analysis. Another application is the decomposition of models

that would not be expected to have a modular structure. Especially for Petri net systems with identical

structures, modularization provides a suitable solution as it is more robust with respect to small

deviations in contrast to symmetry. Regarding the well-known example of the dining philosophers, the

symmetry is broken as soon as one of the philosophers grabs the forks in the opposite order. Anyway,

such a version of the dining philosophers can be modularized according to our methods.

The idea of decomposing a Petri net system for analysis is not new. One way of forming components

is clustering [1]. However, the clusters do not have to be disjoint and therefore do not act independently

of each other. There is also the approach of forming a compositional state space [2]. Here, the state

spaces of the individual Petri net system components are calculated individually and then a global

state space of the entire Petri net system is derived. Since the partial state spaces must be completely

available for further calculations, the components must be bounded. Modularization does not require

this restriction; components can be unbounded in themselves and only become restricted through their

embedding into a modular Petri net. In this paper, Section 2 first introduces all the necessary concepts

in the domain of modular Petri nets, as the notation differs from the notation of conventional Petri net

systems. Then, we continue exploring the issue of automatic modularization of Petri net systems with a

focus on increasing efficiency in the analysis. A major advantage in the analysis of a modular state

space arises from the fact that the original Petri net system might contain replicated components, for

which it is sufficient to compute the state space once [3]. Therefore, Section 3 concentrates on finding

replications in the Petri net. As a Petri net system is basically a graph, the idea of finding replications

can be reduced to finding isomorphic subgraphs in a graph. An implementation shows the validity of
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this approach. Section 4 presents further ideas on how to modularize a Petri net system; especially

when no more replications are expected. This is the case, for example, when all replications have

already been found in a Petri net system, but a sufficiently large part of the net is still unmodularized.

Likewise, the ideas can also be applied to modularize replications that have already been found, for

example, if they are still quite large. Here, however, modularization should not simply be done blindly,

but based on the structure of the Petri net system. One approach makes use of transition invariants,

which are considered an important indicator of nontrivial behavior. Thus, a modularization based on

t-invariants is expected to generate modules with meaningful behavior. What impedes the analysis in

the modularized Petri net is the synchronization behavior of the modules among each other. Therefore,

it is a legitimate reason to want to keep this synchronization behavior rare. This can be achieved by

modularizing Petri net system in a way that the interfaces between modules are as small as possible.

For this, (hyper)graph theoretical concepts are consulted.

2. Preliminaries

Definition 1 (Petri net system). A Petri net system is a tuple 𝑁 = [𝑃, 𝑇, 𝐹,𝑊,𝑚0], where

• 𝑃 is a finite set of places,
• 𝑇 is a finite set of transitions with 𝑃 ∩ 𝑇 = ∅,
• 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is the set of arcs,
• 𝑊 : (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 )→ N is the weight function with 𝑊 (𝑥, 𝑦) = 0 iff (𝑥, 𝑦) /∈ 𝐹 and

• 𝑚0 is the initial marking, where a marking in general is a mapping 𝑚 : 𝑃 → N.

We call 𝑃 ∪ 𝑇 the nodes of a Petri net system. For a node 𝑥 ∈ 𝑃 ∪ 𝑇 , ∙𝑥 = {𝑦 | (𝑦, 𝑥) ∈ 𝐹} the

preset of 𝑥 and 𝑥∙ = {𝑦 | (𝑥, 𝑦) ∈ 𝐹} the postset of 𝑥. We call ∙𝑥 ∪ 𝑥∙ the environment for a node

𝑥 ∈ 𝑃 ∪ 𝑇 . The objective is to generate a modular structure for a given Petri net system, such that

the modular Petri net generated out of the structure is isomorphic to the given system. Therefore, we

introduce concepts for describing a modular structure. We follow the notation established in [3].

Definition 2 (Module). A module is a place/transition Petri net 𝑁𝑖 = [𝑃𝑖, 𝑇𝑖, 𝐹𝑖,𝑊𝑖] for 𝑖 ∈ N where

the set 𝑇𝑖 is assumed to be partitioned into subsets 𝑇𝑖|𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 of internal transitions and 𝑇𝑖|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 of

interface transitions.

A module describes some part of the full model’s structure. To exhibit any behavior, a module needs

to be instantiated by adding an initial marking.

Definition 3 (Instance). An instance is a Petri net system [𝑁𝑖,𝑚0𝑖] of module 𝑁𝑖 for 𝑖 ∈ N, where

𝑚0𝑖 : 𝑃𝑖 → N is an initial marking of 𝑁𝑖.

While each instance has some self-contained (or internal behavior), they may synchronize with

other instances via their interface transitions. This synchronization is accomplished by combining

interface transitions of different instances to a fusion transition to force them to fire simultaneously if

all individual preconditions are met. The fusion is guided by fusion vectors.

Definition 4 (Fusion Vector, Support). Let ℐ = {[𝑁1,𝑚01], . . . , [𝑁ℓ,𝑚0ℓ]} be a set of instances. A

fusion vector 𝑓 ∈ (𝑇1|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ∪{⊥})× · · · × (𝑇ℓ|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ∪{⊥}) is a vector of interface transitions of

the instances or ⊥. An instance [𝑁𝑗 ,𝑚0𝑗 ] participates in 𝑓 with its interface transition 𝑡 ∈ 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
if 𝑓 [𝑗] = 𝑡. If 𝑓 [𝑗] = ⊥, the instance does not participate in the fusion. The support 𝑠𝑢𝑝𝑝(𝑓) = {𝑡 |
𝑓 [𝑗] = 𝑡} of a fusion vector is the (nonempty) set of contained interface transitions.

An instance can participate at most once in a given fusion, but the same interface transition can

appear in multiple fusion vectors.

We are now ready to collect all information needed for the composition of modules.
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Definition 5 (Modular Structure). A modular structure is a tupleℳ = [ℐ,ℱ ], where

ℐ = {[𝑁1,𝑚01], . . . , [𝑁ℓ,𝑚0ℓ]} is a set of instances of pairwise disjoint modules and

ℱ ⊆ (𝑇1|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ∪ {⊥})× · · · × (𝑇ℓ|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ∪ {⊥}) is a set of fusion vectors.

From this modular structure we can derive a modular Petri net system, where places, internal

transitions, and initial markings are taken from the individual instances. Every fusion vector defines

another transition that inherits all the arcs of the contained interface transitions and establishes

connections across instances. Consequently, interface transitions that do not appear in any fusion set

do not appear in the composition. This can be trivially worked around by adding a fusion vector with

only this transition and ⊥ everywhere else.

Definition 6 (Modular Petri Net, Fusion Transition). Letℳ = [ℐ,ℱ ] be a modular structure.

Fromℳ, we can derive a Petri net system 𝑁 = [𝑃, 𝑇, 𝐹,𝑊,𝑚0], where

• 𝑃 =
⋃︀

𝑗∈{1,...,ℓ} 𝑃𝑗 ,

• 𝑇 =
⋃︀

𝑗∈{1,...,ℓ} 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ∪ {𝑡𝑓 | 𝑓 ∈ ℱ}, where 𝑡𝑓 is the fusion transition for 𝑓 ∈ ℱ ,

• 𝐹 =
⋃︀

𝑗∈{1,...,ℓ}(𝐹𝑗 ∩ (𝑃𝑗 × 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 × 𝑃𝑗)) ∪
{(𝑝, 𝑡𝑓 ) | 𝑓 ∈ ℱ , (𝑝, 𝑓 [𝑗]) ∈ 𝐹𝑗} ∪ {(𝑡𝑓 , 𝑝) | 𝑓 ∈ ℱ , (𝑓 [𝑗], 𝑝) ∈ 𝐹𝑗}

• 𝑊 (𝑡, 𝑝) =

⎧⎪⎨⎪⎩
𝑊𝑗(𝑡, 𝑝) for (𝑡, 𝑝) ∈ 𝐹𝑗 and 𝑡 ∈ 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝑊𝑗(𝑡
*, 𝑝) for (𝑡*, 𝑝) ∈ 𝐹𝑗 and 𝑡* ∈ 𝑠𝑢𝑝𝑝(𝑓),

𝑓 ∈ ℱ , 𝑡 = 𝑡𝑓 , 𝑗 ∈ {1, . . . , ℓ}

• 𝑊 (𝑝, 𝑡) =

⎧⎪⎨⎪⎩
𝑊𝑗(𝑝, 𝑡) for (𝑝, 𝑡) ∈ 𝐹𝑗 and 𝑡 ∈ 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

𝑊𝑗(𝑝, 𝑡
*) for (𝑝, 𝑡*) ∈ 𝐹𝑗 and 𝑡* ∈ 𝑠𝑢𝑝𝑝(𝑓),

𝑓 ∈ ℱ , 𝑡 = 𝑡𝑓 , 𝑗 ∈ {1, . . . , ℓ}
• 𝑚0 =

⋃︀
𝑗∈{1,...,ℓ}𝑚0𝑗

We call 𝑁 the modular Petri net forℳ.

Note that the initial marking of the modular Petri net is well-defined since the domains of all 𝑚0𝑗

are pairwise disjoint.

To generate a modular structure from a non-modular Petri net, we only need to find a mapping that

unambiguously assigns an instance to each place, thus we get a place set for every instance. The other

components of the modular structure, from which we can deduce a modular Petri net, can be derived

from this set of places as shown in the following lemma.

Lemma 1 (Deducing a modular structure from a partitioning of places). Let 𝑁 = [𝑃, 𝑇,𝑊,𝐹,𝑚0] be

a Petri net. Further, let {𝑃1, . . . , 𝑃ℓ} be a partitioning of 𝑃 . For 𝑃𝑗 with 𝑗 ∈ {1, . . . , ℓ}, we generate

instance [𝑁𝑗 ,𝑚0𝑗 ] with

• 𝑇𝑗 =
⋃︀

𝑝∈𝑃𝑗
{(∙𝑝 ∪ 𝑝∙)× 𝑗}

• ((𝑡, 𝑗), 𝑝) ∈ 𝐹𝑗 , iff (𝑡, 𝑝) ∈ 𝐹 ; (𝑝, (𝑡, 𝑗)) ∈ 𝐹𝑗 , iff (𝑝, 𝑡) ∈ 𝐹

• 𝑊𝑗((𝑡, 𝑗), 𝑝) = 𝑊 (𝑡, 𝑝); 𝑊𝑗(𝑝, (𝑡, 𝑗)) = 𝑊 (𝑝, 𝑡) for a 𝑝 ∈ 𝑃𝑗

• 𝑚0𝑗 = 𝑚0 ∩ (𝑃𝑗 × N)

We append the index 𝑗 to each transition to distinguish their occurrences in different instances. The

fusion vectors can be constructed by identifying transitions which occur in multiple instances. For

𝑡 ∈ 𝑇 , we identify the modules where 𝑡 occurs as 𝑖𝑛𝑑𝑖𝑐𝑒𝑠(𝑡) = {𝑗 | (𝑡, 𝑗) ∈ 𝑇𝑗}. Then we generate a

fusion vector 𝑓 for all 𝑡 where |𝑖𝑛𝑑𝑖𝑐𝑒𝑠(𝑡)| > 1, so that 𝑓 [𝑗] = (𝑡, 𝑗) if 𝑗 ∈ 𝑖𝑛𝑑𝑖𝑐𝑒𝑠(𝑡) and ⊥ otherwise.

We can distinguish internal and interfaces transitions for the instances as well. Therefore, we declare

(𝑡, 𝑗) ∈ 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒, iff ∃𝑓 ∈ ℱ : (𝑡, 𝑗) ∈ 𝑓 and 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑇𝑗 ∖ 𝑇𝑗|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒. This results in a set of

instances ℐ = {[𝑁1,𝑚01], . . . , [𝑁ℓ,𝑚0ℓ]}.
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(t2,1)

p1

p2

[N1,m01]

(t1,2) p3

p4

[N2,m02]

(t2,2)

(a) An invalid modular structure where (𝑡1, 2) is

not included in 𝑁1 despite being connected to

𝑝1

t2

p1

p2

p3

p4

(t1,1) (t1,2)

(b) The resulting Petri net system after combining

the modules 𝑁1 and 𝑁2, where the edge be-

tween 𝑝1 and (𝑡1, 2) was lost.

Figure 1: An invalid modularization resulting in the loss of structure after combining the modules.

Example 1. Figure 1 illustrates why it is required to include all connected transitions for a given

place into the same module. The place 𝑝1 is included in module 𝑁1 and connected to (𝑡1, 2), which is

in another module. Since the composition rules for a modular Petri net [3] only concern themselves

with fusion transitions, in this case (𝑡2, 1) and (𝑡2, 2), which are fused into 𝑡2 in the resulting net. The

connection between 𝑝1 and (𝑡1, 2) is not reconstructed, changing the behavior of the modular Petri net

compared to the composition of the modules.

3. Modularization based on Replications

It is desirable to allow a single module to be replicated, or instantiated multiple times with possibly

different initial markings, since this makes sense from a modelling perspective, but also unlocks

additional memory-savings during model checking. To distinguish between those replications, we

extend instances by a unique identifier, and call them replicated instances or short: r-instances.

Definition 7 (R-Instance). An r-instance is a Petri net system [𝑁𝑖, 𝑗,𝑚0𝑗 ] of module 𝑁𝑖, where 𝑗 ∈ N
is an instance identifier and 𝑚0𝑗 : 𝑃𝑖 → N is an initial marking of 𝑁𝑖.

The definitions for the modular structure, fusion vectors and modular Petri net can be easily amended

to accommodate this extension. A fusion vector can contain transitions from multiple r-instances of the

same module, since the module would be copied for each instance when constructing the modular Petri

net.

To identify replicated modules, we represent the net structure of the given Petri net system as a net

graph. The marking of places is irrelevant for this, as replicated modules with different markings can

still lead to a reduction in the local reachability graph compared to the combined size of individual

modules[3].

Definition 8 (Net graph). For a given Petri net 𝑁 = [𝑃, 𝑇, 𝐹,𝑊,𝑚0], the net graph 𝐺 = [𝑉,𝐸, 𝑐] is a

directed, labeled graph, where

• 𝑉 = 𝑃 ∪ 𝑇

• 𝐸 = 𝐹

• 𝑐(𝑣) = 𝑝 if 𝑣 ∈ 𝑃

• 𝑐(𝑣) = 𝑡 if 𝑣 ∈ 𝑇

• 𝑐((𝑣, 𝑣′)) = 𝑊 (𝑣, 𝑣′)

In the way we define a modular structure, the state space of instances of the same module (regardless

the initial marking) can be analyzed based on one common state structure. In general, identical structures

lead to identical behavior, which we do not need to analyze repeatedly. Therefore, it makes sense to

identify identical substructures in the net graph, which we then can declare as instances of one module.
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Given a net graph, the ideal scenario would be to maximize the number of identical structures, i.e.

isomorphic induced subgraphs. Those subgraphs should be larger than a minimum size to avoid the

trivial solution where each vertex is a subgraph. This problem is germane to the Induced Subgraph

Isomorphism problem or the more general Maximum Common Induced Subgraph problem, where

for two given graphs one must determine whether one graph is an induced subgraph of the other resp.

the two graphs have a common induced subgraph with a minimum size. Those problems are known

to be NP-complete, as described in [4]. The problem might as well be associated with the Largest

Subgraph With A Property problem [4], where the task is to find the maximum subgraph with a

given property. Considering the repeated occurrence of a subgraph as a property does not serve as a

standard graph property why this problem can be neglected. From the field of data mining, the challenge

to find identical substructures in graphs is known as the frequent subgraph mining [5]. Expressing

our problem as a frequent induced subgraph mining problem turned out to be unsuitable. Frequent

subgraph mining in general does not consider induced subgraphs, which is mandatory for us [6]. There

are also approaches for induced subgraphs but on the base of multiple graphs [7].

Another related field concerns itself with the identification of overrepresented sub-structures in a

network, so-called motifs. The algorithms from this field can be broadly categorized into motif-centered
and network-centered approaches. A motif-centered procedure requires a motif as part of its input, which

makes it unsuitable for our application. Conversely, a network-centered method starts by enumerating

all subgraphs for a given size and counts their occurrence in the graph[8]. However, the performance

of these approaches tends to scale poorly with the size of the motifs. Since the state space reduction

achieved by the modularization of a Petri net system is heavily impacted by the amount of internal

behavior of its modules [3], it is desirable to identify larger substructures. Therefore, a network-centered

approach isn’t appropriate either to find replicated modules with sufficient internal behavior.

Besides maximizing the number of identical structures we impose additional constraints to a solution.

When considering subgraphs of Petri nets, not every induced subgraph is a valid replication. For every

place we require all connected transitions to be included in the instance of the place. Otherwise, the

edges of an omitted transition to a place cannot be reconstructed in the construction of the modular

Petri net as described in Definition 6.

With the graph theoretical background of the suspected NP-completeness of our problem we devel-

oped an incremental heuristic approach to identify identical substructures in a net graph. The main idea

is to unfold the substructures circularly from selected starting points while preserving isomorphism

between them. Therefore, we present a necessary criterion and multiple heuristic concepts that lead

to a more or less precise starting point selection. The different concepts provide various degrees of

freedom.

3.1. Finding Seed Candidates

First, we need to identify potential candidates that can serve as starting points, or seeds, for detecting

isomorphic substructures. Given the net graph 𝐺 of a Petri net system 𝑁 , we only consider place

vertices, i.e. vertices with 𝑐(𝑣) = 𝑝 as candidates. As described above, a place requires all adjacent

transitions to be in its instance, while a transition does not impose such constraints. Considering the

net graph of a given Petri net system we introduce the signature of a vertex, determining the number

of neighbor vertices for a given edge type.

Definition 9 (Signature). For a vertex 𝑣 ∈ 𝑉 we define the signature as a mapping 𝑠 : 𝑉 → (N×N→
N), such that 𝑠(𝑣)(𝑖, 𝑜) = |{𝑣′ | 𝑐(𝑣, 𝑣′) = 𝑜, 𝑐(𝑣′, 𝑣) = 𝑖}|.

The signature gives an initial impression of the direct neighborhood of a vertex 𝑣, i.e. how many

vertices are connected to 𝑣 via a certain combination of incoming and outgoing edges.

Example 2. In the Petri net system presented in Fig. 1b, the places 𝑝1 and 𝑝2 would share the signature

𝑠(𝑝𝑖) = {(1, 0) ↦→ 1, (0, 1) ↦→ 1}, while 𝑠(𝑝3) = {(1, 0) ↦→ 1} and 𝑠(𝑝4) = {(1, 0) ↦→ 2}.
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Only place vertices with identical signature can serve as starting points, since all neighboring

transitions have to be included, which would immediately lead to non-isomorphic modules.

To determine the actual seeds using the information provided by the signature, it makes sense to

consider the number of candidates for each signature. It appears that candidates that share an infrequent

signature are more promising seed vertices, since vertices with a rare connectivity structure are more

likely to have same function in the model. However, the fewer candidates share a signature, the harder

it becomes to ensure a spacing between seeds which allows the modules to grow to a sufficiently large

size before colliding with another.

While there exist methods to find a set of vertices in a graph with maximum distance between each

other, it is in many cases sufficient to select vertices with a large enough distance between them. To

define such a distance, one could look towards a specified maximum module size or attempt to exploit

structural properties of the Petri net system. Once a minimum distance 𝑑𝑚𝑖𝑛 has been found, suitable

seeds can be identified by starting a simultaneous depth-limited BFS from all candidates with a shared

signature. If the BFS from a candidate finishes without encountering another candidate’s nodes within

𝑑𝑚𝑖𝑛/2 steps, this candidate can serve as a seed. Otherwise, a seed can be selected from each set of

conflicting candidates. In the case that there are too few suitable candidates remaining, the requirements

have to be relaxed, either by reducing 𝑑𝑚𝑖𝑛 or by restarting the selection process with candidates with

another shared signature.

Besides those systematic approaches, a randomized selection can be performed instead. While the

candidates still have to share their signature, it can be beneficial to omit checking the distance between

candidates and instead relying on the expansion algorithm to deal with the colliding modules.

Developing improved heuristics for seed selection is an area of further research, as well as quantifying

their impact on the quality of the resulting modularization.

3.2. Expanding outwards

Regardless the method we determine seeds, we receive a set of 𝑛 starting points suitable for determining

isomorphic starting points in the Petri net system. To find sufficiently large replicated modules, we

greedily expand the modules outwards from those starting points under a set of guidelines that will be

presented in the following. During the process, each module is represented by a list 𝑅𝑖, which contains

sets of vertices. Those sets will be called shells and contain the nodes which were newly added during

each step.

The outline of this algorithm can be found in Algorithm 1, and will be subsequently defined by

explaining the sub-procedures.

3.2.1. Finding expansion candidates

In each expansion step, we first calculate the maximum possible expansion step of each module and then

successively reduce this step until either all conditions for replicated modules are met or a necessary

reduction fails. Since the modules grow from center outwards, it is sufficient to consider only neighbors

of vertices from the outermost shell of each module, which weren’t already introduced in previous

shells. Additionally, we maintain a set of vertices which are forbidden from being included or explored

due to having caused conflicts in previous steps. Due to the bipartite nature of Petri nets, as well as

the fact that we required each seed vertex 𝑣𝑆𝑖 to be ∈ 𝑃 , the shells created by this approach alternate

between containing only place or transition vertices, but never a mix of both.

3.2.2. Resolving conflicts between steps

The first reduction of the expansion step is accomplished by detecting conflicts between the steps. In

every odd step, the candidate shells only contain transitions, which are allowed to overlap between

modules. While the transitions remain in the expansion step, we mark them as forbidden to explore

further to prevent complications downstream, such as the conflicting modules attempting to explore

along the same paths in future steps.
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Algorithm 1 Algorithm to find replications

procedure FindReplications(𝑁, {𝑣𝑆1 , ..., 𝑣𝑆𝑛}, maxsize)

global stop_nodes = ∅ ◁ Set of nodes not to be explored further

𝑅1 ← ⟨{𝑣𝑆1 }⟩, ..., 𝑅𝑛 ← ⟨{𝑣𝑆𝑛}⟩ ◁ Each replication consists of a sequence of steps

repeat
step1, ..., step𝑛 ← CalculateNextSteps(𝑁, ⟨𝑅1, ..., 𝑅𝑛⟩)
step1, ..., step𝑛 ← ResolveConflicts(⟨𝑅1, ..., 𝑅𝑛⟩, ⟨step1, ..., step𝑛⟩)
if not all step sizes are equal then

step1, ..., step𝑛 ← EqualizeSteps(⟨step1, ..., step𝑛⟩)
end if
⟨𝜎1, . . . , 𝜎𝑛−1⟩ ← CalculateIsomorphism(⟨𝑅1, ..., 𝑅𝑛⟩, ⟨step1, ..., step𝑛⟩)
if any of the previous operations fail then

break
end if
for all 𝑖 ∈ {1, ..., 𝑛} do

R𝑖 += steps𝑖
end for

until modules exceed maxsize
if |𝑅1| mod 2 = 0 then ◁ Even radius = Outer shell contains only places

remove last shell from 𝑅1, ..., 𝑅𝑛

end if
return ⟨𝑅1, ..., 𝑅𝑛⟩, ⟨𝜎1, ..., 𝜎𝑛−1⟩

end procedure

Algorithm 2 Subroutine to find calculate the next expansion step

procedure CalculateNextSteps(𝑁, ⟨𝑅1, ..., 𝑅𝑛⟩)
global stop_nodes
next_step1, ..., next_step𝑛 ← ∅
for all 𝑖 ∈ {1, ..., 𝑛} do

last_step← last element of 𝑅𝑖

visited_nodes←
⋃︀

𝑉 ∈𝑅𝑖
𝑉

for all 𝑣 ∈ last_step ∖ stop_nodes do ◁ Collect valid neighbors of nodes in previous

step

next_step𝑖 ← next_step𝑖 ∪ 𝑣 ∙ ∪ ∙ 𝑣 ∖ visited_nodes ∖ stop_nodes
end for
if next_step𝑖 = ∅ then

fail ◁ If a module can’t expand, fail

end if
end for
return ⟨next_step1, ..., next_step𝑛⟩

end procedure

In every even step, the shells contain only place vertices, which have to be disjoint between modules,

as stated in Lemma 1. The simplest method to handle overlapping places is to mark them as forbidden

and remove them from the expansion step, as seen in Alg. 3. This is a point of concern for improving the

quality of the resulting modularization, since it is likely to introduce small ”strips” of places which run

between the edges of modules and act as a buffer (see Fig. 2b). The buffer introduces synchronization

points, which can reduce the effectiveness of the state space reduction achieved by the modular approach.
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Algorithm 3 Subroutine to find and resolve conflicts between expansion steps

procedure ResolveConflicts(⟨𝑅1, ..., 𝑅𝑛⟩, ⟨step1, ..., step𝑛⟩)
global stop_nodes
𝑉𝑖 ←

⋃︀
𝑅∈𝑅𝑖

𝑅,∀𝑖 ∈ {1, ..., 𝑛} ◁ 𝑉𝑖 contains all nodes from previous steps

for all 𝑖 ∈ {1, ..., 𝑛} do
for all 𝑣 ∈ step𝑖 do

if 𝑣 ∈ (step1 ∪ ... ∪ step𝑛) ∖ step𝑖 or 𝑣 ∈ (𝑉1 ∪ ... ∪ 𝑉𝑛) ∖ 𝑉𝑖 then
conflicts← conflicts ∪ {𝑣}
stop_nodes← stop_nodes ∪ {𝑣}

end if
end for
if |𝑅𝑖| mod 2 = 0 then ◁ Even number of previous steps =̂ current step contains places

step𝑖 ← step𝑖 ∖ conflicts ◁ Future work: find partner in conflicting modules

end if
end for
return ⟨step1, ..., step𝑛⟩

end procedure

3.2.3. Equalizing the step sizes

The next reduction of the expansion step concerns itself with the size of the individual shells. Since

the process attempts to maintain isomorphic substructures after each expansion, an equal number of

vertices has to be added to each module in a given step. If the step sizes differ, all candidate shells have

to be reduced to the size of the smallest one. This procedure is show in Alg. 4. When deconstructing a

Petri net system into modules, the inclusion of a place 𝑝 ∈ 𝑃 in a module requires the inclusion of all

transitions 𝑡 ∈ 𝑇 : (𝑝, 𝑡) ∈ 𝐹 ∪ 𝐹−1
in the same module. Thus, if the current expansion steps consist

of transitions, but differ in size, it is impossible to remove transitions from a candidate shell, and this

reduction of the steps has to fail.

However, the inverse is not required, which allows us to remove places from candidate shells of

expansion steps with an even number. One method of constructing equally sized subsets of shells with

a higher likelyhood of resulting in an isomorphic graph utilizes an idea similar to the signature 𝑠, which

we previously calculated for selecting the seed vertices: Since we are only concerned with the immediate

next expansion step, we calculate a modified signature 𝑠′𝑘(𝑣)(𝑖, 𝑜) = |{𝑐(𝑣, 𝑣′) = 𝑜, 𝑐(𝑣′, 𝑣) = 𝑖, 𝑣′ ∈
𝑉 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑
𝑘 }|, where 𝑉 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑

𝑘 is the union of all previous expansion steps. This way, 𝑠′𝑘(𝑣) : (N×N→ N)
describes the connection structure of a node 𝑣 ∈ 𝑉 𝑆ℎ𝑒𝑙𝑙

𝑘 to only its neighbors in the module 𝑘.

To preserve the isomorphism between modules, nodes 𝑣1, ..., 𝑣𝑛 are only kept in the shells of their

respective module 𝑘 when they have the same number of incoming and outgoing edges to the previous

shell of the module, so 𝑠′𝑘(𝑣1) = ... = 𝑠′𝑘(𝑣𝑛). If there is the same number of vertices 𝑣𝑖 with the same

signature 𝑠′𝑘(𝑣𝑖), all of these vertices remain in the shell. If this number of vertices differs between

modules, the shell with the smallest number determines how many vertices of the other shells are kept.

The selection heuristic of these vertices is subject to further research.

After each reduction procedure, it is possible that a candidate expansion step is completely empty.

Whether the step was empty from the beginning because all neighbors of the previous shell were

marked as forbidden, were removed because they conflicted with other modules or emptied because

their specialized signature 𝑠′ didn’t match any of the other candidates, the algorithm can’t grow the

modules in this step and therefore not in any future steps. In this case, the algorithm fails and returns

the last valid modules.
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Algorithm 4 Subroutine to equalize the size of expansion steps

procedure EqualizeSteps(⟨𝑅1, ..., 𝑅𝑛⟩, ⟨step1, ..., step𝑛⟩)
next_step1, ..., next_step𝑛 ← ∅
if |𝑅1| mod 2 = 1 then ◁ Odd number of previous steps =̂ current step contains transitions

fail ◁ Transitions can’t be excluded from expansion

end if
for all 𝑣 ∈ step1 ∪ ... ∪ step𝑛 do

signature𝑣 ←
(︀
(𝑖, 𝑜) ↦→ |{𝑣′ |𝑊 (𝑣′, 𝑣) = 𝑖 ∧𝑊 (𝑣, 𝑣′) = 𝑜}|

)︀
end for
signatures =

⋃︀
𝑣∈step1∪...∪step𝑛 signature𝑣

for all 𝑠 : (N× N ↦→ N) ∈ 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠 do
𝑠𝑖 ← {𝑣 ∈ step𝑖 | signature𝑣 = 𝑠}, ∀𝑖 ∈ {1, ..., 𝑛}
if |𝑠1| = ... = |𝑠𝑛| then

next_step𝑖 ← next_step𝑖 ∪ 𝑠𝑖, ∀𝑖 ∈ {1, ..., 𝑛}
else

next_step𝑖 ← next_step𝑖 ∪ {choose Min{|𝑠1|, ..., |𝑠𝑛|} nodes from 𝑠𝑖} ◁ Future

Work

end if
end for
return ⟨next_step1, ..., next_step𝑛⟩

end procedure

3.2.4. Calculating isomorphisms

The last step after performing the aforementioned reductions is to verify that the calculated expansion

step maintains the isomorphism between the modules. The module graphs are obtained by constructing

the graphs induced from the net graph by all vertices contained in all steps of each module. Due to

Isomorphism being a problem in NP, this part consumes most of the runtime and is subject to several

heuristic approaches to reduce the complexity. Since the isomorphism between the modules is transitive,

it is sufficient to find an isomorphism 𝜎𝑖 between each replica 𝑅𝑖 and 𝑅1, and not necessary to check

isomorphism between every pair of modules, which is shown in Alg. 5.

If an isomorphism check fails, the expansion step can’t be performed and the algorithm fails, again

returning the last previously valid modules. Otherwise, the expansion steps are added to their respective

modules in preparation for the next iteration of the loop.

Algorithm 5 Subroutine to check the isomorphism between modules

procedure CalculateIsomorphism(⟨𝑅1, ..., 𝑅𝑛⟩, ⟨step1, ..., step𝑛⟩)
𝐺𝑖 ← InducedSubgraph(𝑁, step𝑖 ∪

⋃︀
𝑅∈𝑅𝑖

𝑅)
for all 𝑖 ∈ {2, ..., 𝑛} do

𝜎𝑖−1 ← Isomorphism(𝐺1, 𝐺𝑖)
if 𝜎𝑖−1 = ∅ then

fail
end if

end for
return ⟨𝜎1, ..., 𝜎𝑛−1⟩

end procedure
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3.2.5. Post-processing and improvements

The result of the aforementioned algorithm contains the identified replications 𝑅1, ..., 𝑅𝑛, each rep-

resented by a sequence of expansion steps, as well as the isomorphic mappings 𝜎1, ..., 𝜎𝑛−1, so

that 𝜎1 is the mapping between 𝑅1 and 𝑅2. We can collect all places from a replication repre-

sentation 𝑅𝑖 as 𝑃𝑖 =
⋃︀

𝑅∈𝑅𝑖
(𝑅 ∩ 𝑃 ), where 𝑃 is the set of places of the input Petri net system.

The set of all places not included in the replicated modules is 𝑃𝑛+1 = 𝑃 ∖
⋃︀

𝑖∈{1,...,𝑛} 𝑃𝑖. Since

{𝑃1, ..., 𝑃𝑛, 𝑃𝑛+1} is a partition of 𝑃 , it induces a modular structureℳ′ = [ℐ ′,ℱ ′], with the set of

instances ℐ ′ = {[𝑁 ′
1,𝑚

′
01], ..., [𝑁

′
𝑛+1,𝑚

′
0(𝑛+1)]} according to lemma 1. To combine these replicated

modules into replicated instances of a single module, we define a modular structureℳ = [ℐ,ℱ ] as

follows:

• ℐ = {[𝑁𝑟𝑒𝑝𝑙, 𝑗,𝑚0𝑗 ] | 𝑗 ∈ {1, ..., 𝑛}} ∪ {[𝑁𝑟𝑒𝑠𝑡, 𝑛+ 1,𝑚0(𝑛+1)]},
where 𝑚0𝑗(𝑝) = 𝑚(𝜎𝑗−1(𝑝)) for 𝑗 ∈ {1, ..., 𝑛} and 𝑚0(𝑛+1)(𝑝, 𝑛+ 1) = 𝑚(𝑝).

• ℱ is calculated analogously to Lemma 1 combined with ℐ .

Due to the nature of the expansion, the replicated module 𝑁𝑟𝑒𝑝𝑙 is connected, while the rest module

𝑁𝑟𝑒𝑠𝑡 may not be. Therefore, 𝑁𝑟𝑒𝑠𝑡 can w.l.o.g be split into connected modules, which can further

improve the state space reduction.

The aforementioned algorithm can be improved in different areas by making assumptions about

the isomorphic mappings between the modules. While the seed vertices are selected in a way that

incentivizes them to be mapped onto each other early in the process, it is entirely possible for that to

change after a few successful expansion steps. However, after some number 𝑟 of steps, we can observe

that the isomorphic mapping only frequently changes for some 𝜀 outermost shells of the modules, while

the mapping is stable in shells which are closer to the center.

With this assumption, we can reduce the size of the input graphs for the isomorphism problem. The

more successful expansion steps are performed, the larger the graphs, but the more stable the center. Let

𝑆𝑖
𝑘 be the set of nodes included in the 𝑖-th shell of the 𝑘-th module, and 𝑟 be the index of the currently

planned expansion step, with all necessary reductions already performed. Furthermore, let 𝜎𝑘 be the

isomorphic mapping from module 𝑘 to 𝑘 + 1 after step 𝑟 − 1.

Previously, the graphs 𝐺𝑘 were induced by the set of vertices

⋃︀
0≤𝑖≤𝑟 𝑆

𝑖
𝑘 . Under the aforementioned

assumption, the size of this set can be reduced by only including vertices from an ”inner” shell if

they’re connected to a vertex in an ”outer” shell. When calculating the new isomorphic mapping 𝜎′
𝑘 , we

introduce the additional constraint that 𝜎′
𝑘(𝑣) = 𝑣′ iff 𝜎𝑘(𝑣) = 𝑣′ ∧ 𝑣 ∈

⋃︀
1≤𝑖≤𝑟−𝜀 𝑆

𝑖
𝑘 , so inner vertices

are always mapped to other inner vertices without having to include all other inner vertices.

Another application of this assumption can be found during the step size reductions. When a place 𝑝
is included in the candidate expansion steps of multiple modules, the simplest resolution is to include

this place in neither module. However, as described before, this reduces the result quality by introducing

strips of places along the module borders. To counteract this behavior, it would be preferable to allocate

the conflict place to a module instead of excluding it entirely. Since the number of vertices has to be

equal across the planned expansion steps, it is necessary to find places that can be included into the

other steps without violating the isomorphism. Under the assumption that the isomorphism tends to be

stable after some steps, the isomorphic mapping from the previous step can be utilized to identify those

places. Further research and experiments are required to validate the effectiveness of this approach by

examining the success rate of such an allocation.

The last area where the previous isomorphic mappings can be used is during the equalization of

the step size. When the expansion steps contain a differing number of places with the same signature,

identically sized subsets of those places have to be identified. The previous isomorphism could be

utilized similarly as during the conflict resolution described before: By extending the modified signature

𝑠′𝑘 to include the isomorphism, we reduce the flexibility of changing the mapping of recently included

vertices, but in turn gain a more sound heuristic that can reduce backtracking or unnecessary failures.
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(a) Modularization of the 2x2 SquareGrid (2 seeds)

(b) Modularization of ten dining philosophers (3

seeds)

Figure 2: Results of the FindReplications procedure

3.2.6. Implementation

The prototype implementation is written in Python for its development flexibility and library support.

It utilizes the widely known networkx library [9] to manage the graph data structures and, more

importantly, check and calculate the isomorphisms between modules using an implementation of the

VF2 algorithm[10]. Our presented algorithm performs the isomorphism checks in a loop, and while

the heuristic described in the previous section can take some strain off of the calculations by reducing

the size of the input graphs, there’s more performance to be gained. It is likely that a specialized

implementation of the isomorphism check could exploit the iterative nature of its execution to reduce

redundant calculations, which currently have to be performed anew in every call.

The current implementation supports the selection of seed vertices via their signature, as well as

basic strategies for conflict resolution and step size equalization. Because of its impact on the runtime,

the isomorphism calculation accepts several parameters to control the size of the stable area in the

center, which reduces the graph size. Despite lacking the more sophisticated strategies that utilize

isomorphic mappings from previous iterations to allocate conflicting places to modules and improve

the result quality during step size equalization, the implementation finds sufficiently large replicated

modules on several models.

Figure 2a shows the result of the algorithm on the SquareGrid model [11] with the two seed vertices

encircled in the top left and bottom right. After five successful expansion steps, the two modules meet

on the center places of their adjacent grid cells, highlighted by the dashed circle. At this point, the

algorithm can’t expand further due to the missing ability to allocate places between modules, causing

it to terminate. An allocation strategy would be able to resolve this conflict by allowing the top left

module to expand to the right, but not downwards, leaving those places for the bottom right module.

The same kind of results can be observed on larger versions of the model, especially when the expansion

is performed from more than two seed places.

The results of the automatic modularization of another model is shown in Figure 2b. This is a version

of the well-known dining philosophers model with ten philosophers. Vertices in this model only have

one of two different signatures, where one signature is shared only by the ten forks while the other

is common to the remaining 40 places. This makes the forks much more desirable starting points. As

in Figure 2a, modules are in conflict on places between each other, and again those conflicts could

be resolved by the aforementioned method. While it is impossible to make out from the figure alone,
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the philosopher to the right of the top module actually grabs his forks in the opposite order from his

colleagues, which prevents the application of state space reduction methods using symmetries, but

leaves this approach unfazed since the philosophers fully contained in the replications still share the

same behavior.

All in all, the current state of the implementation performs well in terms of result quality, especially

for models which contain highly replicated structures. For models where the desired modules are less

obvious to the naked eye, the prototype often terminates early due to its lacking conflict resolution

abilities. Since the main goal of the prototype was originally to provide a framework for easy-to-

implement validation of modularization ideas, the runtime performance was not a large concern during

early stages of development. However, the described assumptions about the stability of isomorphic

mappings between the centers of modules resulted in significant performance gains, especially for

models with high connectivity, and we expect another boost from utilizing an iteration-optimized

version of the isomorphism checking algorithm.

4. Non-Replicated Modularization

Modularization based on replications improves the analysis of Petri net systems by reducing redundant

state space. In this chapter we will highlight other methods in order to deal with situations where

we cannot expect to find replications. For example, if all replications have already been found in a

given Petri net system, the rest of the network may still be large. In this case, we then could try

to modularize the rest of the network with other methods. Another case would be the reduction of

already found replications. The previously described approach always tries to find the largest possible

replications. The size of the replications is not limited upwards, as long as the propagation does not

collide with other replications. The replications can therefore become rather big. To leverage the

advantage of modularization even further, it is possible to continue modularizing a replica again using

other methods. The additional modularization can then be transferred from the replica to the other

without any additional effort. Although Definition 5 encourages us to distinguish between the concepts

of module and instance, we decline to do so in this section. Since we assume here that we will not find

any replicas, i.e. instances, that belong to the same module, the association to the structure of modules

is not required. From now on we will only use the term instances as components of a modular Petri net.

The goal remains the modularization of a given Petri net system, as described in Definition 6.

With respect to the application cases described above, we do not mind whether the given Petri net

system itself is a just created instance, the remaining Petri net system or a completely new net; in any

case we can build a modular Petri net out the given net. The following approaches aim to generate a

partitioning of the place set of a Petri net, which can then be converted into a modular structure as

described in lemma 1.

4.1. T-Invariants

Decompositional analysis based on the structure of a Petri net system is obvious because of the strong

connection between structure and behavior of Petri net systems. In [12] they advance the analysis

by adding hierarchy through the nested unit Petri nets model. The Problem of dividing a Petri net

system into functional subnets, a net with a denoted set of input and output places, is discussed in

[13]. Invariants for the modularization of Petri net systems have been used before; [14] used place

invariants to abstract a set of places to one place. This abstracted Petri net system tends to be simpler

to analyze. Our approach here is to use transition invariants to generate instances with significant

internal behavior. Transition invariants are a criterion for cyclic, thus non-trivial behavior. A cycle in

the state space responses to a transition invariant of the according Petri net system [15]. Note, that

the existence of a transition invariant is only a necessary criterion for the existence of cyclic behavior;

we may find a transition invariant we can never execute as it is not marked in any reachable marking.

The use of t-invariants has already been used for the decomposition of Petri net systems due to their

importance in the state space. In [1], a Petri net system is clustered on the basis of t-invariants, so that
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resulting clusters correspond to functional units in biological networks. Here, however, the focus was

on the clustering of similar invariants.

Definition 10 (Incidence Matrix). A Petri net system 𝑁 = [𝑃, 𝑇, 𝐹,𝑊,𝑚0] can be represented as

an incidence matrix 𝐶 |𝑃 |×|𝑇 |
where 𝑐𝑖𝑗 = 𝑊 ((𝑡𝑗 , 𝑠𝑖)) − 𝑊 ((𝑠𝑖, 𝑡𝑗)) for 𝑖 ∈ {1, . . . , |𝑆|} and 𝑗 ∈

{1, . . . , |𝑇 |}.

Definition 11 (Transition Invariants, Support). Let 𝑁 be a Petri net system and 𝐶 its incidence matrix.

A transition invariant (t-invariant) 𝑖⃗ ∈ Z|𝑇 |
is a solution of the homogenous linear system of equations

𝐶 · 𝑖⃗ = 0⃗. The support 𝑠𝑢𝑝𝑝(𝑖⃗) ⊆ 𝑇 of the transition invariant 𝑖⃗ is the set of transitions whose entry is

not zero in 𝑖⃗.

Informally, a t-invariant describes a multiset of transitions whose execution will not change the state

of the system. After firing all transitions, the net will be situated in the very same marking as before.

We only consider non-trivial, non-negative t-invariants. The trivial t-invariant 0⃗
|𝑇 |

provides no useful

information for us. A negative entry in a t-invariant would represent a reverse firing of a transition

which is not applicable. Despite this restriction, we still can get infinitely many t-invariants. Therefore,

we focus on minimal invariants.

Definition 12 (Minimal Transition Invariants). For a minimal transition invariant 𝑖⃗ ∈ Z|𝑇 |
, it exists

no other t-invariant 𝑖′⃗ ∈ Z|𝑇 |
with 𝑠𝑢𝑝𝑝(𝑖′⃗) ⊂ 𝑠𝑢𝑝𝑝(𝑖⃗) for 𝑖′⃗ ̸= 𝑖⃗. Also, the least common divisor of the

entries of 𝑖⃗ is 1.

From now on, if we mention t-invariants, we always refer to minimal non-trivial, non-negative

t-invariants, as we only consider those kinds of t-invariants.

T-invariants serve as the bases for prospective instances of the modular Petri net. Instances should

be disjoint per definition, thus we are only interested in t-invariants that have a disjoint set of support

transitions. The requirement to compute disjoint t-invariants can be easily implemented in an iterative

computation by claiming the weights of already computed support transitions to be zero in future

invariants. Thus, they do not occur in support of further t-invariants. Even for disjoint t-invariants, the

preplaces resp. postplaces of the support transitions may overlap. In accordance with the definition of

instances in a modular structure, the sets of places need to be disjoint as well. To resolve this problem,

we introduce the concept of super-disjointness.

Definition 13 (Super-Disjointness). Let 𝑁 be a Petri net system and 𝐶 its incidence matrix. Two

t-invariants 𝑖⃗, 𝑖′⃗ ∈ Z|𝑇 |
are super-disjoint, if

1. they are disjoint, i.e. 𝑠𝑢𝑝𝑝(𝑖⃗) ∩ 𝑠𝑢𝑝𝑝(𝑖′⃗) = ∅
2. the environments of the support transitions are disjoint as well; i.e.

⋃︀
𝑡∈𝑠𝑢𝑝𝑝(𝑖⃗)(∙𝑡 ∪ 𝑡∙) ∩⋃︀

𝑡′∈𝑠𝑢𝑝𝑝(𝑖′⃗)(∙𝑡
′ ∪ 𝑡′∙) = ∅

For a Petri net system, super-disjoint t-invariants can be calculated with a tool for Petri net system

analysis, for example LoLA [16]. Calculating positive t-invariants is closely related to the integer linear

programming problem, which is known to be NP-complete, therefore calculating t-invariants is not

a trivial problem. Due to the restriction of super-disjointness, the calculation of will be executed |𝑇 |
times worst case.

We now assume we have generated a set of super-disjoint t-invariants {𝑖⃗1, . . . , 𝑖⃗ℓ}. From every

invariant 𝑖⃗𝑗 , we generate a set of places 𝑃𝑗 =
⋃︀

𝑡∈𝑠𝑢𝑝𝑝(𝑖⃗𝑗) ∙𝑡 ∪ 𝑡∙ for 𝑗 ∈ {1, . . . , ℓ}. With reference to

Lemma 1, we can generate a modular structure out of the set of created place sets {𝑃1, . . . , 𝑃ℓ}.

Example 3 (super-disjoint T-Invariant Modularization). Let 𝑁 be a Petri net system, as depicted in Fig-

ure 3a We can calculate three super-disjoint t-invariants 𝑖1⃗, 𝑖2⃗, 𝑖3⃗, for which we can identify the support:

𝑠𝑢𝑝𝑝(𝑖1⃗) = {𝑡1, 𝑡2, 𝑡3}, 𝑠𝑢𝑝𝑝(𝑖2⃗) = {𝑡4, 𝑡5} and 𝑠𝑢𝑝𝑝(𝑖3⃗) = {𝑡7, 𝑡8, 𝑡9}. As described we generate the

place set of the future instances from the environment of the support transitions. This results in 𝑃1 =
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Figure 3: Exemplary representation of the modularization of Petri net system 𝑁 .

{𝑝1, 𝑝2, 𝑝3}, 𝑃2 = {𝑝4, 𝑝5} and 𝑃3 = {𝑝6, 𝑝7, 𝑝8}. The only place 𝑝9 of the rest net determines another

instance with 𝑃4 = {𝑝9}. According to Lemma 1, we can generate the modular structure. Firstly, we gen-

erate the transition sets corresponding to the four place sets: 𝑇1 = {(𝑡1, 1), (𝑡2, 1), (𝑡3, 1), (𝑡6, 1)}, 𝑇2 =
{(𝑡4, 2), (𝑡5, 2), (𝑡6, 2)}, 𝑇3 = {(𝑡6, 3), (𝑡7, 3), (𝑡8, 3), (𝑡9, 3), (𝑡10, 3)} and 𝑇4 = {(𝑡10, 4), (𝑡11, 4)}.
Arcs and Weights and initial markings are defined appropriately. We can deduce that 𝑡6 of 𝑁 is

a fusion transition and (𝑡6, 𝑖) ∈ 𝑇𝑖|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 for 𝑖 ∈ {1, 2, 3}. The same applies for 𝑡10 and (𝑡10, 𝑖) for

𝑖 ∈ {3, 4}. All other transitions of the instances are internal ones. This leads to two fusion vectors

ℱ = {[(𝑡6, 1), (𝑡6, 2), (𝑡6, 3)], [(𝑡10, 3), (𝑡10, 4)]}. The modular Petri net generated out of the modular

structure is depicted in Figure 3b.

It is reasonable to assume instances generated on t-invariants do not modularize the Petri net system

completely. Parts of the original Petri net system may remain unaffected by the modularization and

form one instance by itself. That these parts are connected is improbable, therefore the analysis of

this rest-instance would require a lot of synchronization with other instances. This is not consistent

with the concept of individual analysis of the instances, which will accelerate the modular state space

analysis. Furthermore, we assume that t-invariants tend to generate small instances with little internal

behavior. It is therefore convenient to combine partial instances under certain conditions to form a

larger instance. The most obvious approach is to join two instances that share a fusion set. This can be

accomplished by unifying the place sets of the two instances and forming a new instance according

to Lemma 1. This is possible without restriction, since the place sets are disjoint by construction. It is

also possible to combine instances that are close to each other. For this purpose, we can calculate the

shortest path between two instances in pairwise order. The goal is to merge the instances and to include

the nodes on this shortest path into the new instance. In order to realize this, we extract the places that

are located on the shortest path and join them with the union of the place sets of the instances. The

whole set then serves as the basis for a new, larger instance. In this way, residual parts of the Petri net

system, that lie between two instances are to be included in one instance. Doing so creates connected

instances, which tend to have more internal behavior. It also reduces the unmodularized part of the

Petri net system. The instances should not become too large, of course. It is recommended to define a

maximum size for instances as the analysis of (too) large instances can reduce the efficiency increase

achieved by modularization. The exploitation of t-invariants provides a legitimate way to approach the

modularization of a Petri net system. The computational effort seems comparatively lightweight, so

with the proposed extensions we see this method as an extensible enrichment in modularization.

66



Julian Gaede et al. CEUR Workshop Proceedings 53–73

4.2. Minimal Interfaces

Another legitimate goal for modularization is the generation of the smallest possible interfaces. For

the analysis of the state space of a modular Petri net, internal transitions and interface transitions of

instances are treated differently. For the activation and firing of internal transitions only the state of

the corresponding instance is relevant. The firing behavior of interface transitions depends on the

states of all attached instances. The analysis must therefore include all instances affected. However, the

efficiency increase of the analysis of modular state spaces follows from restricting the analysis to single

instances. It is therefore a valid modularization criterion to keep the number of interface transitions

as low as possible and thus to reduce behavior that affects several instances. For more details on the

analysis of the modular state space and the structures required for it, we reference [3]. This subsection

provides two approaches to generate a modular Petri net system with little interface behavior.

4.2.1. Modularization by Hypergraph Partitioning

In [17], a system described only as an incidence matrix between states and actions is also to be

modularized to speed up the analysis. Here, the data flow between the resulting modules should be

minimized, i.e. the interface actions should be kept as small as possible. Finding minimal data flow

between modules refers to the problem of finding a minimal cut.

The method for this is to partition the matrix using hypergraph partitioning.

Definition 14 (Hypergraph [18]). A hypergraph 𝐻 = [𝑉 𝐻 , 𝐸𝐻 ] is defined as a set of vertices 𝑉 𝐻
and

a set of hyperedges 𝐸𝐻
between the vertices. A hyperedge 𝑒 ∈ 𝐸𝐻

is a subset of vertices: 𝑒 ⊆ 𝑉 𝐻
.

Thus, a graph is a special instance of a hypergraph, where every hyperedge connect exactly two

vertices.

Definition 15 (Hypergraph Partitioning [18]). Let 𝐻 = [𝑉 𝐻 , 𝐸𝐻 ] be a hypergraph. The set of vertex

sets Π = {𝑉 𝐻
1 , 𝑉 𝐻

2 , . . . , 𝑉 𝐻
ℓ } is an l-partition of 𝐻 , if the following conditions hold:

• each set 𝑉 𝐻
𝑖 is a nonempty subset of 𝑉 𝐻

, i.e. ∅ ≠ 𝑉 𝐻
𝑖 ⊆ 𝑉 for 𝑖 ∈ {1, . . . , ℓ}

• the sets are pairwise disjoint, i.e. 𝑉 𝐻
𝑖 ∩ 𝑉 𝐻

𝑗 = ∅ for 𝑖 ̸= 𝑗 ∈ {1, . . . , ℓ}
• the union of all sets results in 𝑉 𝐻

, i.e.

⋃︀
𝑖∈{1,...,ℓ} 𝑉

𝐻
𝑖 = 𝑉 𝐻

We refer to 𝐸𝐻
𝑒𝑥𝑡𝑒𝑟𝑛 = {𝑒 ∈ 𝐸𝐻 | ∃𝑣𝑖 ̸= 𝑣𝑗 ∈ 𝑒∃𝑉 𝐻

𝑖 ̸= 𝑉 𝐻
𝑗 ∈ 𝑉 𝐻 : 𝑣𝑖 ∈ 𝑉 𝐻

𝑖 ∧ 𝑣𝑗 ∈ 𝑉 𝐻
𝑗 } as the

external hyperedges.

A hypergraph partitioning divides a hypergraph into a set of disjoint subsets 𝑉 𝐻
1 , 𝑉 𝐻

2 , . . . , 𝑉 𝐻
ℓ . The

external hyperedges connect vertices from distinct partitions. In [17], they reduce the problem of

generating as little data flow as possible to hypergraph ℓ-partitioning with minimal cost for ℓ > 0. The

cost of a partitioning is related to the number of external hyperedges in the following way:

Definition 16 (Cost of a Hypergraph Partitioning). Given a hypergraph 𝐻 = [𝑉 𝐻 , 𝐸𝐻 ], the cost of

an ℓ-partitioning Π = {𝑉 𝐻
1 , 𝑉 𝐻

2 , . . . , 𝑉 𝐻
ℓ } is defined as 𝜆(Π) = |𝐸𝐻

𝑒𝑥𝑡𝑒𝑟𝑛|.

In [18], they additionally present a balance criterion.

Definition 17 (Balanced Partition, Balance Criterion [18]). Let 𝐻 = [𝑉 𝐻 , 𝐸𝐻 ] be a hypergraph and

Π = {𝑉 𝐻
1 , 𝑉 𝐻

2 , . . . , 𝑉 𝐻
ℓ } an ℓ-partitioning of 𝐻 . For every vertex 𝑣 ∈ 𝑉 𝐻

, 𝑤(𝑣) denotes a weight

of 𝑣. For every partition 𝑉 𝐻
𝑖 for 𝑖 ∈ {1, . . . , ℓ}, we define 𝑤(𝑉 𝐻

𝑖 ) =
∑︀

𝑣∈𝑉 𝐻
𝑖

𝑤(𝑣) as the weight of

𝑉 𝐻
𝑖 . Over all partitions, we can calculate the average weight of the partitions: 𝑤𝑎𝑣𝑔 =

∑︀𝑘
𝑖=1𝑤(𝑉

𝐻
𝑖 )/𝑘.

Partition Π is said to be balanced if it fulfills the balance criterion: 𝑤(𝑉 𝐻
𝑖 ) ≤ 𝑤𝑎𝑣𝑔(1 + 𝜀).

Here, 𝜀 denoted a predefined maximum imbalance ratio allowed. The bigger we set 𝜀, the more the

partitions are permitted to differ. The hypergraph partitioning problem is defined as follows:
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Hypergraph ℓ, Partitioning
Input: Hypergraph 𝐻 , ℓ ∈ Z+

Question: Find a balanced ℓ-partitioning Π = {𝑉 𝐻
1 , 𝑉 𝐻

2 , . . . , 𝑉 𝐻
ℓ }, such that 𝜆(Π) is minimal.

This problem is NP-hard [19]. Therefore, we do not expect to find a hypergraph partitioning with

the minimal cost; however, a heuristic approximate solution satisfies our requirements.

The following step is an interpretation of a Petri net system as a hypergraph, for which we then

aim to generate a balanced partitioning with minimal cost. Therefore, we introduce the incidence

hypergraph.

Definition 18 (Incidence Hypergraph). Given a Petri net system 𝑁 = [𝑃, 𝑇, 𝐹,𝑊,𝑚0], the incidence
hypergraph 𝐼 = [𝑉 𝐼 , 𝐸𝐼 ] is an undirected, bipartite graph, where

• 𝑉 𝐼 = 𝑃

• 𝐸𝐼 = 𝑏𝑎𝑔𝑠(∙𝑡 ∪ 𝑡∙ | 𝑡 ∈ 𝑇 ) (with 𝑏𝑎𝑔𝑠(𝑋) being a multiset with elements from 𝑋 . )

Note, that in contrast of the Definition 14, the set of edges is defined as a multiset of subsets of

places. The reason is, that for a Petri net system, the hyperedges should represent the transitions. The

conventional hypergraph definition would compress transitions with the same set of pre/postplaces to

one hyperedge, so structural information about the Petri net system would be neglected. For example,

consider Petri net system 𝑁 in Figure 4a. If we add a transition 𝑡0 with ∙𝑡0 = {𝑝2} and 𝑡0∙ = {𝑝1},
this would result in a hyperedge {𝑝1, 𝑝2}, which is already part of 𝐸𝐼

representing transition 𝑡1.

Consequentially, no additional edge would be introduced and 𝑡0 becomes invisible. To avoid this,

we adapt the definition for the use case of Petri net systems. As the weights are not important, the

incidence hypergraph abstracts this information. For incidence hypergraph 𝐼 we aim to generate a

balanced ℓ-partition Π = {𝑉 𝐼
1 , 𝑉

𝐼
2 , . . . , 𝑉

𝐼
ℓ } with minimal cost 𝜆(Π). In our use case, we can weaken

the balancing criterion formulated in Definition 17. As for now, the places of a Petri net system that

form the vertices of the incidence hypergraph are all equally valid, we can neglect the weight of the

vertices. To us, it is sufficient to have partitions with approximately the same size.

Definition 19 (Balance Criterion for Incidence Hypergraph Partitioning). Let 𝐼 = [𝑉 𝐼 , 𝐸𝐼 ] be an

incidence hypergraph of a Petri net system 𝑁 and Π = {𝑉 𝐼
1 , 𝑉

𝐼
2 , . . . , 𝑉

𝐼
ℓ } an ℓ-partitioning of 𝐻 .

Partitioning Π is balanced, if every partition 𝑉 𝐼
𝑖 for 𝑖 ∈ {1, . . . , ℓ} fulfills the following balance

criterion: |𝑉 𝐼
𝑖 | ≤ |𝑉 𝐼 |/ℓ · (1 + 𝜀).

Each partition must not differ in size by more than 𝜀-fold from the average size of a partition. Solving

the hypergraph partitioning problem for the incidence hypergraph of a Petri net system will result in a

partitioning of places and an identification of transitions as internal and interface. This information

is sufficient to build a modular Petri net. Partition Π divides the vertices of the incidence hypergraph

𝐼 into partitions {𝑉 𝐼
1 , 𝑉

𝐼
2 , . . . , 𝑉

𝐼
ℓ }. If we take this down to the Petri net system level, the partitions

correspond place sets {𝑃1, 𝑃2, . . . , 𝑃ℓ}, such that 𝑃𝑗 = 𝑉 𝐼
𝑗 for 𝑗 ∈ {1, . . . , ℓ}. Each place set 𝑃𝑗 then

forms the place set of an instance [𝑁𝑗 ,𝑚0𝑗 ] for 𝑗 ∈ {1, . . . , ℓ}. In accordance to Lemma 1 and with

reference to our initially given Petri net system 𝑁 , we can generate a modular structure, thus a modular

Petri net out of {𝑃1, 𝑃2, . . . , 𝑃ℓ}. Due to the balance criterion, the instances are approximately the

same size while keeping the number of fusion transitions as small as possible.

Example 4. Let 𝑁 be a given Petri net system, depicted in Figure 4a. For 𝑁 , we generate the

incidence hypergraph 𝐼 , depicted in Figure 4b. A balanced 2-partitioning for 𝐼 would be Π =
{{𝑝1, 𝑝2, 𝑝3}, {𝑝4, 𝑝5, 𝑝6}} with only one external hyperedge 𝐸𝐼

𝑒𝑥𝑡𝑒𝑟𝑛 = {{𝑝3, 𝑝4, 𝑝5}}. This parti-

tioning is balanced, as the partitions are the same size, and minimal - less than one hyperedge would

not be possible for a connected underlying Petri net system. A resulting modular structure would

contain two instances [𝑁1,𝑚01], [𝑁2,𝑚02], where 𝑃1 = {𝑝1, 𝑝2, 𝑝3}, 𝑇1 = {(𝑡1, 1), (𝑡2, 1), (𝑡3, 1)} and

𝑃2 = {𝑝4, 𝑝5, 𝑝6} and 𝑇2 = {(𝑡3, 2), (𝑡4, 2), (𝑡5, 2)}. The other components are defined appropriately.

The only fusion set would be 𝑓 = {(𝑡3, 1), (𝑡3, 2)}.
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Figure 4: Incidence hypergraph of a given net

For solving the hypergraph partitioning problem, there exist several tools, like [18] or [20]. In [21],

they provide a parallel approach to handle the severity of the problem. The problem remains NP-hard,

which is why the approaches are only heuristic. In our case, the application of hypergraph partitioning

may not necessarily deliver optimal results, nevertheless, in the following subsection we want to

consider an approach which solves another applicable problem in polynomial time.

4.2.2. Modularization by Dual Hypergraph Cutting

In this chapter, we highlight a method for modularizing Petri net systems using the dual incidence

hypergraph. For this purpose, further graph-theoretic definitions are required.

Definition 20 (Dual Hypergraph [22]). Let 𝐻 = [𝑉 𝐻 , 𝐸𝐻 ] be a hyphergraph. The dual hypergraph
𝐻* = [𝑉 𝐻*, 𝐸𝐻*] is a hypergraph, where 𝑉 𝐻* = 𝐸𝐻

and 𝐸𝐻* = {{𝑒 | 𝑒 ∈ 𝐸𝐻 ∧ 𝑣1 ∈ 𝑒}, {𝑒 | 𝑒 ∈
𝐸𝐻 ∧ 𝑣2 ∈ 𝑒}, . . . , {𝑒 | 𝑒 ∈ 𝐸𝐻 ∧ 𝑣𝑛 ∈ 𝑒}} for {𝑣1, 𝑣2, . . . , 𝑣𝑛} = 𝑉 𝐻

.

The edges of the hypergraph form the vertices of the dual hypergraph. For every vertex of a

hypergraph, the set of hyper edges that contain this vertex corresponds to one edge of the dual

hypergraph.

The hypergraph partitioning problem from Section 4.2.1 seeks interdisjoint sets of vertices connected

by as few hyperedges as possible. The equivalent problem in the dual hypergraph now aims to find the

smallest possible set of vertices to remove, such that the graph is no longer connected without this set

[22]. Such a set of vertices is called a minimal cut in graph theory. To approach this concept, we first

define the connectivity of a graph.

Definition 21 (𝑘-Connectivity, Vertex Connectivity [23]). Let 𝑘 ∈ N. A Graph 𝐺 = [𝑉,𝐸] is k-
connected, if |𝑉 | > 𝑘 and every subgraph 𝐺−𝑋 for 𝑋 ⊆ 𝑉 with |𝑋| < 𝑘 is connected. The maximum

𝑘 for that 𝐺 is 𝑘-connected, we call the vertex connectivity 𝜅(𝐺).

In other words, the 𝜅(𝐺) defines a number of vertices we need to remove to destroy the connectivity

of a graph. We can describe the set of vertices we need to remove more precisely as the minimal cut in

a graph.

Definition 22 (Minimal Cut). For a Graph 𝐺 = [𝑉,𝐸], a subset 𝑋 ⊆ 𝑉 is a minimal cut, if 𝐺−𝑋 is

not connected and |𝑋| = 𝜅(𝐺).

By removing a minimal cut, the connectivity of the graph is broken, and the graph decomposes into

components that are not connected to each other. A minimal cut of a hypergraph can be found by

computing a minimal cut of its 2-section. Any minimal cut in 𝐻 is also a minimum cut in [𝐻]2 and vice

versa.

Definition 23. 2-Section [22] Let 𝐻 = [𝑉 𝐻 , 𝐸𝐻 ] be a hypergraph. The 2-section of 𝐻 is an undirected

graph [𝐻]2 = (𝑉 𝐻 , 𝐸2) where 𝑒 ∈ 𝐸𝐻 : {𝑥, 𝑦} ⊂ 𝑒⇒ {𝑥, 𝑦} ∈ 𝐸2.
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Figure 5: Dual Incidence hypergraph and 2-section

Thus, the 2-section of a hypergraph 𝐻 contains all vertices of 𝐻 and connects two vertices, if there

is at least one hyperedge that contains those two vertices. In other words, the 2-section represents

which vertices of 𝐻 are connected to each other. As described in [24], a minimal cut can be found in

polynomial time.

To use this knowledge to generate instances for a modular Petri net, we first generate the dual

incidence hypergraph 𝐼* = [𝑉 𝐼* , 𝐸𝐼* ] to incidence hypergraph 𝐼 for a given Petri net system 𝑁 , as

defined in Definition 20. In 𝐼* the vertices correspond to the transitions of 𝑁 ; an edge represents a set

of adjacent transitions for a particular place. Second, we create the 2-section of 𝐼* as in Definition 23:

[𝐼*]2 = [𝑉 𝐼* , 𝐸*
2 ], where 𝑉 𝐼* = 𝑇 and {𝑡, 𝑡′} ∈ 𝐸2, iff (∙𝑡 ∪ 𝑡∙) ∩ (∙𝑡′ ∪ 𝑡′∙) ̸= ∅. Thus, the 2-section

[𝐼*]2 contains all transitions of 𝑁 as vertices. Two vertices are connected if the according transitions

share a place in their environments. A minimal cut 𝑋 of [𝐼*]2 gives a set of transitions, we need to

remove to disconnect the graph. This cut 𝑋 leads to a set of external edges in the incidence hypergraph

𝐸𝐼
𝑒𝑥𝑡𝑒𝑟𝑛; edges that lead from one partition of the incidence hypergraph to another partition of vertices.

Vertices correspond to places of the underlying Petri net system, thus, we get a partitioning {𝑃1, . . . , 𝑃ℓ}
of 𝑃 . With Lemma 1 we can deduce a modular structure which we can transform into a modular Petri

net. Notice, that the generated partitioning is not necessarily balanced.

Example 5. For incidence hypergraph 𝐼 in Figure 4b, we generate the dual incidence hypergraph

𝐼*, where the vertices correspond to the transitions of 𝑁 (cf. Figure 4a) and an edge represents a set

of transitions that share one place in their environment. For example the edge {𝑡1, 𝑡2} expresses the

fact, that 𝑡1 and 𝑡2 share one place, i.e. 𝑝1. They are connected with two distinct arcs, with is which

is evident from the fact that they also share two places, 𝑝2 in addition to 𝑝1. The same holds for the

transitions 𝑡3, 𝑡4 and 𝑡5. The 2-section of 𝐼* is presented in Figure 5b. Here, the number of shared places

is abstracted. Only the fact that two transitions are connected can be inferred from this representation.

The main issue with this approach is the lack of control over the number and size of instances.

A minimal cut separates the net into at least two components, but possibly more. Furthermore, no

formulation of a balancing criterion is possible, i.e. the size of the modules is not balanced; the focus

here is only on finding a minimum cut. Cutting the dual incidence hypergraph leads to optimal, i.e.

minimal sets of fusion transitions but possibly to the detriment of the size and number of modules.

5. Conclusion and Future Work

This paper provides approaches to automatically modularize Petri net systems. The main advantage in

the modular state space analysis arises from the fact that several instances of the same module share

the same state space if they have an analogous initial marking. Instances of the same module with

different initial markings are still likely to have overlapping state spaces. These properties can be

exploited during analysis to drastically reduce memory requirements. Therefore, the obvious approach

to modularization is to first attempt to find replications. To incentivize that the replications contain
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neither too little nor too much internal behavior, the FindReplications algorithm is controlled by a

parameter which gives an upper bound for module size. If the identified replications are too small, the

procedure can be restarted with a different set of seeds in an attempt to find another modularization

with bigger modules. A prototype implementation shows the validity of the proposed method for

models containing highly replicated structures, while yielding a starting point for improvements on

less suitable models. Further improvements of the conflict handling employed by the process, of which

several where suggested in 3.2, can push the point of termination further into the future, allowing the

algorithm to find larger replicated modules.

After replications have been identified, further modularization methods can be applied. This can be

used to further modularize both the remaining Petri net system and the replications themselves. If a

replicated module is further modularized, the results can be propagated to its other instances via the

isomorphic mappings, which are computed during the process. In addition to replication finding, three

other methods were presented.

The first method, based on t-invariants, is rather difficult to compare with the other methods, since it

was aimed at a different target. Here, the focus was on generating instances with nontrivial behavior.

For this purpose, the concept of super-disjointness was introduced in order to derive disjoint instances

from transition invariants. Those can be calculated efficiently. We also hope that the second method

presented, based on hypergraph partitioning, will have an impact on module size, and thus behavior

as well. Although this does not directly require the modules to have a certain size and structure, the

balancing criterion expects the modules to be generated in a similar size. However, the main goal of this

method was to minimize the interface behavior. This is achieved by finding a minimal ℓ-partitioning

of the incidence hypergraph, as which the Petri nets system is represented for this purpose. The

major drawback of this method is that the hypergraph partitioning problem is NP-hard and thus rather

heuristically generated solutions can be expected. The third method overcomes this disadvantage

and provides a way to efficiently generate minimal interfaces. The idea is to represent the Petri net

system as a dual hypergraph and then determine a minimal cut. This leads directly to a partition of

the places of the Petri net system and thus to a valid modularization. But here, too, we have to make

concessions. With this approach, the instances generated can be of arbitrary size. The minimal cuts

also may generate a variable number of instances. Based on the fact that the method of hypergraph

partitioning allows a balancing criterion, which controls both - the module size and the interface size -

we consider this method to be the most promising. Also supporting this is that hypergraph partitioning

can be performed well in parallel.

Future Work might be an implementation of the other methods to compare their performance. The

goal is to develop an implementation that offers different approaches to modularization. Those can

be applied depending on the structure of the given Petri net system, resulting in the best possible

modularization. This also includes further considerations of the structure. For example, net classes such

as state machine or marked graph could be identified as distinct instances, making the analysis more

efficient.

The quality of a modularization is not only a measure of how closely the modules match a modu-

larization performed by a model designer. Instead, it is also measured by the amount of state space

reduction gained during analysis of a modular Petri net compared to its unmodularized counterpart.

To evaluate our presented methods further in that regard, tool support is required to generate the full

modular state space. A quantitative way to measure result quality would open up a more in-depth way

of finding generally suitable parameters, as well as exploring ways to calculate fitting parameters from

the structure of the given Petri net model.
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