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Abstract
Elementary Object Systems (EOSs) are a representative of the nets-within-nets paradigm, where the
places of a system Petri Net (PN) can also host object nets in place of standard black tokens. Recently,
EOSs were put forward to naturally capture the notion of break-downs, under the let-it-crash approach,
even when lacking any extra domain knowledge: break-downs can affect only the computational units
modeled by object nets. The break-downs are represented by removing all tokens from the internal
markings of the object nets, so as to enforce a deadlock. In this setting, one can check whether a
property is robust, i.e., if it holds even in front of at most a given number of break-downs (possibly
infinitely many). The approach of induced deadlocks is reminiscent of lossy Petri Nets, where some
token (possibly all) may be non-deterministically lost. The partial loss of a marking can be seen as a more
fine-grained variant of break-down, where the EOS components partially degrade. However, checking
the decidability of reachability/coverability for EOSs with lossy steps has not been charted yet. In this
paper, we fully chart the decidability status of reachability and coverability in front of various forms
of lossiness: only at the object net level, only at the system net level, or at both. We do that for both
EOSs and the fragment of conservative EOSs. Our results show that almost all the studied problems are
undecidable. The only decidable cases regard conservative EOSs in front of any given positive number
of losses and EOSs in front of arbitrarily many losses, both at the system and object net level. The latter
result is especially interesting, since finitely many losses still result in undecidability.

Keywords
Nets-within-nets, Coverability, Reachability, Elementary Object Systems, Robustness

1. Introduction

Imperfections are natural in the context of message passing systems: imperfect communication
channels may spontaneously lose, duplicate, or shuffle carried messages or even deliver new
unwanted ones. When compared to their perfect counterpart, verification of imperfect systems
is usually easier. For example, reachability in Communicating Finite Automata (CFA) over
perfect (FIFO) channels is undecidable [1], but it is decidable when the channels are lossy [2]
(messages may be non-deterministically lost and never delivered) or unordered [3] (the message
sending and reception order may be different). The same principle generally holds even outside
CFA. Specifically, two counter machines can encode Turing Machines [4, 5] and suffer from
undecidable reachability. Instead, Mayr [6, 7] showed that if lossiness is applied to the counters
(the natural numbers stored in the counters may non-deterministically decrease), then reachabil-
ity becomes decidable; nevertheless, several other problems remain undecidable. Similar results
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are also available for Petri Nets (PNs): Bouajjani and Mayr [8] studied the impact of lossiness on
the model checking problem of Vector Addition Systems with States (VASS, equivalent to Petri
Nets) against fragments of the Modal 𝜇-Calculus. In this case, while the EF (and EG) fragment
of the UB language (which includes negation and labeled variants of the CTL next operator) is
undecidable for VASS [9], it is decidable for lossy VASS.

Imperfections may be naturally interpreted as perturbations of the system configurations
and, thus, verification of imperfect systems can be studied under the lens of robustness [10, 11],
i.e., checking whether a property holds if at most 𝑘 perturbations occur, for some given 𝑘 ď |N|.
Recently, Köhler-Bussmeier and Capra [11] put forward the nets-within-nets paradigm [12] to
naturally specify robustness properties in a Multi Agent System (MAS) context. Specifically,
in the PN setting, black tokens that mark a fixed set of places are moved around by a fixed set
of transitions. In contrast, in nets-within-nets, the tokens could additionally be PN objects
themselves. Thus, even without further expert information on the net design, these object
tokens naturally model agents, which might be affected by perturbations. In [11], perturbations
follow a drastic let it crash approach, causing agent break-downs. Technically, this is achieved
by enforcing a deadlock in the object token. However, nets-within-nets with less disruptive
perturbations may still be suitable to model perturbed MAS, where the agents may suffer
imperfections even without completely breaking down.

In this paper, we lay the foundations for our ongoing project on formal verification of
imperfect nets-within-nets. We focus on Elementary Object Systems (EOSs) [13], which are a
simple nets-within-nets model, yet featuring most of the important ingredients. Moreover, they
can be generalized to more sophisticated models, such as full-fledged Object Systems [12]. This
makes EOSs an excellent candidate for our study. Our key contributions are:

1. We formally define three forms of lossiness in the EOS setting, corresponding to the
nesting levels of the tokens.

2. We provide examples illustrating the relevance of these lossiness relations and formalize
lossy reachability/coverability problems on them.

3. We completely chart the decidability status of these problems (see Tab. 1).
Standard reachability/coverability problems have been studied in [13], but only in a perfect
setting, i.e., without lossiness. Preliminary results on EOS robustness were put forward in
[11]. However, they do not address the problem of perturbations on reachability/coverability
in a systematic way. To the best of our knowledge, ours is the first work that attempts a full
formal classification of EOS reachability/coverability with lossy perturbations. As discussed
above, the concept of lossiness is well established in the PN literature; the most relevant works
are [8, 7, 14]. However, their approach uniformly interleaves each standard step with lossiness
and, thus, does not properly address robustness, where also the number of lossy events is of
interest. Moreover, when compared to PNs, EOSs offer more room for lossiness because of the
nesting of tokens. This may significantly complicate the picture. Instead, we consider the full
spectrum of lossiness, from one occurrence to infinitely many, at all nesting levels.

The paper outline is as follows. Preliminaries, including EOSs, are in Sec. 2. Lossy EOS
relations and problems are in Sec. 3. In Sec. 4 and Sec. 5 we study theoretical aspects of lossy
reachability/coverability problems. In Sec. 6, Sec. 7, and Sec. 8, we prove several decidability/un-
decidability results for reachability/coverability. We draw our conclusions in Sec. 9.
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2. Preliminaries

2.1. Binary Relations

Let us fix some notation for binary relations. Given a set 𝑋 , the identity relation id𝑋 on 𝑋 is
the relation tp𝑥, 𝑥q P 𝑋2 | 𝑥 P 𝑋u. Given a binary relation ă on 𝑋 , we denote its reflexive
closure ă Yid𝑋 by ď and its anti-reflexive part ă zid𝑋 by ň. We use the symbol ą to denote
the relation such that, 𝑥 ą 𝑦 iff 𝑦 ă 𝑥. For example, if ă is transitive, then ď and ě are
transitive and reflexive (i.e., quasi orders). The same applies to the symbols ă and ą and their
closures. From now on, we use ă to denote arbitrary transitive relations, and ă (possibly with
a subscript) to represent fixed transitive relations, e.g., the standard order of N.

2.2. Multisets

A multiset 𝑚 on a set 𝐷 is a mapping 𝑚 : 𝐷 Ñ N. The support of 𝑚 is the set Suppp𝑚q “ t𝑖 |

𝑚p𝑖q ą 0u. The multiset 𝑚 is finite if its Suppp𝑚q is finite. The family of all multisets over 𝐷
is denoted by 𝐷‘. We denote a finite multiset 𝑚 by enumerating the elements 𝑑 P Suppp𝑚q

exactly 𝑚p𝑑q times in between tt and uu, where the ordering is irrelevant. For example, the
finite multiset 𝑚 : t𝑝, 𝑞u ÝÑ N such that 𝑚p𝑝q “ 1 and 𝑚p𝑞q “ 2 is denoted by tt𝑝, 𝑞, 𝑞uu.
The empty multiset ttuu (with empty support) is also denoted by H. On the empty domain
𝐷 “ H the only defined multiset is H; to stress this out we denote this special case, i.e., the
empty multiset over the empty domain, by 𝜀. Given two multisets 𝑚1 and 𝑚2 on 𝐷, we
define 𝑚1 ` 𝑚2 and 𝑚1 ´ 𝑚2 on 𝐷 as follows: p𝑚1 ` 𝑚2qp𝑑q “ 𝑚1p𝑑q ` 𝑚2p𝑑q and
p𝑚1 ´ 𝑚2qp𝑑q “ 𝑚𝑎𝑥p𝑚1p𝑑q ´ 𝑚2p𝑑q, 0q. Similarly, for a finite set 𝐼 of indices,

ř

𝑖P𝐼tt𝑑𝑖uu

denotes the multiset 𝑚 over
Ť

𝑖P𝐼t𝑑𝑖u such that 𝑚p𝑑q “ |t𝑖 P 𝐼 | 𝑑𝑖 “ 𝑑u| for each 𝑑 P 𝐷.
With a slight abuse of notation, we omit the double brackets, i.e.,

ř

𝑖P𝐼tt𝑑𝑖uu “
ř

𝑖P𝐼 𝑑𝑖. If
𝐼 “ t1, . . . , 𝑛u, then

ř

𝑖P𝐼 𝑑𝑖 “
ř𝑛

𝑖“1 𝑑𝑖. Finally, we write 𝑚1 Ď 𝑚2 if, for each 𝑑 P 𝐷, we
have 𝑚1p𝑑q ď 𝑚2p𝑑q.

2.3. Petri Nets

We assume that the reader is familiar with standard PNs. Here we just fix the notation (see,
e.g., [15]). We denote a PN 𝑁 as a tuple 𝑁 “ p𝑃, 𝑇, 𝐹 q, where 𝑃 is a finite place set, 𝑇 is a
finite transition set, and 𝐹 is a flow function. Where useful, we equivalently interpret 𝐹 via the
functions pre𝑁 : 𝑇 Ñ p𝑃 Ñ Nq where pre𝑁 p𝑡qp𝑝q “ 𝐹 p𝑝, 𝑡q and post𝑁 : 𝑇 Ñ p𝑃 Ñ Nq

where post𝑁 p𝑡qp𝑝q “ 𝐹 p𝑡, 𝑝q. For example, a transition 𝑡 P 𝑇 is enabled on a marking 𝜇 (finite
multiset of places) if, for each place 𝑝 P 𝑃 , we have pre𝑁 p𝑡qp𝑝q ď 𝜇p𝑝q. Its firing results in the
marking 𝜇1 such that 𝜇1p𝑝q “ 𝜇p𝑝q ´ pre𝑁 p𝑡qp𝑝q ` post𝑁 p𝑡qp𝑝q, for each 𝑝 P 𝑃 . We denote
markings according to multiset notation. For example, the marking 𝜇 that places one token on
place 𝑝 and two on place 𝑞 is denoted by tt𝑝, 𝑞, 𝑞uu. The empty marking is denoted by H. We
also work with the special empty PN ■ “ pH,H,Hq, whose only marking is 𝜀.
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2.4. Elementary Object Systems

An EOS [13] is, intuitively, a PN (called system net) whose tokens carry an internal PN (called
object net), taken from a finite set 𝒩 . Each place can host only one fixed type of internal PN.
The EOS fires events, which synchronize a transition 𝜏 in the system net and multisets 𝜃p𝑁q of
transitions in the object nets 𝑁 consumed by 𝜏 .

Definition 1 (EOS). An EOS E is a tuple E “ x�̂� ,𝒩 , 𝑑,Θy where:
1. �̂� “ x�̂� , 𝑇 , �̂� y is a PN called system net; 𝑇 contains a special set 𝐼𝐷𝑃 “ t𝑖𝑑𝑝 | 𝑝 P

�̂� u Ď 𝑇 of idle transitions such that, for each distinct 𝑝, 𝑞 P �̂� , we have �̂� p𝑝, 𝑖𝑑𝑝q “

�̂� p𝑖𝑑𝑝, 𝑝q “ 1 and �̂� p𝑞, 𝑖𝑑𝑝q “ �̂� p𝑖𝑑𝑝, 𝑞q “ 0.
2. 𝒩 is a finite set of PNs, called object PNs, such that ■ P 𝒩 and if

p𝑃1, 𝑇1, 𝐹1q, p𝑃2, 𝑇2, 𝐹2q P 𝒩 Y �̂� ,1 then 𝑃1 X 𝑃2 “ H and 𝑇1 X 𝑇2 “ H.
3. 𝑑 : �̂� Ñ 𝒩 is called the typing function.
4. Θ is a finite set of events where each event is a pair p𝜏 , 𝜃q, where 𝜏 P 𝑇 and 𝜃 : 𝒩 Ñ

Ť

p𝑃,𝑇,𝐹 qP𝒩 𝑇‘, such that 𝜃pp𝑃, 𝑇, 𝐹 qq P 𝑇‘ for each p𝑃, 𝑇, 𝐹 q P 𝒩 and, if 𝜏 “ 𝑖𝑑𝑝,
then 𝜃p𝑑p𝑝qq ‰ H.

Since the nets in 𝒩 are disjoint, we can denote each event x𝜏 , 𝜃y, as a pair x𝜏 ,𝑀y for a
multiset 𝑀 over

Ť

p𝑃,𝑇,𝐹 qP𝒩 𝑇 such that 𝑀p𝑡q “ 𝜃p𝑁qp𝑡q where 𝑁 “ p𝑃, 𝑇, 𝐹 q P 𝒩 and
𝑡 P 𝑇 . EOS tokens are nested, i.e., each token at a system place 𝑝 carries a PN marking 𝜇 for the
object net 𝑑p𝑝q. EOS markings, also called nested markings, are multisets of nested tokens. With
a slight abuse of notation, we denote markings omitting double curly brackets from multiset
notation.

Definition 2 (Nested Markings). Let E “ x�̂� ,𝒩 , 𝑑,Θy be an EOS. The set of nested tokens
𝒯 pEq of E is the set

Ť

p𝑃,𝑇,𝐹 qP𝒩 p𝑑´1p𝑃, 𝑇, 𝐹 q ˆ 𝑃‘q. The set of nested markings ℳpEq of E
is 𝒯 pEq‘. Given 𝜆, 𝜌 P ℳpEq, we say that 𝜆 is a sub-marking of 𝜇 if 𝜆 Ď 𝜇.

Note that 𝜆 is a sub-marking of 𝜇 iff there is some nested marking 𝜇1 such that 𝜇 “ 𝜆 ` 𝜇1.
EOSs inherit the graphical representation of PNs with the provision that we represent nested
tokens via a dashed line from the system net place to an instance of the object net where the
internal marking is represented in the standard PN way. However, if the nested token is x𝑝, 𝜀y

for a system net place 𝑝 of type ■, we represent it with a black-token ■ on 𝑝. If a place 𝑝 hosts
𝑛 ą 2 black-tokens, then we represent them by writing 𝑛 on 𝑝. Each event x𝜏 , 𝜃y is depicted by
labeling 𝜏 by x𝜃y (possibly omitting double curly brackets). If there are several events involving
𝜏 , then 𝜏 has several labels.

Example 1. Fig. 1 depicts the system net �̂� (the idle transitions are omitted) and object net
drone of an EOS E “ x�̂� ,𝒩 , 𝑑,Θy modeling a drone that (1) moves between a base and a field,
(2) has two batteries, (3) consumes one charge-unit per battery per movement, and (4) charges
its batteries by multiples of two charge-units when at base. Technically, 𝒩 “ tdrone,■u

(even if ■ is unused), 𝑑pbaseq “ 𝑑pfieldq “ drone, and Θ synchronizes takeOff and land

(respectively charge) in �̂� with move (charge1 and charge2) in drone. Formally, Θ “

txtakeOff, ttmoveuuy, xland, ttmoveuuy, xcharge, ttcharge1uuy, xcharge, ttcharge2uuyu.

1This way, the system net and the object nets are pairwise distinct.
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Figure 1: EOS in Example 1 with marking ttxdrone, ttbatt1, batt1uuyuu. The idle transitions are
omitted.

The marking 𝜇 “ xdrone, ttbatt1, batt1uuy represents a single partially charged drone at
base, with two charge units in the first battery.

When firing an event x𝜏, 𝜃y, nested tokens in the system net are consumed according to the
preconditions of 𝜏 in the standard PN way. At the same time, for each object net 𝑁 , the inner
tokens are merged so as to obtain a PN marking 𝜇p𝑁q for 𝑁 (possibly empty). Then, transitions
in 𝜃p𝑁q are fired in the standard PN way obtaining markings 𝜇1p𝑁q. Next, nested markings
with empty inner markings are produced in the system net according to the postconditions of
𝜏 . Finally, the markings 𝜇1p𝑁q are non-deterministically distributed among the empty nested
tokens, according to the typing function. To be fired, the event must be enabled at both the
system and at the object net level. This is captured by the enabledness condition, which makes
use of projection operators at the system (Π1) and at the object net level (Π2

𝑁 for each 𝑁 P 𝒩 ).

Definition 3 (Projection Operators). Let E be an EOS x�̂� ,𝒩 , 𝑑,Θy. The projection operators
Π1 maps each nested marking 𝜇 “

ř

𝑖P𝐼x�̂�𝑖,𝑀𝑖y for E to the PN marking
ř

𝑖P𝐼 �̂�𝑖 for �̂� . Given
an object net 𝑁 P 𝒩 , the projection operators Π2

𝑁 maps each nested marking 𝜇 “
ř

𝑖P𝐼x�̂�𝑖,𝑀𝑖y

for E to the PN marking
ř

𝑗P𝐽 𝑀𝑗 for 𝑁 where 𝐽 “ t𝑖 P 𝐼 | 𝑑p�̂�𝑖q “ 𝑁u.

To define the enabledness condition, we need the following notation. We set pre𝑁 p𝜃p𝑁qq “
ř

𝑖P𝐼 pre𝑁 p𝑡𝑖q where p𝑡𝑖q𝑖P𝐼 is an enumeration of 𝜃p𝑁q counting multiplicities. We analogously
set post𝑁 p𝜃p𝑁qq “

ř

𝑖P𝐼 post𝑁 p𝑡𝑖q.

Definition 4 (Enabledness Condition). Let E be an EOS x�̂� ,𝒩 , 𝑑,Θy. Given an event 𝑒 “

x𝜏 , 𝜃y P Θ and two markings 𝜆, 𝜌 P ℳpEq, the enabledness condition Φpx𝜏 , 𝜃y, 𝜆, 𝜌q holds iff

Π1p𝜆q “ pre�̂� p𝜏q ^ Π1p𝜌q “ post�̂� p𝜏q ^ @𝑁 P 𝒩 , Π2
𝑁 p𝜆q ě pre𝑁 p𝜃p𝑁qq ^

@𝑁 P 𝒩 , Π2
𝑁 p𝜌q “ Π2

𝑁 p𝜆q ´ pre𝑁 p𝜃p𝑁qq ` post𝑁 p𝜃p𝑁qq

The event 𝑒 is enabled with mode p𝜆, 𝜌q on a marking 𝜇 iff Φp𝑒, 𝜆, 𝜌q holds and 𝜆 Ď 𝜇. Its firing

results in the step 𝜇
p𝑒,𝜆,𝜌q
ÝÝÝÝÑ 𝜇 ´ 𝜆 ` 𝜌.

Example 2. In the setting of the EOS E and marking 𝜇 in Ex. 1 (Fig. 1), the event
xcharge, ttcharge1uuy is enabled on 𝜇 “ xbase, ttbatt1, batt1uuy with mode p𝜆, 𝜌q where
𝜆 “ 𝜇 and 𝜌 “ xbase, ttbatt1, batt1, batt1, batt1uuy. Since 𝜆 “ 𝜇, its firing results in the

step 𝜇
x𝑒,𝜆,𝜌y
ÝÝÝÝÑ 𝜌. Instead, the event xcharge, ttcharge2uuy is enabled on 𝜇 with mode p𝜆, 𝜌1q

where 𝜌1 “ xbase, ttbatt1, batt1, batt2, batt2uuy. Its firing results in the step 𝜇
x𝑒,𝜆,𝜌1y
ÝÝÝÝÑ 𝜌1.

These are the only enabling modes for xcharge, ttcharge1uuy and xcharge, ttcharge2uuy

on 𝜇. No other event is enabled on 𝜇, irrespective of the mode.
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The reachability problem for EOSs is defined in the usual way, i.e., whether there is a run
(sequence of event firings) from an initial marking 𝜇0 to a target marking 𝜇𝑓 . Also coverability
definition is standard, but with respect to the order ď𝑓 (denoted by ĺ in [13]; see Def. 6 below)
that allows one to add both (1) tokens in the inner markings of available nested tokens (2) or
nested tokens with some internal marking on the system net places. It is known that both these
problems are undecidable (Th. 4.3 in [13]. However, coverability is decidable on the fragment of
conservative EOSs (cEOSs; Th. 5.2 in [13]), where, for each system net transition 𝑡, if 𝑡 consumes
a nested token on a place of type 𝑁 , then it also produces at least one token on a place of the
same type 𝑁 . Nevertheless, reachability remains undecidable (Th. 5.5 in [13]).

Definition 5 (cEOS). A cEOS is an EOS E “ x�̂� ,𝒩 , 𝑑,Θy with �̂� “ x�̂� , 𝑇 , �̂� y where, for all
�̂� P 𝑇 and �̂� P Suppppre�̂� p�̂�qq, there exists �̂�1 P Suppppost�̂� p�̂�qq such that 𝑑p�̂�q “ 𝑑p�̂�1q.

3. Problem

We study reachability and coverability of EOSs (cEOSs) affected by several forms of lossiness.
First, we define three lossiness relations and show their relevance. Second, we formally define
the problem we study in the following sections.

3.1. Lossy EOSs

We study EOSs (cEOSs) affected by lossiness, where nested markings may non-deterministically
lose their tokens according to a quasi order, called lossiness relation. Lossiness can occur (1) at
the object level, if lossiness removes only tokens from the inner markings of nested tokens,
(2) at the system level, if lossiness removes whole nested tokens only, and (3) at both levels
(the full EOS), if both whole nested tokens and/or regular tokens from the remaining nested
tokens are removed. These levels are captured, respectively, by the lossiness quasi orders ď𝑜

(object-lossiness), ď𝑠 (system-lossiness), and ď𝑓 (full-lossiness) as defined next.

Definition 6. Given an EOS E and two nested markings 𝜇 and 𝜇1 for E, we have (1) 𝜇 ď𝑠 𝜇
1 if

𝜇 Ď 𝜇1 or, equivalently, there is some 𝜇2 such that 𝜇1 “ 𝜇 ` 𝜇2, (2) 𝜇 ď𝑜 𝜇1 if we can write
𝜇 “

ř

𝑖P𝐼x�̂�𝑖,𝑀𝑖y and 𝜇1 “
ř

𝑖P𝐼x�̂�𝑖,𝑀
1
𝑖y and, for each 𝑖 P 𝐼 , 𝑀𝑖 Ď 𝑀 1

𝑖 , and (3) 𝜇 ď𝑓 𝜇1 if
there is some nested marking 𝜇2 such that 𝜇 ď𝑜 𝜇

2 ď𝑠 𝜇
1.

Example 3. Consider the marking 𝜇 “ xbase, ttbatt1, batt1uuy in Ex. 1. By remov-
ing 1 or 2 charge units we obtain the markings 𝜇1 “ xbase, ttbatt1uuy and 𝜇2 “

xbase,Hy. By adding to 𝜇 a discharged token at place field, we obtain the 𝜇1 “

xbase, ttbatt1, batt1uuy ` xfield,Hy. By removing the drone from 𝜇, we obtain 𝜇2 “ H.
We have, among the others, 𝜇1 ě𝑠 𝜇, 𝜇 ě𝑜 𝜇1 ě𝑜 𝜇2, 𝜇1 ě𝑓 𝜇, 𝜇1 ě𝑓 𝜇2, and 𝜇1 ě𝑓 𝜇2.

The relation ď𝑓 coincides with ĺ in [13]. Moreover, the order of ď𝑜 and ď𝑠 is irrelevant in
ď𝑓 definition (Rem. 1 below). An EOS (cEOS) suffering from object-, system-, or full-lossiness
is called, respectively, object-, system-, or full-lossy EOS (cEOS) or, simply lossy EOS (cEOS).

These lossiness relations are relevant to model non-deterministic phenomena not directly
captured by the EOS. For example, in the context of Ex. 1, object-lossiness results in the non-
deterministic loss of tokens at places batt1 and batt2, which models the partial/total discharge
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Figure 2: Object net drone2 with one fully charged 2-bounded battery and a fully discharged one.

of drone batteries because of non-modeled drone movements within the base or the field, or
because of other unexpected phenomena. In a slightly more complex EOS, with intermediate
places capturing the flight from base to field and vice-versa, object-lossiness captures also
the non-deterministic usage of extra charge-units because of contingencies like strong winds.
Instead, system lossiness results in the loss of nested tokens modeling drones. This captures the
loss of drones because of, e.g., break-downs, wrong flight paths, or seizure from higher priority
processes (assuming the EOS is a module in a more complex system). Full-lossiness capture both
aspects. Similar interpretations can be given each time the (nested) tokens represent resources,
like charge-units or drones in Ex. 1. These scenarios are common in the literature (see, e.g.,
water- and fire-units in [12] and raw-resources in production plants in [16]).

Lossy EOSs are relevant also to capture partial/total internal break-downs. This happens,
e.g., when the tokens model resource containers instead of resources themselves. For example,
after modifying the drone object net into the object net drone2 in Fig. 2,2 each regular token
represents a battery with bounded capacity. Its charge level is captured by its position in the
object net. Consequently, object-lossiness represents the break-down of internal components,
in this case the battery. The loss of all batteries results in drone deadlock (cf. [11]). This case is
analogous to the application of system-lossiness discussed above, since drones can be seen as
internal components of a higher level process (captured by the whole EOS): the loss/break-down
of all drones results in system deadlock. More in general, this interpretation applies when the
EOS uses conservative system and/or object nets.3 Also these scenario are common in the
literature (see, e.g., the finite control of robots [13], the internal state of fire-fighters in [12], and
customers and cars in [17]).

3.2. Lossy-reachability/coverability

We study the problem of ℓ-reachability/coverability, i.e., whether a target nested marking can be
reached/covered from an initial one via a run suffering at most ℓ lossy steps, where ℓ P NYt𝜔u.4

These problems are relevant to study EOS robustness in front of losses/break-downs.

Definition 7. Given a transition system TS “ p𝑉,Ñq, a transitive relation ă on 𝑉 , and an
ℓ P N Y t𝜔u, a pă, ℓq-run in TS is a run whose steps are labeled either by Ñ, called standard
steps, or by ą, called ă-lossy or lossy steps, and at most ℓ steps are lossy. The set of pă, ℓq-runs

2Also the events have to be modified accordingly, i.e., for each 𝑛 P t0, 1, 2u, by synchronizing takeOff and
landing with discharge n object net transitions, and charge with the charge n object net transitions.

3A PN is conservative when each transition consumes and produces the same number of tokens.
4Recall that 𝜔 is the first limit ordinal, whose cardinality is |N|, i.e., the same as N.
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from 𝜇0 is denoted by Runsℓpă, 𝜇0q. A pă, ℓq-run is called ℓ1-strong if it contains exactly ℓ1

lossy steps.

The definition also applies to reflexive or anti-reflexive transitive relations, i.e., we can also
talk about pĺ, ℓq-runs and pň, ℓq-runs. We denote a labeled step from 𝜇 to 𝜇1 by 𝜇 ⇝ 𝜇1.
To stress that the step is labeled by Ñ or by ă, we denote it by 𝜇 Ñ 𝜇1 or by 𝜇 ą 𝜇1,
respectively. Whenever we have a lossy run 𝜎 from 𝜇 to 𝜇1, we write 𝜇 ⇝𝜎 𝜇1. The pă, ℓq-
reachability/coverability problems ask whether a target can be reached/covered under ă from
an initial configuration with at most ℓ ă-lossy steps.

Definition 8 (pă, ℓq-reachability/coverability for EOSs (cEOSs)). Let ℓ P N Y t𝜔u.
Input: An EOS (cEOS) 𝐸, an initial marking 𝜇0 and a target marking 𝜇1 for 𝐸.
Output of reachability: Is there a run 𝜎 P Runsℓpă, 𝜇0q such that 𝜇0 ⇝𝜎 𝜇1?
Output of coverability: Is there a run 𝜎 P Runsℓpă, 𝜇0q such that 𝜇0 ⇝𝜎 𝜇 ě 𝜇1 for some 𝜇?

We call these problems lossy-problems. A ă-lossy-problem is a lossy-problem under ă. The
degree of a pă, ℓq-reachability/coverability problem is ℓ. If ℓ “ 0 we obtain standard reachabili-
ty/coverability, i.e., over perfect runs. Our objective is to fully chart the decidability status of
the lossy-problems for ď𝑓 , ď𝑠, and ď𝑜. Previous results for EOSs are available only for ℓ “ 0
and the relation ď𝑓 . Consequently, they do not inform us on the status of the other (proper)
lossy-problems, whose study still requires a careful and in-depth analysis.

4. Coincident Problems

The well known notion of compatibility from WSTS has a strong impact on ℓ-reachability
problems. In fact, we now show that all these problems, for ℓ ě 1 (including 𝜔) and any quasi
order ĺ, collapse to pĺ, 0q-coverability if and only if the lossiness relation is compatible.

Lemma 1. Each yes-instance of pĺ, ℓq-reachability is also a yes instance of pĺ, ℓq-coverability.

Proof. Immediate consequence of reflexivity of the quasi order ĺ.

Lemma 2. Each yes-instance of pĺ, ℓq-coverability is also a yes instance of pĺ, ℓ`1q-reachability,
if ℓ is finite, and a yes-instance of pĺ, 𝜔q-reachability, if ℓ “ 𝜔.

Proof. If 𝜇1 is coverable from 𝜇0, then there is a pĺ, ℓq-run 𝜎 from 𝜇0 to 𝜇 and 𝜇 ľ 𝜇1. Take the
run 𝜎1 as the run 𝜎 followed by the lossy step 𝜇 ľ 𝜇1. Thus, 𝜎1 reaches 𝜇1 from 𝜇0. Moreover,
if ℓ is finite, then 𝜎1 is a pĺ, ℓ ` 1q-run and, otherwise, 𝜎1 is a pĺ, 𝜔q-run.

Corollary 1. pĺ, 𝜔q-reachability and pĺ, 𝜔q-coverability coincide.

Note that Cor. 1 is consistent with other lossy PN models (see, e.g., [8]).

Lemma 3. Each yes-instance of pĺ, ℓq-reachability or pĺ, ℓq-coverability is also a yes instance
of pĺ, 𝜔q-reachability or pĺ, 𝜔q-coverability, respectively.

Proof. Immediate consequence of the fact that each pĺ, ℓq-run is also a pĺ, 𝜔q-run.
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Summarising, for each quasi order ĺ, the ĺ-lossy-problems form a hierarchy ordered accord-
ing to inclusion of the yes-instance sets. For each 𝑖 P N, the 𝑖-th hierarchy level for ĺ is the
pĺ, 𝑖{2q-reachability problem, if 𝑖 is even, and the pĺ, p𝑖´1q{2q-coverability problem, if 𝑖 is odd.
We say that the hierarchy collapses if all the pĺ, ℓq-reachability and pĺ, ℓq-coverability problems
with ℓ ě 1 coincide with (standard) pĺ, 0q-coverability or, equivalently, if the yes-instances of
pĺ, 𝜔q-reachability are also yes-instances of pĺ, 0q-coverability. The next lemma states that
this latter property is equivalent to compatibility, that is, if 𝜇1 ľ 𝜇2 Ñ 𝜇3, then there is a 𝜇4

such that 𝜇1 Ñ˚ 𝜇4 ľ 𝜇3.

Lemma 4. ĺ is compatible iff each yes-instance of pĺ, 𝜔q-reachability is also a yes-instance of
pĺ, 0q-coverability.

Proof. Assume that ĺ is compatible. If 𝑣1 is reachable from 𝑣0 via an 𝜔-run 𝜎, then, without
loss of generality, we can assume that 𝜎 is finite and, thus, it is a ℓ-run for some finite ℓ. By
compatibility, we can push, one by one, the finitely many lossy steps in 𝜎 at the end of the run,
obtaining an ℓ-run 𝜎1 (possibly with different length) where all lossy steps occur at the end, i.e.,
𝜎1 is of the form 𝑣0 Ñ˚ 𝑤1 ľ 𝑤2 ¨ ¨ ¨ ľ 𝑤ℓ ľ 𝑣1. By transitivity of ľ, there is also a run 𝜎2 of
the form 𝑣0 Ñ˚ 𝑤1 ľ 𝑣1, which witness that 𝑣1 is ĺ-coverable from 𝑣0. Vice-versa, assume
that each yes-instance of pĺ, 𝜔q-reachability is also a yes-instance of pĺ, 0q-coverability. If
𝑣0 ľ 𝑣1 Ñ 𝑣2, then 𝑣2 is pĺ, 1q-reachable from 𝑣0, as well as pĺ, 𝜔q-reachable. Thus, 𝑣2 is also
coverable from 𝑣0, i.e., 𝑣0 Ñ˚ 𝑣1 ľ 𝑣2.

Corollary 2. The hierarchy of lossy-problems induced by ĺ collapses iff ĺ is compatible.

Note that Cor. 2 can be generalized to other lossy models, since its proof does not take
advantage of the technical details of lossy EOSs, but relies only on a compatible quasi order.
This fact has some immediate consequence on the lossy-problems we are studying. In fact, it

is known that ď𝑓 is strong compatible on cEOSs, that is, if 𝜇1 ě𝑓 𝜇2
x𝑒,𝜆,𝜌y
ÝÝÝÝÑ 𝜇3, then there is

some 𝜇4 such that 𝜇1
x𝑒,𝜆,𝜌y
ÝÝÝÝÑ 𝜇4 (Lemma 5.1 in [13]). Thus, the hierarchy for full-lossy cEOSs

collapses. Note that ď𝑓 is not compatible over EOSs. This helps to prove the undecidability of
reachability and coverability over them (cf. Th.4.3 in [13]). Since pď𝑓 , 0q-coverability for cEOSs
is decidable (Th. 5.2 in [13]), we obtain the following theorem.

Theorem 1. For ℓ ě 1, pď𝑓 , ℓq-reachability and pď𝑓 , ℓq-coverability for cEOSs are decidable.

Instead ď𝑠 is compatible for both EOSs and cEOSs, as shown next.

Lemma 5. If p𝜆, 𝜌q enables the event 𝑒 on 𝜇 and 𝜇1 ě𝑠 𝜇, then p𝜆, 𝜌q enables the event 𝑒 also on
𝜇1.

Proof. If p𝜆, 𝜌q enables the event 𝑒 on 𝜇, then the enabledness formula Φp𝑒, 𝜆, 𝜌q holds and
𝜆 ď𝑠 𝜇. Since 𝜇 ď𝑠 𝜇

1, by transitivity of ď𝑠, we have that 𝜆 ď𝑠 𝜇
1. Thus, p𝜆, 𝜌q enables 𝑒 on

𝜇1.

Lemma 6. ď𝑠 is strong compatible on EOSs.
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𝜇1

𝜇2

𝜇4 “ 𝜇1 ´ 𝜆 ` 𝜌

𝜇3 “ 𝜇2 ´ 𝜆 ` 𝜌𝜇2 ` Δp𝜇3q

ě
𝑓 𝜇1

4 “ 𝜇3 ` Δp𝜇3q “ 𝜇2 ` Δp𝜇3q ´ 𝜆 ` 𝜌

ě
𝑜

ě𝑠

ě𝑜

ď𝑠

x𝑒, 𝜆, 𝜌y

x𝑒, 𝜆, 𝜌y

x𝑒, 𝜆, 𝜌y

Figure 3: Depiction of proof of Th. 7.

Proof. If 𝜇1 ě𝑠 𝜇2
x𝑒,𝜆,𝜌y
ÝÝÝÝÑ 𝜇3, then 𝜆 ď𝑠 𝜇2, 𝜇3 “ 𝜇2 ´ 𝜆 ` 𝜌, and there is some Δp𝜇2q such

that 𝜇1 “ 𝜇2 `Δp𝜇2q. Moreover, since p𝜆, 𝜌q enables 𝑒 on 𝜇2, then, by Lemma 5, p𝜆, 𝜌q enables

𝑒 on 𝜇1. Thus, there is a 𝜇4 such that 𝜇1
x𝑒,𝜆,𝜌y
ÝÝÝÝÑ 𝜇4. Moreover, by EOS semantics and the fact

that 𝜆 ď𝑠 𝜇2, we have that 𝜇4 “ 𝜇1 ´ 𝜆 ` 𝜌 “ 𝜇2 ` Δp𝜇2q ´ 𝜆 ` 𝜌 ě𝑠 𝜇2 ´ 𝜆 ` 𝜌 “ 𝜇3.

Theorem 2. The hierarchies for system-lossy EOSs and system-lossy cEOSs collapse.

Thus, the study of system-lossiness on EOSs and cEOSs boils down to pď𝑠, 0q-coverability
for EOSs and cEOSs (we study them in Th. 6 below). Finally, we show that ď𝑜 is compatible on
cEOSs. The following preliminary remarks can be easily proved.

Remark 1. ď𝑓“ď𝑜 ˝ ď𝑠“ď𝑠 ˝ ď𝑜.

Remark 2. Π1p𝜇1q ` Π1p𝜇2q “ Π1p𝜇1 ` 𝜇2q. If 𝜇1 ď𝑜 𝜇2, then Π1p𝜇1q “ Π1p𝜇2q.

Lemma 7. ď𝑜 is strong compatible on cEOSs.

Proof. The proof is depicted in Fig. 3. If 𝜇1 ě𝑜 𝜇2
x𝑒,𝜆,𝜌y
ÝÝÝÝÑ 𝜇3, then, since ď𝑜Ďď𝑓 and ď𝑓 is

strong compatible on cEOSs (Th. 5.1 in [13]), there is some 𝜇4 such that 𝜇1
x𝑒,𝜆,𝜌y
ÝÝÝÝÑ 𝜇4 ě𝑓 𝜇3.

Since ď𝑓“ď𝑠 ˝ ď𝑜 (Rem. 1), there is also some 𝜇1
4 such that 𝜇3 ď𝑠 𝜇1

4 ď𝑜 𝜇4. Thus, there
is some Δp𝜇3q such that 𝜇1

4 “ 𝜇3 ` Δp𝜇3q and, by Rem. 2, we have Π1p𝜇1
4q “ Π1p𝜇4q.

Note that, by EOS semantics, 𝜇1 and 𝜇2 ` Δp𝜇3q have respectively the predecessors 𝜇4 “

𝜇1 ´𝜆`𝜌 and 𝜇1
4 “ 𝜇2 `Δp𝜇3q ´𝜆`𝜌. By some simple algebra,5 Π1p𝜇1q “ Π1p𝜇2 `Δp𝜇3qq.

However, again by Rem. 2, since 𝜇2 ď𝑜 𝜇1, we have Π1p𝜇1q “ Π1p𝜇2q and, summarising,
Π1p𝜇2q ` Π1pΔp𝜇3qq “ Π1p𝜇2 ` Δp𝜇3qq “ Π1p𝜇1q “ Π1p𝜇2q. Thus, Π1pΔp𝜇3qq “ H.
Consequently, Δp𝜇3q “ H and 𝜇4 ě𝑜 𝜇

1
4 “ 𝜇3 ` Δp𝜇3q “ 𝜇3.

Theorem 3. The hierarchy for object-lossy cEOSs collapses.

Thus, the study of object-lossiness on cEOSs boils down to pď𝑜, 0q-coverability (we study this
problem in Th. 5). Summarising, compatibility considerably simplifies the landscape of lossy
problems for lossy cEOSs and for system-lossy EOSs. Specifically, for cEOSs, the only relevant
problems are only the status of pď𝑜, 0q-coverability and of pď𝑠, 0q-coverability. Similarly, for
system-lossy EOSs, the only relevant question is the status of pď𝑠, 0q-coverability.

5Π1
p𝜇1q ` Π1

p𝜆q ` Π1
p𝜌q “ Π1

p𝜇1 ´ 𝜆 ` 𝜌q “ Π1
p𝜇4q “ Π1

p𝜇1
4q “ Π1

p𝜇2 ` Δp𝜇3q ´ 𝜆 ` 𝜌q “ Π1
p𝜇2 `

Δp𝜇3qq ´ Π1
p𝜆q ` Π1

p𝜌q.
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Figure 4: The lossiness-counter gadget 𝒢 in Def. 9 (where 𝑑p𝑝1q “ 𝑁1, 𝑑p𝑝2q “ 𝑁2, 𝑑p𝑐𝑜𝑢𝑛𝑡q “ ■)
with initial marking 𝜇0 “ ttx𝑝1, tt𝑝uuyuu.

5. Distinct Problems

Unfortunately, compatibility does not hold for ď𝑜 and ď𝑓 on EOSs. This is the main fact
allowing the simulation of inhibitory nets via EOSs in [13]. Thus, the hierarchies induced by
ď𝑜 and ď𝑓 do not collapse. In fact, we now show that all the problems in the hierarchy are
distinct. We make use of a gadget with a dedicated place that counts the lossy steps.

Definition 9. The lossiness-counter gadget 𝒢 is the EOS p�̂� ,𝒩 , 𝑑,Θq depicted in Fig. 4 where
1. �̂�=p�̂� , 𝑇 , �̂� q where �̂� “ t𝑝1, 𝑝2, countu, 𝑇 “ t𝜏1, 𝜏2u, �̂� p𝑥q “ 1 if 𝑥 P tp𝑝1, 𝜏1q,

p𝜏1, countq, p𝜏1, 𝑝2q, p𝑝2, 𝜏2q, p𝜏2, countq, p𝜏2, 𝑝1qu and �̂� p𝑥q “ 0 otherwise,
2. 𝒩 “ t𝑁1, 𝑁2u where 𝑁1 “ pt𝑝u, tinc1u, 𝐹1q, 𝐹1ptpinc1, 𝑝quq “ 1, 𝐹1ptp𝑝, inc1quq,

𝑁2 “ pt𝑞u, tinc2u, 𝐹2uq, 𝐹2ptpinc2, 𝑞quq “ 1, and 𝐹2ptp𝑞, inc12quq,
3. 𝑑p𝑝1q “ 𝑁1, 𝑑p𝑝2q “ 𝑁2, and 𝑑pcountq “ ■, and
4. Θ “ tx𝜏1, inc2y, x𝜏2, inc1yu.

In what follows, we work with a fixed initial nested marking 𝜇0 “ x𝑝1, tt𝑝uuy of 𝒢.

5.1. Distinct Problems for Object-lossy EOSs

We first study the case of object-lossiness.

Lemma 8. Let ă be a transitive relation. Given ℓ P N Y t𝜔u, we have that 𝜇 is pĺ, ℓq-reachable
from 𝜇0 in 𝒢 iff 𝜇 is pň, ℓq-reachable from 𝜇0.

Proof. Each ň-lossy step 𝜇1 ŋ 𝜇2 can be interpreted as a ĺ-lossy step 𝜇1 ľ 𝜇2. Thus, each
pň, ℓq-run can be interpreted as a pĺ, ℓq-run. Similarly, each pĺ, ℓq-run that does not contain
reflexive lossy steps of the form 𝜇 ľ 𝜇 can be interpreted as a pň, ℓq-run. Moreover, each
maximal finite or infinite sub-run 𝜇 ľ 𝜇 ľ . . . 𝜇 ľ . . . of an arbitrary pĺ, ℓq-run 𝜎 can be
substituted by a single occurrence of 𝜇, obtaining a pĺ, ℓq-run without reflexive lossy steps.

Lemma 9. For each ℓ ě 0, the lossiness-counter gadget 𝒢 exhibits a single maximal ℓ-strong
pň𝑜, ℓq-run from its initial nested-marking 𝜇0. This run has the form

𝜇0 ŋ𝑜 𝜇
1
0 Ñ 𝜇1 ŋ𝑜 𝜇

1
1 Ñ 𝜇2 ŋ𝑜 . . . 𝜇ℓ´1 ŋ𝑜 𝜇

1
ℓ´1 Ñ 𝜇ℓ
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where, for each 𝑖 ď ℓ, we have 𝜇𝑖 “ x𝑥𝑖, tt𝑦𝑖uuy`𝑖xcount , 𝜀y and 𝜇1
𝑖 “ x𝑥𝑖`1,Hy`𝑖xcount , 𝜀y

where, for each 𝑗 P N, 𝑥𝑗 “ 𝑝1 and 𝑦𝑗 “ 𝑝 if 𝑗 is even and 𝑥𝑗 “ 𝑝2 and 𝑦𝑗 “ 𝑞 if 𝑗 is odd.

Proof. By induction on ℓ. If ℓ “ 0, then, since 𝜇0 is a deadlock for Ñ, the run 𝜇0 of length 0 is
the only pň𝑜, ℓq-run. Moreover, 0 is even and 𝜇0 “ x𝑝1, tt𝑝uuy ` 0xcount, 𝜀y.

If the inductive hypothesis holds for an arbitrary even ℓ, then 𝜇ℓ “ x𝑝1, tt𝑝uuy ` ℓxcount , 𝜀y

is a deadlock for Ñ. The only way to continue the run is by one ŋ𝑜 step. However, the only
token that can be lost under ď𝑜 is the token inside x𝑝1, tt𝑝uuy, thus, the only ď𝑜-successor of
𝜇ℓ is 𝜇1

ℓ “ x𝑝1,Hy ` ℓxcount , 𝜀y. On 𝜇1
ℓ there is no available ŋ𝑜 step and the only enabled

event is p𝜏1, inc2q with mode p𝜆, 𝜌q where 𝜆 “ x𝑝1,Hy and 𝜌 “ x𝑝2, tt𝑞uuy ` xcount , 𝜀y. Its
firing reaches 𝜇ℓ`1 “ x𝑝2, tt𝑞uuy ` pℓ ` 1qxcount , 𝜀y. This configuration is a deadlock for Ñ

and the so obtained pň𝑜, ℓ` 1q-run from 𝜇0 to 𝜇ℓ`1 already contains ℓ` 1 ň𝑜-steps. Thus, this
run is maximal among the pň𝑜, ℓ ` 1q-runs.

If the inductive hypothesis holds for an arbitrary odd ℓ, the same argument applies with the
provision that 𝑝1 and 𝑝2, 𝑝 and 𝑞, as well as p𝜏1, inc2q and p𝜏2, inc1q, have to be swapped.

Corollary 3. For each finite ℓ, the set of nested markings which are pď𝑜, ℓq-reachable from 𝜇0 is
t𝜇𝑖 | 𝑖 P t0, . . . , ℓuu Y t𝜇1

𝑖 | 𝑖 P t0, . . . , ℓ ´ 1uu where 𝜇𝑖 and 𝜇1
𝑖 are defined as in Lemma 9.

Consequently, using the same notation as in Lem. 9, for each ℓ P N, we have that 𝜇1
ℓ is

pď𝑜, ℓq-coverable but not pď𝑜, ℓq-reachable and 𝜇ℓ`1 is pď𝑜, ℓ ` 1q-reachable but not pď𝑜, ℓq-
coverable. Thus, the sequence of yes-instance sets of pď𝑜, ℓq-reachability/coverability problems
(recall Lem. 1 and Lem. 2) is a sequence of proper subsets. Consequently, for each finite ℓ,
all pď𝑜, ℓq-reachability/coverability problems are pairwise distinct. Moreover, while pď𝑜, 𝜔q-
reachability coincides with pď𝑜, 𝜔q-coverability by Lem. 4, also pď𝑜, 𝜔q-reachability is distinct
from pď𝑜, ℓq-reachability/coverability for each ℓ.6

Corollary 4. For each ℓ1 ă ℓ2 ď 𝜔, we have that pď𝑜, ℓ1q-reachability, pď𝑜, ℓ1q-coverability,
pď𝑜, ℓ2q-reachability, and pď𝑜, ℓ2q-coverability are pair-wise distinct problems.

5.2. Distinct Problems for Full-lossy EOSs

A fact analogous to Cor. 4 applies also to ď𝑓 . In fact, even if 𝒢 exhibits more complex maximal
pň𝑓 , ℓq-runs, we still need ℓ lossy steps to put ℓ tokens on count . We first show that if a marking
is reachable/coverable using ď𝑓 -lossy steps, then it is also covered under ď𝑠 by some marking
reachable via a run as in Lem. 9.

Lemma 10. If 𝜎 P Runsℓpď𝑓 , 𝜇0q and 𝜇0 ⇝𝜎 𝜇, then there is some 𝜆 ě𝑠 𝜇 and there is an
ℓ1-strong run 𝜎1 P Runsℓ1pň𝑜, 𝜇0q such that 𝜇0 ⇝𝜎1

𝜆, for some ℓ1 ď ℓ.

Proof. Since ď𝑓“ď𝑜 ˝ ď𝑠, we can expand each ď𝑓 -lossy step in two subsequent ď𝑜- and ď𝑠-
lossy steps. By compatibility of ď𝑠 on EOSs (Lem. 7) and the fact that ď𝑠 ˝ ď𝑜“ď𝑜 ˝ ď𝑠 (Rem. 1),
we can push all the ď𝑠-lossy steps at the end of the run, obtaining a run 𝜎1 P Runsℓpď𝑜, 𝜇0q

such that 𝜇0 ⇝𝜎1

𝜆 ě𝑠 ¨ ¨ ¨ ě𝑠 𝜇, for some marking 𝜆. By transitivity of ď𝑠, we have 𝜆 ě𝑠 𝜇.

6Otherwise, it would coincide also with pď𝑜, ℓ ` 1q-reachability/coverability. Thus, pď𝑜, ℓq-
reachability/coverability and pď𝑜, ℓ ` 1q-reachability/coverability would coincide, which is a contradiction.
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Moreover, we can drop the ď𝑜-lossy steps in 𝜎1 of the form 𝜋 ě𝑜 𝜋 for some 𝜋, obtaining an
ℓ1-strong run 𝜎2 P Runsℓ1pň𝑜, 𝜇0q for some ℓ1 ď ℓ.

We now show that also the sequence of yes-instance sets of ď𝑓 -lossy reachability/coverability
problems (recall Lem. 1 and Lem. 2) is a sequence of proper subsets. We do that by using the
same markings 𝜇ℓ and 𝜇1

ℓ defined in Lem. 9.

Lemma 11. Using the notation in Lem. 9, for each finite ℓ P N, we have that 𝜇ℓ`1 is pď𝑓 , ℓ` 1q-
reachable, but not pď𝑓 , ℓq-coverable.

Proof. By Lem. 9 we know that 𝜇ℓ`1 is pď𝑜, ℓ ` 1q-reachable and, thus, also pď𝑓 , ℓ ` 1q-
reachable. We now show that 𝜇ℓ`1 is not pď𝑓 , ℓq-coverable. Assume by contradiction that
𝜇ℓ`1 is pď𝑓 , ℓq-coverable. Then, there is some run 𝜎 P Runsℓpď𝑓 , 𝜇0q and a nested marking
𝜆 such that 𝜇0 ⇝𝜎 𝜆 ě𝑓 𝜇ℓ`1. Since 𝜇ℓ`1 ě𝑠 pℓ ` 1qxcount , 𝜀y, also 𝜆 ě𝑓 pℓ ` 1qxcount , 𝜀y.
Thus, 𝜆 ě𝑠 pℓ` 1qxcount , 𝜀y.7 By applying Lem. 10 on the run 𝜎, there is some nested marking
𝜆1 ě𝑠 𝜆 and, for some ℓ1 ď ℓ, a ℓ1-strong run 𝜎1 P Runsℓ1pň𝑜, 𝜇0q such that 𝜇0 ⇝𝜎1

𝜆1. Thus,
by Lem. 9, we have that either 𝜆1 “ 𝜇ℓ1 or 𝜆1 “ 𝜇1

ℓ1´1 and, hence, 𝜆1 places at most ℓ1 black
tokens on count . However, 𝜆1 ě𝑠 𝜆 ě𝑠 ℓ ` 1xcount , 𝜀y, i.e., 𝜆1 puts at least ℓ ` 1 tokens on
count even if ℓ1 ď ℓ ă ℓ ` 1, which is a contradiction.

Lemma 12. Using the notation in Lem. 9, for each finite ℓ P N, we have that 𝜇1
ℓ`1 is pď𝑓 , ℓq-

coverable, but not pď𝑓 , ℓq-reachable.

Proof. By Lem. 9 we know that 𝜇1
ℓ`1 is pď𝑜, ℓq-coverable and, thus, also pď𝑓 , ℓq-coverable. We

now show that 𝜇1
ℓ`1 is not pď𝑓 , ℓq-reachable. Assume by contradiction that 𝜇1

ℓ`1 is pď𝑓 , ℓq-
reachable. Then, there is some run 𝜎 P Runsℓpď𝑓 , 𝜇0q such that 𝜇0 ⇝𝜎 𝜇1

ℓ`1. By applying
Lem. 10 on the run 𝜎, there is some nested marking 𝜆 ě𝑠 𝜇

1
ℓ`1 and, for some ℓ1 ď ℓ, a ℓ1-strong

run 𝜎1 P Runsℓ1pň𝑜, 𝜇0q such that 𝜇0 ⇝𝜎1

𝜆. Since 𝜆 ě𝑠 𝜇
1
ℓ`1 ě𝑠 pℓ ` 1qxcount , 𝜀y, we have

that 𝜆 puts at least ℓ ` 1 tokens on count . However, by Lem. 9, we have that either 𝜆 “ 𝜇ℓ1 or
𝜆 “ 𝜇1

ℓ1´1. Hence, 𝜆 puts at most ℓ1 ď ℓ ă ℓ` 1 tokens on count , which is a contradiction.

Corollary 5. For each ℓ1 ă ℓ2 ď 𝜔, we have that pď𝑓 , ℓ1q-reachability, pď𝑓 , ℓ1q-coverability,
pď𝑓 , ℓ2q-reachability, and pď𝑓 , ℓ2q-coverability are pair-wise distinct problems.

6. Undecidability for object- and system-lossy cEOSs

We now study the decidability status of pď𝑜, 0q-coverability and pď𝑠, 0q-coverability for cEOSs.
In [18], reachability for cEOSs is proved undecidable via a reduction from reachability of 2CMs.
We provide a variant of that reduction that reduces reachability of 2CMs to ď𝑜-coverability and
to ď𝑠-coverability of cEOSs. This proves that both coverability problems are undecidable. By
Th. 3 and Th. 2, all ℓ-reachability problems for object-lossy and system-lossy cEOSs are, thus,
undecidable. Since cEOSs are a special case of EOSs, undecidability applies also to object-lossy
and system-lossy EOSs.
7In fact, 𝜆 ě𝑓 pℓ ` 1qxcount , 𝜀y implies that there is some 𝜋 such that 𝜆 ě𝑠 𝜋 ě𝑜 pℓ ` 1qxcount , 𝜀y; since the
latter marking only places black tokens at the system net level, 𝜋 is obtained by adding zero tokens at the object
net level, i.e., 𝜋 “ pℓ ` 1qxcount , 𝜀y. Hence 𝜆 ě𝑠 pℓ ` 1qxcount , 𝜀y.
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Figure 5: Part of E𝒦 capturing an (a) increment, (b) decrement, or (c) zero-check instruction 𝑖 P 𝛿.

6.1. Reduction to Reachability

We show a reduction from reachability of a target configuration p𝑞𝑓 , 𝑛1, 𝑛2q of any 2CM
𝒦 “ p𝑄, 𝛿, 𝑞0q with increment, decrement, and zero-check instructions to reachability of a
cEOS E𝒦.

Definition 10. Given a 2CM 𝒦 “ p𝑄, 𝛿, 𝑞0q, we define the EOS E𝒦 “ p�̂� ,𝒩 , 𝑑,Θq where
1. �̂� “ p�̂� , 𝑇 , �̂� q is such that:

• �̂� contains 𝑄, a place 𝑔, a place next𝑖 for each instruction 𝑖 P 𝛿, and two places 𝑐𝑗
and 𝑐1

𝑗 for each counter cnt 𝑗 ;
• 𝑇 contains two transitions 𝑡1𝑖 and 𝑡2𝑖 for each instruction 𝑖 P 𝛿;
• For each increment (resp., decrement, zero-check) instruction 𝑖 P 𝛿, �̂� captures the

pre- and post-conditions depicted in Fig. 5a (Fig. 5b, Fig. 5c).
2. 𝒩 contains the net■ and a single net 𝑁 “ p𝑃, 𝑇, 𝐹 q where 𝑃 “ t𝑝u, 𝑇 “ tinc𝑁 , decN u,

𝐹 pinc𝑁 , 𝑝q “ 𝐹 p𝑝, dec𝑁 q “ 1, and 𝐹 p𝑝, inc𝑁 q “ 𝐹 pdec𝑁 , 𝑝q “ 0.
3. 𝑑p𝑐1q “ 𝑑p𝑐2q “ 𝑑p𝑔q “ 𝑁 and 𝑑p𝑥q “ ■ for each other place 𝑥 P �̂� zt𝑐1, 𝑐2, 𝑔u.
4. The synchronization structure Θ contains the events

• 𝑒1𝑖 “ p𝑡1𝑖 , ttinc𝑁uuq and 𝑒2𝑖 “ p𝑡2𝑖 ,Hq for each increment instruction 𝑖.
• 𝑒1𝑖 “ p𝑡1𝑖 , ttdec𝑁uuq and 𝑒2𝑖 “ p𝑡2𝑖 ,Hq for each decrement instruction 𝑖.
• 𝑒1𝑖 “ p𝑡1𝑖 ,Hq and 𝑒2𝑖 “ p𝑡2𝑖 ,Hq for each zero-check instruction 𝑖.

Note that E𝒦 is a cEOS. It weakly simulates the increment and decrement instructions of 𝒦
and performs zero-guesses in place of zero-check instructions. These guesses may be wrong
but leave behind them two irreversible evidences: tokens in the internal marking of the object
net at 𝑔 and non-matching numbers of tokens on the place 𝑐𝑗 and in the object net on 𝑐1

𝑗 , for
some 𝑗 P t0, 1u. The former can be detected by pď𝑠, 0q-coverability; the latter can be detected
by pď𝑜, 0q-coverability. We make these notions precise.

Definition 11. We say that a nested marking 𝜇 for E𝒦 is legal if it places exactly one object-
token 𝑁 at 𝑐0, 𝑐1, and 𝑔, exactly one ■ on exactly one place 𝑞 P 𝑄, and no token on any place
in �̂� zt𝑐1

0, 𝑐
1
1, 𝑞u. If 𝜇 is legal, we denote

1. by r𝜇s1
𝑗 the number of black tokens placed at 𝑐1

𝑗 ,
2. by r𝜇s𝑗 the number of black-tokens in the object-token at 𝑐𝑗 ,
3. by r𝜇s𝑔 the number of black-tokens in the object-token at 𝑔, and
4. by r𝜇s𝑄 the place 𝑞 P 𝑄 marked by 𝜇 with a black-token.
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Moreover, we say that 𝜇:
1. is broken at (counter) 𝑗 if r𝜇s𝑗 ‰ r𝜇s1

𝑗 , sub-broken at 𝑗 if r𝜇s𝑗 ă r𝜇s1
𝑗 , broken at 𝑔 if

r𝜇s𝑔 ‰ 0,
2. is broken if it is broken at 0, at 1, or at 𝑔,
3. encodes the 2CM configuration 𝑐 “ p𝑞, 𝑛0, 𝑛1q, denoted by 𝜇 “ x𝑐y, if 𝜇 is non-broken

and c=pr𝜇s𝑄, r𝜇s0, r𝜇s1q.

The following lemma is a direct consequence of the pre- and post-conditions of the transitions
in E𝒦, the shape of its synchronization structure Θ, the EOS semantics, and Def. 10. Its proof
consists in simple, yet space-consuming algebraic checks and, thus, it is omitted.

Lemma 13. Let 𝑖 P tp𝑞,`, 𝑗, 𝑞1q, p𝑞,´, 𝑗, 𝑞1q, p𝑞,“, 𝑗, 𝑞1qu X 𝛿 and 𝜇 a legal nested marking for

E𝒦. If 𝑒1𝑖 is enabled on 𝜇, there is some 𝜇1 and 𝜇2 such that 𝜇
𝑒1𝑖
ÝÑ 𝜇1

𝑒2𝑖
ÝÑ 𝜇2 and

1. r𝜇s𝑄 “ 𝑞, 𝜇2 is legal , r𝜇2s𝑄 “ 𝑞1, r𝜇2s1´𝑗 “ r𝜇s1´𝑗 , and r𝜇2s1
1´𝑗 “ r𝜇s1

1´𝑗 .
2. if 𝑖 “ p𝑞,`, 𝑗, 𝑞1q, then r𝜇2s𝑗 “ r𝜇s𝑗 ` 1, r𝜇2s1

𝑗 “ r𝜇s1
𝑗 ` 1 and r𝜇2s𝑔 “ r𝜇s𝑔 .

3. if 𝑖 “ p𝑞,´, 𝑗, 𝑞1q, then r𝜇2s𝑗 “ r𝜇s𝑗 ´ 1, r𝜇2s1
𝑗 “ r𝜇s1

𝑗 ´ 1 and r𝜇2s𝑔 “ r𝜇s𝑔 .
4. if 𝑖 “ p𝑞,“, 𝑗, 𝑞1q, then r𝜇2s𝑗 “ 0, r𝜇2s1

𝑗 “ r𝜇s1
𝑗 , and r𝜇2s𝑔 “ r𝜇s𝑔 ` r𝜇s𝑗 .

Corollary 6. Let 𝜇
𝑒1𝑖
ÝÑ 𝜇1

𝑒2𝑖
ÝÑ 𝜇2 and 𝜇 legal. If𝜇 is sub-broken at 0 or at 1, then𝜇2 is sub-broken

at 0 or at 1, respectively. If 𝜇 is broken at 𝑔, then 𝜇2 is broken at 𝑔.

Corollary 7. Let 𝜇
𝑒1𝑖
ÝÑ 𝜇1

𝑒2𝑖
ÝÑ 𝜇2, and 𝜇 legal and non-broken at 0 or at 1. If 𝜇2 is broken at 0

or at 1, respectively, then 𝜇2 is sub-broken at 0 or at 1.

Corollary 8. Let 𝜇
𝑒1𝑖
ÝÑ 𝜇1

𝑒2𝑖
ÝÑ 𝜇2, 𝜇 legal, and 𝑖 P tp𝑞,`, 𝑗, 𝑞1q, p𝑞,´, 𝑗, 𝑞1qu X 𝛿. If 𝜇 is

non-broken, then 𝜇2 is non-broken.

Cor. 8 indicates that the simulation of increment or decrement instructions cannot lead, on
their own, to broken markings. We now show that this is not the case for some simulation of
zero-checks, called wrong zero-guesses.

Definition 12. A wrong zero-guess on counter 𝑗 is a run 𝜇
𝑒1𝑖
ÝÑ 𝜇1

𝑒2𝑖
ÝÑ 𝜇2 where 𝑖 is a zero-check

instruction on counter 𝑗, 𝜇 is legal, and r𝜇s𝑗 ą 0.

Lemma 14. If 𝜎 : 𝜇
𝑒1𝑖
ÝÑ 𝜇1

𝑒2𝑖
ÝÑ 𝜇2 and 𝜇 is legal and non-broken, then 𝜇2 is broken at 𝑗 for some

𝑗 P t0, 1u iff 𝜎 is a wrong zero-guess on counter 𝑗.

Proof. By Cor. 8, since 𝜇 is not broken at 𝑗 but 𝜇2 is, 𝑖 is a zero-check instruction on counter
𝑗. If r𝜇s𝑗 “ r𝜇s1

𝑗 “ 0, then r𝜇2s𝑗 “ 0 “ r𝜇s1
𝑗 “ r𝜇2s1

𝑗 and 𝜇2 is not broken at 𝑗, contradiction.
Thus, r𝜇s𝑗 “ r𝜇s1

𝑗 ą 0 and, thus, 𝜎 is a wrong zero-guess. Vice-versa, if 𝜎 is a wrong-zero guess
on counter 𝑗, then, by Lemma 13, 𝜇2 is broken at 𝑗.

The next lemma is proved analogously.

Lemma 15. If 𝜎 : 𝜇
𝑒1𝑖
ÝÑ 𝜇1

𝑒2𝑖
ÝÑ 𝜇2 and 𝜇 is legal and non-broken, then 𝜇 is broken at 𝑔 iff 𝜎 is a

wrong zero-guess.
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Corollary 9. If 𝜎 : xp𝑞0, 0, 0qy Ñ˚ 𝜇 is a run of even length, then the following are equivalent:
(1) 𝜇 is sub-broken at 0 or 1, (2) 𝜇 is broken at 𝑔, (3) 𝜇 is broken, and (4) 𝜎 has a wrong zero-guess.

Clearly, for each run 𝑐0
𝑖0
ÝÑ 𝑐1 Ñ 𝑖1 . . . in 𝒦 there is a run

x𝑐0y
𝑒1𝑖0
ÝÝÑ 𝜇0

𝑒2𝑖0
ÝÝÑ x𝑐1y

𝑒1𝑖1
ÝÝÑ 𝜇1

𝑒2𝑖1
ÝÝÑ . . .. If the target configuration p𝑞𝑓 , 𝑛0, 𝑛1q is reach-

able from p𝑞0, 0, 0q in 𝒦, then 𝜇𝑓 “ xp𝑞𝑓 , 𝑛0, 𝑛1qy is reachable from 𝜇0 “ xp𝑞0, 0, 0qy in
E𝒦. Vice-versa, if 𝜇𝑓 is reachable from 𝜇0 in E𝒦 via a run 𝜎, then, 𝜇𝑓 is legal, non-broken,
r𝜇𝑓 s𝑄 “ 𝑞𝑓 , and 𝜎 has even length. Thus, 𝜎 does not have any wrong zero-guess and can be
simulated by a corresponding run in 𝒦 from p𝑞0, 0, 0q.

Theorem 4. p𝑞𝑓 , 𝑛0, 𝑛1q is reachable from p𝑞0, 0, 0q in 𝒦 iff 𝜇𝑓 “ xp𝑞𝑓 , 𝑛0, 𝑛1qy is reachable
from 𝜇0 “ xp𝑞0, 0, 0qy in E𝒦.

Note that the EOS in Def. 10 is a cEOS. Thus, since 2CM reachability is undecidable, our
result confirms that reachability for cEOSs is undecidable. However, we can conclude more.

6.2. From Reachability to pď𝑜, 0q-coverability

We now show that our construction yields undecidability also for pď𝑜, 0q-coverability. This is
based on the fact that the nested marking 𝜇𝑓 in Th. 4 is reachable if and only if it is pď𝑜, 0q-
coverable. In fact, if 𝜇0 Ñ˚ 𝜇 ě𝑜 𝜇𝑓 , then, for each 𝑗 P t0, 1u,

1. 𝜇 and 𝜇𝑓 mark in the same way all system net places of type ■.
2. r𝜇s𝑄 is well-defined, r𝜇s𝑄 “ r𝜇𝑓 s𝑄 “ 𝑞𝑓 , 𝜇 is reachable only via runs of even length,

and 𝜇 is legal.
3. for each 𝑗 P t0, 1u, r𝜇s1

𝑗 “ r𝜇𝑓 s1
𝑗 “ r𝜇𝑓 s𝑗 ď r𝜇s𝑗 ;

4. if 𝜇 is broken at 𝑗, then by Cor. 6 and Cor. 7 it is sub-broken at 𝑗 and, thus, r𝜇s𝑗 ă r𝜇s1
𝑗 ď

r𝜇s𝑗 , contradiction; thus, 𝜇 is not broken at 𝑗 and is not broken at 0 and, consequently,
not broken at 𝑔.

5. r𝜇s𝑗 “ r𝜇s1
𝑗 “ r𝜇𝑓 s1

𝑗 “ r𝜇𝑓 s𝑗 and r𝜇s𝑔 “ 0 “ r𝜇𝑓 s𝑔 .
Summarising 𝜇 and 𝜇𝑓 coincide. Thus, 𝜇𝑓 is pď𝑜, 0q-coverable from 𝜇0 iff it is reachable. By
Th. 4, we obtain the following result.

Theorem 5. pď𝑜, 0q-coverability for cEOSs is undecidable.

By Th. 3, by undecidability of reachability for cEOSs (Th.5.5 in [13]), and by the fact that
each cEOS is also an EOS, we obtain the following result.

Corollary 10. For each ℓ P NY t𝜔u, we have that pď𝑜, ℓq-reachability and pď𝑜, ℓq-coverability
for cEOSs and for EOSs are undecidable.

6.3. From Reachability to pď𝑠, 0q-coverability

We now show that similar statements apply also for pď𝑠, 0q-coverability. In fact, if 𝜇0 Ñ˚ 𝜇 ě𝑠

𝜇𝑓 , then, for each 𝑗 P t0, 1u,
1. 𝜇 places at least one black-token on r𝜇𝑓 s𝑄 “ 𝑞𝑓 , thus 𝜇 is reachable only via runs of even

length, and 𝜇 is legal.
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𝑝pℓ`1qmod2

𝒢

𝑐0 𝑐1

𝑔 q0

E𝒦

enabling

ℓ

Figure 6: The places, transitions, and conditions we add on top of ℳ.

2. possibly with the exception of 𝑐1
0 and 𝑐1

1, 𝜇 and 𝜇𝑓 coincide on all system net places,
including all object-tokens on them.

3. r𝜇s𝑗 “ r𝜇𝑓 s𝑗 “ r𝜇𝑓 s1
𝑗 ď r𝜇s1

𝑗 and r𝜇s𝑔 “ r𝜇𝑓 s𝑔 , thus 𝜇 is not broken and r𝜇s1
𝑗 “ r𝜇s𝑗 “

r𝜇𝑓 s𝑗 .
Summarising 𝜇 and 𝜇𝑓 coincide. Thus, 𝜇𝑓 is pď𝑠, 0q-coverable from 𝜇0 iff it is reachable. By
Th. 4, we obtain the following result.

Theorem 6. pď𝑠, 0q-coverability for cEOSs is undecidable.

By Th. 2, by undecidability of reachability for cEOSs (Th.5.5 in [13]), and the fact that each
cEOS is also an EOS, we obtain the following corollaries.

Corollary 11. For each ℓ P N Y t𝜔u, we have that pď𝑠, ℓq-reachability and pď𝑠, ℓq-coverability
for cEOSs and for EOSs are undecidable.

7. Undecidability for full-lossy EOSs

We now show that all pď𝑓 , ℓq-reachability problems for EOSs with finite ℓ ě 1 are undecidable.
This is achieved via a reduction of reachability of 2CMs to pď𝑓 , ℓq-reachability with any given
ℓ.

Fix the value of ℓ ě 1. Given an arbitrary 2CM 𝒦 “ p𝑄, 𝛿, 𝑞0q, a target configuration
p𝑞𝑓 , 𝑛1, 𝑛2q of 𝒦, and its simulating EOS E𝒦 “ p�̂�𝒦,𝒩𝒦, 𝑑𝒦,Θ𝒦q as in Sec. 6, we merge
E𝒦 with the lossiness-counter gadget 𝒢 “ p�̂�𝒢 ,𝒩𝒢 , 𝑑𝒢 ,Θ𝒢q from Sec. 4. Specifically, for
�̂�𝒦 “ p�̂�𝒦, 𝑇𝒦, �̂�𝒦q and �̂�𝒢 “ p�̂� 𝒢 , 𝑇 𝒢 , �̂� 𝒢q, we start with the EOS ℳ “ p�̂�,𝒩𝒦 Y

𝒩𝒢 , 𝑑𝒦 Y 𝑑𝒢 ,Θ𝒦 Y Θ𝒢q where �̂� “ p�̂�𝒦 Y �̂� 𝒢 , 𝑇𝒦 Y 𝑇 𝒢 , �̂�𝒦 Y �̂� 𝒢q.
We now add to ℳ a system net transition enabling together with a dedicated event 𝑒 “

xenabling ,Hy (see Fig. 6). This transition consumes (1) ℓ tokens from count , (2) one from 𝑝1 if
ℓ is even, (3) one from 𝑝2 if ℓ is odd. The transition enabling produces (1) one in 𝑞0, and (2) one
object-token with empty internal marking in each of 𝑔, 𝑐0, and 𝑐1. We call the so obtained EOS
ℱ . The initial marking 𝜇0 of ℱ is x𝑝1, tt𝑝uuy, as for 𝒢.

Note that, along the runs of ℱ , the event 𝑒 “ xenabling ,Hy fires at most once. Before firing
𝑒, there is no token on E𝒦 while, after firing 𝑒, there is no token on 𝒢. Let 𝜎 be a pď𝑓 , ℓq-run
of ℱ . If 𝑒 is not fired along 𝜎, then 𝜎 does not reach the target marking 𝜇𝑓 “ xp𝑞𝑓 , 𝑛1, 𝑛2qy

(which puts some token on E𝒦). Otherwise, 𝜎 can be split into two runs 𝜎1 and 𝜎2, such that
𝜎 “ 𝜎1

𝑒
ÝÑ 𝜎2. Since 𝑒 consumes ℓ tokens from count and one from either 𝑝1 or 𝑝2 in 𝒢, the

last marking 𝜇1 in 𝜎1 has to put at least ℓ tokens on count and at least one token on either 𝑝1
or 𝑝2, respectively.

90



Francesco Di Cosmo et al. CEUR Workshop Proceedings 74–96

If 𝜎1 is not ℓ-strong, then it is ℓ1-strong for some ℓ1 ă ℓ. By Lem. 10, there is some ℓ2-strong
run 𝜎 P Runsℓ2pň𝑜, 𝜇0q for some ℓ2 ď ℓ1 such that 𝜇0 ⇝𝜎1

1 𝜆 ě𝑠 𝜇1 for some marking 𝜆.
Thus, by Lem. 9, 𝜆 puts on count at most ℓ2 ă ℓ tokens. Since 𝜆 ě𝑠 𝜇1, so does 𝜇1, which is a
contradiction. Thus, 𝜎1 is ℓ-strong.

Consequently, since 𝜎 is a pď𝑓 , ℓq-run, 𝜎2 must be a (perfect) pď𝑓 , 0q-run of E𝒦. Also,
because of the post-conditions of enabling , the first marking in 𝜎2 is xp𝑞0, 0, 0qy. Thus, the
2CM 𝒦 reaches the target p𝑞𝑓 , 𝑛1, 𝑛2q from p𝑞0, 0, 0q iff E𝒦 has a (perfect) pď𝑓 , 0q-run from
xp𝑞0, 0, 0qy to 𝜇𝑓 “ xp𝑞𝑓 , 𝑛1, 𝑛2qy iff ℱ exhibits an ℓ-strong pď𝑓 , ℓq-run from 𝜇0 to 𝜇𝑓 iff ℱ
exhibits pď𝑓 , ℓq-run from 𝜇0 to 𝜇𝑓 . Since reachability of 2CM is undecidable, we get the next
theorem.

Theorem 7. For each finite ℓ P N, pď𝑓 , ℓq-reachability for EOSs is undecidable.

One can adapt this construction so as to concatenate the lossy-counter gadget 𝒢 with any
EOS E (in place of E𝒦 for any 2CM 𝒦). If the initial marking of E contains several nested tokens,
a chain of enabling events like 𝑒 may be necessary to initialize it. As above, in order to fire
them, the pď𝑓 , ℓq-runs of the concatenated EOS ℱ have to preliminary fire all their lossy steps.
Moreover, after firing 𝑒, the intended initial marking of E is initialized and the pď𝑓 , ℓq-runs of
ℱ can continue only by simulating E without any further lossy step. Thus, E reaches/covers
a target marking 𝜇𝑓 iff ℱ pď𝑓 , ℓq-reaches/covers the same target 𝜇𝑓 from 𝜇0 “ x𝑝1, tt𝑝uuy.
Since (perfect) pď𝑓 , 0q-reachability is known to be undecidable for EOSs (Th. 4.3 in [13]), one
get again Th. 7. Moreover, also (perfect) pď𝑓 , 0q-coverability is known to be undecidable (again,
Th. 4.3 in [13]). Thus, we get undecidability also for pď𝑓 , ℓq-coverability for each finite ℓ.

Theorem 8. For each finite ℓ P N, pď𝑓 , ℓq-coverability for EOSs is undecidable.

8. Decidability of pď𝑓 , 𝜔q-reachability for EOSs

We now show that pď𝑓 , 𝜔q-reachability is decidable for EOSs. We use a modified semantics for
full-lossy EOSs which merges standard and lossy steps.

Definition 13. A merged-EOS (mEOS) is an EOS interpreted under the semantics induced by
the step relation⇝ where⇝“ě𝑓 Y Ñ.

Since EOSs and mEOSs are syntactically the same, given an EOS E, we denote by E𝑆 the
EOS E interpreted under the standard Ñ step relation (S stands for standard), and by E𝑀 the
EOS E interpreted under the⇝ step relation (M stands for merged). Similarly, we denote the
set of predecessors of 𝜇 in E𝑆 by Pred𝑆p𝜇q and in E𝑀 by Pred𝑀 p𝜇q. The benefit of mEOSs is
that ď𝑓 becomes trivially compatible. This solves the major source of undecidability behind the
undecidability result of ď𝑓 -reachability for EOSs.

Lemma 16. ď𝑓 is compatible for mEOSs.

Proof. By definition of ⇝ , if 𝜇1 ě𝑓 𝜇2 ⇝ 𝜇3, then either (1) 𝜇1 ě𝑓 𝜇2 ě𝑓 𝜇3 and, by
transitivity of ě𝑓 , also 𝜇1 ⇝˚ 𝜇1 ě𝑓 𝜇3, or (2) 𝜇1 ě𝑓 𝜇2 Ñ 𝜇3 and, by definition of⇝ and
reflexivity of ď𝑓 , also 𝜇1 ⇝ 𝜇3 ě𝑓 𝜇3.
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Consequently, since ď𝑓 is a well-quasi order (see Th.5.2 in [13]), mEOSs with ď𝑓 are well-
structured transition systems (WSTS; see [19]). Clearly, ď𝑓 is decidable. Moreover, mEOSs have
the effective pred-basis property. This is because, Ò Pred𝑀 pÒ 𝜇q “Ò t𝜇uY Ò Pred𝑆pÒ 𝜇q and
E𝑆 has the effective pred-basis property [13], where Ò 𝑋 denotes the upward-closure of 𝑋 .8

Lemma 17. For an EOS E and a nested marking 𝜇, we have Ò Pred𝑀 pÒ 𝜇q “Ò 𝜇Y Ò Pred𝑆pÒ

𝜇q.

Proof. If 𝜇1 PÒ Pred𝑀 pÒ 𝜇q, then there are 𝜇1 and 𝜇2 such that 𝜇1 ě𝑓 𝜇1 ⇝ 𝜇2 ě𝑓 𝜇. If
𝜇1 ě𝑓 𝜇2, then, by transitivity of ď𝑓 , we have that 𝜇1 PÒ 𝜇. If 𝜇1 Ñ 𝜇2, then 𝜇1 P Pred𝑆pÒ 𝜇q

and, hence, 𝜇1 PÒ Pred𝑆pÒ 𝜇q. Vice-versa, since ÑĎ⇝, we have Pred𝑆p𝜇q Ď Pred𝑀 p𝜇q and,
thus, Ò Pred𝑆pÒ 𝜇q Ď Ò Pred𝑀 pÒ 𝜇q. Moreover, since 𝜇1 ě𝑓 𝜇 implies 𝜇1 P Pred𝑀 p𝜇q, we
have Ò t𝜇1u ĎÒ Pred𝑀 Ò p𝜇q.

We can then apply the theory of WSTS and obtain decidability of coverability for mEOSs.

Lemma 18. pď𝑓 , 0q-coverability for mEOSs is decidable.

Since each pď𝑓 , 𝜔q-run in E𝑆 is a pď𝑓 , 0q-run in E𝑀 and vice-versa, we have that pď𝑓 , 0q-
coverability for E𝑀 coincides with pď𝑓 , 𝜔q-coverability for E𝑆 , which, in turn, coincides with
pď𝑓 , 𝜔q-reachability for E𝑆 (Cor. 4). We thus obtain the following theorem.

Theorem 9. pď𝑓 , 𝜔q-reachability is decidable for EOSs.

Concerning the complexity of pď𝑓 , 𝜔q-reachability for EOSs, this problem extends pď𝑓 , 𝜔q-
reachability for cEOSs, which is equivalent to pď𝑓 , 0q-coverability for cEOSs. By noting that
these can encode PN coverability, we obtain a lower bound for pď𝑓 , 𝜔q-reachability for EOSs.

Theorem 10. pď𝑓 , 𝜔q-reachability is EXPSPACE-hard for EOSs.

9. Conclusions

We have completely charted the decidability status of all lossy-reachability problems for three
lossiness relations: full-lossiness ď𝑓 , object-lossiness ď𝑜, and system-lossiness ď𝑠. The decid-
ability landscape is summarized in Tab. 1. For cEOSs, proper lossy-reachability coincides with
standard coverability under the respective lossiness quasi order. All problems for object- and
system-lossy EOSs and cEOSs are undecidable. This is enabled by the fact that the orders ď𝑜

and ď𝑠 are not well-quasi orders (cf. [20]). For full-lossy EOSs, all pď𝑓 , ℓq-reachability problems
are undecidable even if they do not coincide with standard coverability under ď𝑓 . The most
interesting result is the decidability of pď𝑓 , 𝜔q-reachability for EOSs. This result follows from
the fact that each quasi order ĺ induces a WSTS when interpreted over pĺ, 𝜔q-runs (cf. [7]). This
problem is at least as hard as ď𝑓 -coverability for cEOSs, which, in turn, extends PN coverability.
This yields an EXPSPACE lower-bound. The precise complexity of pď𝑓 , 𝜔q-reachability for

8I.e., if 𝑋 is a set of markings, Ò 𝑋 is the set of markings 𝜇 such that 𝜇 ě𝑓 𝑥 for some 𝑥 P 𝑋 ; also, Ò 𝜇 denotes
Ò t𝜇u.
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Problem ď𝑓 ď𝑜 ď𝑠

cE
O

S
0-reach. undec. (Th 5.5 [13]) undec. (Th 5.5 [13]) undec. (Th 5.5 [13])

cover. dec. (Th 5.2 [13]) undec. [2CM] undec. [2CM]

ℓ-reach./cover. for ℓ P N0 dec. [comp.] undec. [comp.] undec. [comp.]

𝜔-reach./cover dec. [comp.] undec. [comp.] undec. [comp.]

EO
S

0-reach undec. (Th 4.3 [13]) undec. (Th 4.3 [13]) undec. (Th 4.3 [13])
cover. undec. (Th 4.3 [13]) undec. [cEOS] undec. [cEOS]

ℓ-reach./cover. for ℓ P N0 undec. [𝒢] undec. [cEOS] undec. [comp.]
𝜔-reach./cover dec. [WSTS] undec. [cEOS] undec. [comp.]

Table 1
Decidability status of lossy problems for full-, object-, and system-lossy EOS and cEOS. N0 denotes
Nzt0u. References are put next to already known results. The labels next to our results indicate the
techniques used to obtain them: [comp.] - compatibility; [2CM] - 2CM reachability; [cEOS] - general-
ization of cEOS results; [𝒢] - lossiness-counter gadget 𝒢 merging; [WSTS] - WSTS theory.

EOSs and, to the best of our knowledge, of ď𝑓 -coverability for cEOSs, remains uncharted. We
aim to fill this gap in future works.

Decidability of pď𝑓 , 𝜔q-reachability enables, in principle, the analysis of EOS models, e.g., of
business processes where resources may be lost both at the system and object level. However,
where undecidability applies, we may still perform verification by employing partial procedures,
e.g., by resorting to bounded model checking approaches. Recently, in [16], a Maude encoding
of EOSs was proposed and reachability searches on a bounded EOS were performed. However,
to the best of our knowledge, there is no tool that natively addresses (bounded) model checking
of lossy EOSs. Such a tool should also be able to express formulas about the number and
distribution of the lossy steps in the runs. This feature is reminiscent of program definitions
in the temporal operators of Dynamic Propositional Logic (PDL) [21, 22]. Interestingly, recent
Answer Set Programming tools [23], such as Telingo [24], support PDL constraints, which may
be used to perform bounded model checking. A recent prototype [25] is discussed in [26]. The
development of such a tool would enable us to practically verify the robustness of EOS models.

Another direction for further studies is the analysis of reset versions ď𝑓 , ď𝑜, and ď𝑠, where,
for each place, at each step either no or all tokens on the place are lost. The reset object-lossy
case is especially interesting in light of [11], where break-downs are modeled precisely by
induced deadlocks of object-tokens via the loss of all tokens (reset) in the object. However, the
technique we used to show undecidability of pℓ,ď𝑓 q-reachability for finite ℓ and EOSs can be
seamlessly applied to reset object- and full lossiness. Moreover, since these reset relations are
not compatible (even for cEOSs) nor well-quasi orders, we expect that all of these problems
(even 𝜔-reachability for cEOSs) are undecidable. Further interesting variants of lossy relations
include different types of imperfections such as spontaneous token moves, duplications, and
insertions.

When compared to lossy EOSs, lossy PNs exhibit a much more restricted landscape. This is
mainly due to the fact that the absence of nesting results in only one lossiness relation (which
removes regular tokens from the PN). Moreover, by compatibility, its hierarchy collapses to
two decidable problems, i.e., standard reachability (non-elementary) and standard coverability
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(EXPSPACE-complete). This picture is distinct even from that of full-lossy cEOSs, where, even if
pď𝑓 , 0q-coverability is decidable, standard reachability is undecidable. Moreover, it is likely that
pď𝑓 , 0q-coverability for cEOSs is harder than coverability for PNs. It would also be interesting
to compare EOSs with (likely) more expressive models of computation, such as lossy counter
machines (LCM) [7]. To that end, several additional verification problems are relevant, e.g., those
studied in [14] for LCM. However, the number of lossy step parameters was not considered there
and, thus, a preliminary study on LCM robustness seems necessary. Nevertheless, assuming
that problems with 𝜔 lossy steps are always easier than those with a finite number, it is likely
that all undecidability results in [14] also hold for their robustness version. This leaves little
room for decidability results on the robustness of LCM.
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