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Abstract
Some global properties of Petri nets, such as liveness or 𝑘-boundedness, simply aggregate corresponding prop-
erties of the individual nodes. It is recommendable to break down their verification to the individual node-based
properties. That investigation can be organized as a portfolio of different verification techniques. For Petri nets
with symmetric structure, we propose to apply symmetries as a separate portfolio member. This way of applying
symmetries differs from the usual use of symmetries as a tool for state space reduction. We discuss some nice
advantages of this approach.
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1. Introduction

We can roughly distinguish three categories of Petri net verification. In structural verification, we detect
patterns in the net topology itself. We may, for instance, enumerate siphons. A siphon is a set 𝑆 of
places such that every transition that has a post-place in 𝑆, also has a pre-place in 𝑆. [1] discusses an
example where knowledge about siphons can directly be used for solving a relevant problem. A second
category of verification is model checking [2]. Here, we decide whether the state space of a Petri net
satisfies a property that is specified in some temporal logic. The third category is the verification of
global properties (sometimes called standard properties). We consider a list of pre-defined properties
and corresponding decision procedures. Examples of global properties are reversibility (can we reach
the initial marking from every reachable marking), deadlock freedom (does every reachable marking
enable at least one transition), 𝑘-boundedness (do all reachable markings have at most 𝑘 tokens on
every place), or liveness (does every reachable marking enable some transition sequence that contains
all transitions). There exists a huge body of results in Petri net theory that involve global properties
[3]. Recently, the Petri net model checking contest (MCC, [4]) added a separate competition on global
properties.

We contribute to the third category of verification problems. In particular, we study global properties
that aggregate properties of the individual places or transitions of the net. We call such a property an
aggregating property. A place 𝑝 is 𝑘-bounded if, for every reachable marking 𝑚, 𝑚(𝑝) ≤ 𝑘. The net is
𝑘-bounded if and only if every place is 𝑘-bounded. A transition 𝑡 is live if every reachable marking
enables a transition sequence that contains 𝑡. The net is live if and only if every transition is live. That is,
properties such as 𝑘-boundedness and liveness are aggregating. In contrast, properties like reversibility
and deadlock-freedom are not aggregating since no appearant separation into properties of individual
places or transitions is known.

After setting up our terminology in Section 2, we argue in Section 3 that a node-by-node approach is
recommendable for the verification of aggregating global properties. For every individual node, several
methods exist to solve the node-based subproblem. These methods can be organized as a verification
portfolio. We give examples of suitable portfolios for several aggregating properties. In Section 4, we
recall the concept of symmetry. In Section 5, we propose to use symmetries as a separate portfolio
member rather than a vehicle for state space reduction. We discuss the particular merits of this approach.
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2. Basic Terminology

We consider standard place/transition nets in the following notation.

Definition 1 (Petri net). A Petri net 𝑁 = [𝑃, 𝑇, 𝐹,𝑊,𝑚0] consists of a finite set 𝑃 of places, a finite
set 𝑇 of transitions, disjoint from 𝑃 , a set 𝐹 of arcs (𝐹 ⊆ (𝑃 × 𝑇 ) × (𝑇 × 𝑃 )), a weight function
𝑊 : (𝑃 × 𝑇 ) × (𝑇 × 𝑃 ) → N where 𝑊 (𝑥, 𝑦) = 0 if and only if [𝑥, 𝑦] /∈ 𝐹 , and a marking 𝑚0, the
initial marking. A marking is a mapping 𝑚 : 𝑃 → N.

The behavior of a Petri net is defined as follows.

Definition 2 (Firing rule). Transition 𝑡 is enabled in marking 𝑚 if, for all places 𝑝, [𝑝, 𝑡] ∈ 𝐹 implies
𝑚(𝑝) ≥ 𝑊 (𝑝, 𝑡). If 𝑡 is enabled in 𝑚, 𝑡 may fire and yield marking 𝑚′ where, for all places 𝑝, 𝑚′(𝑝) =

𝑚(𝑝)−𝑊 (𝑝, 𝑡) +𝑊 (𝑡, 𝑝). This firing relation is written as 𝑚 𝑡−→ 𝑚′.
We lift relation 𝑡−→ to transition sequences by setting 𝑚

𝜀−→ 𝑚 for all markings 𝑚 and the empty
sequence 𝜀, and by setting 𝑚

𝑤𝑡−→ 𝑚′′ if and only if there is a marking 𝑚′ such that 𝑚 𝑤−→ 𝑚′ and
𝑚′ 𝑡−→ 𝑚′′. Transition sequence 𝑤 is enabled in marking 𝑚 if there exists a marking 𝑚 with 𝑚

𝑤−→ 𝑚′.

We shall study the following properties of Petri nets.

Definition 3 (Properties).

• Marking 𝑚′ is reachable from marking 𝑚 if there is a transition sequence 𝑤 where 𝑚 𝑤−→ 𝑚′.
• Place 𝑝 is 𝑘-bounded if, for all markings 𝑚 reachable from 𝑚0, 𝑚(𝑝) ≤ 𝑘. A Petri net is 𝑘-bounded

if all its places are 𝑘-bounded.
• Place 𝑝 is constant if, for all markings 𝑚 reachable from 𝑚0, 𝑚(𝑝) = 𝑚0(𝑝). A Petri net has the

constant-place property if it contains a constant place.
• Transition 𝑡 is quasi-live if there exists a transition sequence 𝑤 such that 𝑤𝑡 is enabled in 𝑚0. A

Petri net is quasi-live if all its transitions are quasi-live.
• Transition 𝑡 is live if, for every marking 𝑚 reachable from 𝑚0, there exists a transition sequence 𝑤

such that 𝑤𝑡 is enabled in 𝑚. A Petri net is live if all its transitions are live.

Observe that most properties listed above have a local version (place 𝑝 is . . . , transition 𝑡 is . . . ) and
an aggregating version (the Petri net is . . . ). In the sequel, we shall therefore distinguish local standard
properties and global standard properties. It is also obvious that answering the local problems for all
nodes of a Petri net amounts to a solution of the corresponding global problem.

The global versions of 1-boundedness, constant place, quasi-liveness and liveness have been part of
the “global properties” competition in recent model checking contests.

3. Verifying aggregating global properties

The brute-force approach to verify an aggregating global property is to compute the reachability
graph of the Petri nets. The vertices of the graph are the markings reachable from 𝑚0, and the edges
correspond to the firing relation (considering only single transitions). 𝑘-boundedness and existence of
constant places can be easily verified by inspecting the vertices of a reachability graph. Transition 𝑡 is
quasi-live if there is an edge labeled with 𝑡. Transition 𝑡 is live if every terminal strongly connected
component of the reachability graph contains an edge labeled with 𝑡. A strongly connected component
is an equivalence class in the set of markings with respect to the equivalence relation “𝑚 is reachable
from 𝑚′ and 𝑚′ is reachable from 𝑚”. A strongly connected component is terminal if no other strongly
connected component can be reached from it.

Although all standard properties can be analyzed using the reachability graph, its use generally is
infeasible even if it is finite, due to the well-known state explosion problem. State space reduction
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techniques may alleviate the state explosion problem to a certain degree, but work much better on
the local version of a standard property than on the global version. This can be explained as follows.
The most powerful state space reduction technique for Petri nets is the stubborn set method [5]. It
observes that transitions that cannot enable or disable each other can be fired in various orders, and it
tries to execute them in only some of the orders, yet taking care that the property under investigation
is preserved. There exist stubborn set methods for the global versions of 𝑘-boundedness [6] or liveness
[5]. However, related methods for the local versions are much stronger since the order of transitions
that are not in the immediate vicinity of the considered place or transition are less sensitive to their
respective order and permit stronger reduction. Another powerful state space reduction technique is
the symmetry method. It also performs better on the local versions of problems. We postpone further
discussion on the symmetry method to the next section. Apart from state space reduction, the local
versions of standard properties permit the application of powerful net reduction in the whole net except
the vicinity of the considered place or transition [3, 7, 8, 9].

For these reasons, our tool LoLA [10] verifies the global versions for standard properties by rigorously
tracing them back to their local versions, applied to each place or transition separately. Since memory
is more limited than run time in verification, a large number of small state spaces is easier to handle
than just one large state space. In addition, our experience in the MCC tells us that, for most places or
transitions, the local property can be easily proven for most places or transitions while only few places
or transitions require complex computations. Altogether, even the sum of all efforts for verifying the
local problems is typically smaller than approaching the global problem monolithically.

We can substantially reduce the costs of considering all places or all transitions of the net by
considering bycatch. Bycatch means that, when approaching a local problem for one node, we may get
sufficient information for answering the problem for other nodes. If, for instance, we search for an
executable firing sequence that proves some transition to be quasi-live, all members of that sequence,
and all members of sequences that have been produced in unsuccessful attempts, are clearly quasi-live.
Many properties permit similar bycatch.

The effort for verifying the individual local problems can be reduced by running a portfolio approach
that applies different verification techniques in parallel. In LoLA, the following verification techniques
are used.

First, we may produce a reduced state space using the stubborn set method. There exist specialized
approaches for all local problems mentioned so far. The article [6] discusses them in detail. A reduced
state space produces a lot of bycatch. Every occurring transition 𝑡 is quasi-live regardless of whether
the state space was produced for 𝑡. Every place 𝑝 with 𝑚(𝑝) > 𝑘, for some computed marking 𝑚, is not
𝑘-bounded. Every place 𝑝 with 𝑚(𝑝) ̸= 𝑚0(𝑝), for some computed marking 𝑚, is not constant. Among
the mentioned aggregating properties, the liveness problem permits virtually no bycatch. A transition
is live if and only if it occurs in every terminal strongly connected component of the reachability graph.
Due to stubborn set reduction, this works only for the investigated transition. For other transitions,
neither presence nor absence in terminal components tell anything about their liveness. Due to this
lack of bycatch, we added a single global verification task to our portfolio for liveness as an exception
to our generally local approach. We compute a reduced state space where a version of stubborn sets is
used that preserves all terminal strongly connected components of the original reachability graph. This
reduced graph therefore preserves liveness of all transitions.

Random walks (i.e. repeated random execution of firing sequences) may provide information for some
local problems. If some sequence contains a transition 𝑡, 𝑡 is quasi-live. If such a walk enters a marking
with more than 𝑘 tokens on a place, this place in not 𝑘-bounded. If the number of tokens changes on a
place, it is not constant. Using only random walks, we can, however, never be sure that a transition is
not quasi-live. Similarly, random walks may disprove but never prove 𝑘-boundedness of a place and
they can show that a place is non-constant. For liveness of a transition, random walk do not provide any
useful information. We can restrict the set of transitions to choose from to a stubborn set that preserves
some local verification problem. This way, we can significantly increase the success rate of the random
walk approach. Random walks may also deliver some bycatch similar to state space generation.

A place invariant is a solution of 𝐶𝑇 · 𝑦 = 0 where 𝐶 is the incidence matrix of the net holding
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𝐶(𝑝, 𝑡) = 𝑊 (𝑡, 𝑝) −𝑊 (𝑝, 𝑡). If 𝑖 is a place invariant, we have 𝑖
𝑇 ·𝑚 = 𝑖

𝑇 ·𝑚0, for all markings 𝑚
reachable from 𝑚0. The right hand side of this equation is a constant. Place invariants are mainly used
for 𝑘-boundedness. If we find a place invariant 𝑖 with 𝑖(𝑝) = 1 and 𝑖(𝑞) ∈ {0, 1} for all other places,
such that 𝑖𝑇 ·𝑚0 ≤ 𝑘 then 𝑝 is 𝑘-bounded. As a bycatch, all other places 𝑞 with 𝑖(𝑞) > 0 are 𝑘-bounded
as well.

The state equation refers to the well-known fact that, for all markings 𝑚 and 𝑚′ and transition
sequences 𝑤, 𝑚 + 𝐶 · Ψ(𝑤) = 𝑚′ where Ψ(𝑤) is the 𝑇 -indexed Parikh vector of 𝑤. In the Parikh
vector, Ψ(𝑤)(𝑡) is the number of occurrences of 𝑡 in 𝑤. Let 𝑥 be a 𝑇 -indexed vector of variables and 𝑦
be a 𝑃 -indexed vector of variables. If the integer linear program (LP) 𝑚0 + 𝐶 · 𝑥 = 𝑦, 𝑥 ≥ 0, 𝑦 ≥ 0,
𝑥(𝑡) ≥ 1 is infeasible then 𝑡 is not quasi-live. If the system is feasible and 𝑥 can be arranged into an
executable transition sequence then 𝑡 and all transitions 𝑡′ with 𝑥(𝑡′) > 0 are quasi-live. If none of that
happens, we have to rely on the other portfolio members. The state equation can be used for other
local standard properties as well. For 𝑘-boundedness of place 𝑝, we replace constraint 𝑥(𝑡) ≥ 1 with
𝑦(𝑝) ≥ 𝑘 + 1. For the constant place problem, we operate with two separate LP problems where we
use 𝑦(𝑝) ≥ 𝑚0(𝑝) + 1 (resp. 𝑦(𝑝) ≤ 𝑚0(𝑝) − 1) instead. According to [9], one can further improve
this approach by using an SMT-solver instead of an LP solver.

The considerations so far suggest the following portfolios. For 𝑘-boundedness, we run, for every
place 𝑝, a reduced state space generation, a random walk task, a state equation task and a place invariant
task. For quasi-liveness we run, for every transition 𝑡, a reduced state space generation, a random walk
task, and a state equation task. For the constant place problem, we run reduced state space generation,
a random walk task, and a state equation task for every place 𝑝. In fact, we run two copies of each task
where one copy checks whether the number of tokens on 𝑝 can be increased while the other one checks
whether that number can be decreased. This separation simplifies both the stubborn set generation and
the ILP problem to be studied. For liveness, we generate a global reduced state space that preserves
all terminal strongly connected components and thus the liveness of all transitions. In addition, we
generate separate reduced state spaces for each individual transition.

The portfolio manager takes care that the number of active tasks corresponds to the number of
available cores. It also takes care that verification tasks are canceled as soon as some portfolio member
was able to find the answer for the same place or transition.

4. Symmetries

Symmetries have been introduced in [11, 12] for high-level nets and later adapted to place/transition
nets [13]. Their application is not at all restricted to Petri nets [14, 15, 16]. We follow the approach
for place/transition nets. It considers a symmetry to be a graph automorphism, i.e. a bijection on the
places and transitions that respects the node type, the arc relation, and the initial marking. A symmetry
𝜎 maps a marking to a marking 𝜎(𝑚) such that the number of tokens in 𝑚 on 𝑝 coincides with the
number of tokens on 𝜎(𝑝) in 𝜎(𝑚).

Definition 4 (Symmetry). A symmetry is a bijection 𝜎 : (𝑃 ∪ 𝑇 ) → (𝑃 ∪ 𝑇 ) such that, for all nodes
𝑥 and 𝑦 and all places 𝑝,

• 𝜎(𝑥) ∈ 𝑃 if and only if 𝑥 ∈ 𝑃 (respects node type);
• 𝑊 (𝑥, 𝑦) = 𝑊 (𝜎(𝑥), 𝜎(𝑦)) (respects arc relation and weights);
• 𝑚0(𝑝) = 𝑚0(𝜎(𝑝)) (respects initial marking).

For a symmetry 𝜎 and a marking 𝑚, the marking 𝜎(𝑚) is defined by 𝜎(𝑚)(𝜎(𝑝)) = 𝑚(𝑝), for all places
𝑝.

The identity 𝜎𝐼𝑑 with 𝜎(𝑥) = 𝑥, for all 𝑥, is always a symmetry. If 𝜎 is a symmetry, so is 𝜎−1, and
for two symmetries 𝜎1 and 𝜎2, the composition 𝜎1 ∘ 𝜎2 is a symmetry as well. That is, the set of all
symmetries is a group under composition. A Petri net may have exponentially many symmetries which
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can be represented by a generating set with a polynomial number of elements (in the number of nodes
of the net) [17, 18].

Computing the generating set for the symmetries is closely related to the graph isomorphism problem.
The graph isomorphism is in NP, and until now there is neither a known polynomial algorithm nor a
proof of NP-completeness. Computing generators for the symmetry group amounts to a systematic
search [19]. As long as every descent in the search tree ends in an actual generator, the runtime is
polynomial. If, however, there are dead ends in the search tree that require backtracking without
delivery of a generator, run time may become exponential. In the MCCs until 2021, there has been
only one model where dead ends occur, For this model, they occur in every instance of that model.
That is, the computation of the generating set is possible in polynomial time in most but not all cases.
This observation accords to the complexity considerations above. Nevertheless, the absolute amount of
required time for computing symmetries may be substantial even in those cases where it is polynomial
in principle. The extreme example is a net in the MCC where the generating set for the symmetry has
millions of elements and the total number of symmetries is beyond the numbers that can be expressed
by double preecision floating point numbers in the C programming language.

This is why the use of symmetries is quite risky in situations where only limited time is available
(such as the MCC). The computation of the generating set for the symmetries may take substantial time
(as discussed above), and the use of large generating sets in reduced state space generation may also
slow down the verification speed. For this reason, the most competitive configuration of LoLA in the
MCC does not apply the symmetry reduction in its state space explorations. For state spaces in local
verification problems, the use of symmetries for actual state space reduction is even more prohibitive
since, for every individual node, the use of a specific subgroup of the symmetries may be required, as
explained below.

We call two nodes 𝑥 and 𝑦 equivalent if there is a symmetry 𝜎 holding 𝜎(𝑥) = 𝑦. Accordingly, we
call two markings 𝑚1 and 𝑚2 equivalent if there is a symmetry 𝜎 with 𝜎(𝑚1) = 𝑚2. Both relations
are indeed equivalence relations. A symmetrically reduced reachability graph is permitted to omit
markings if it can be guaranteed that at east one member of its equivalence class is contained. There are
many ways to achieve this [18, 20]. The most popular implementation is to use the generating set to
transform a considered marking into a “small” member of its equivalence class and to store and explore
that one. “Small” usually refers to the lexicographic order on the marking vectors. This transformation
can be achieved in polynomial time. The problem of transforming a marking into the smallest instead
of some small member of its equivalence class is known to be equivalent to the graph isomorphism
problem for which, as already mentioned, no polynomial solution is known. That is, a symmetrically
reduced graph is often slightly larger than it could be in theory.

With the symmetrically reduced graph, we can approach some, but not all global versions of standard
properties.

Proposition 1 (Preservation of standard properties under symmetry). Place 𝑝 is 𝑘-bounded if
and only if the symmetrically reduced reachability graph does not contain a markimg 𝑚 where, for some
place 𝑞 equivalent to 𝑝, 𝑚(𝑞) > 𝑘.

Place 𝑝 is constant if and only if, for all markings 𝑚 contained in the reachability graph and all places
𝑞 equivalent to 𝑝, 𝑚(𝑞) = 𝑚0(𝑝).

Transition 𝑡 is quasi-live if the symmetrically reduced reachability graph contains an arc annotated
with some transition 𝑡′ that is equivalent to 𝑡.

There is no straightforward way to exhaustively analyse liveness of all transitions using the symmetri-
cally reduced graph. Remember that transition 𝑡 is live if and only if it occurs in every terminal strongly
connected component of the unreduced graph. If some transition 𝑡′ equivalent to 𝑡 occurs in some
terminal strongly connected component of the symmetrically reduced graph, then the corresponding
terminal strongly connected components in the unreduced graph may be the same for 𝑡 and 𝑡′, or may
be different (just equivalent). That is why we cannot see whether all transitions occur in all terminal
strongly connected components. Only if there is a terminal strongly connected component in the
reduced graph that neither contains 𝑡 nor any transition equivalent to 𝑡, we know that 𝑡 is not live.
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We can, however, compute a symmetrically reduced reachability graph to solve some particular local
liveness problem [18]. If we want to study the liveness of 𝑡, we just need to use only symmetries 𝜎 with
𝜎(𝑡) = 𝑡. These symmetries form a subgroup of the group of all symmetries. This approach, however,
requires computation of symmetries for every local problem and is therefore too expensive.

5. Using symmetries in a portfolio context

We are now proposing an alternative way to benefit from symmetries. We consider the following context.
We are verifying an aggregating global standard property by separating it into its local problems, one
for each place or transition. These local properties are tackled by a portfolio of verification methods, as
discussed above. For the verification, a machine with multiple physical cores is available.

In this context, we may add another thread that runs concurrently to the remaining portfolio.
It computes a generating set for the symmetries. Whenever some generator has been found, the
equivalence relation on places and transitions is updated. Whenever some portfolio member reports a
result for some place or transitions, this result is immediately propagated to all equivalent places or
transitions.

This approach has some decisive advantages, compared to state space reduction using symmetries.
First, the actual portfolio can start to do its work and does not need to wait until the generating set
for the symmetries has been computed. That is, we do not lose too much time for getting the actual
verification done. In the worst case, only the computing power of one core is siphoned away from
the actual verification. Second, every single generator allows us to reason about equivalent nodes.
So symmetries start to take effect long before the computation of the generating set has finished.
Third, after having used a generator to update equivalences, the generator does not need to be stored
permanently (which is the case for state space reduction as the generators are applied for transforming
markings into their small representatives). Fourth, if symmetries are detected, we may skip a large
number of local verification tasks since values can be inferred from equivalent nodes. Our tool LoLA
has recently been quite successful in the verification of global properties, and we blame the combination
of local property verification and our novel symmetry application for that.

For organizing the integration of the symmetries into the regular portfolio, the portfolio manager of
our tool has implemented the following communication.

The portfolio manager records the local results and checks whether the global result is determined.
Taking quasi-liveness as an example, the global result is fixed if one transition is reported not to be
quasi-live, or if all transitions have been reported to be quasi-live. The portfolio manager additionally
maintains the equivalence relation. To this end, it uses the data structure of Tarjan’s union/find algorithm
[21] that handles equivalence relations in the most efficient way. It starts with singleton equivalence
classes for all nodes. Whenever a symmetry pours in, it unifies the class containing 𝑥 with the class
containing 𝜎(𝑥), for all nodes 𝑥. Depending on the nature of the property, it only maintains the place
classes or only the transition classes.

The regular tasks ask the portfolio manager for an unsolved node they can process (and have not
processed yet), and finally deliver their result (true, false, or inconclusive). That result is then propagated
to all nodes that are equivalent to the reported one. The symmetry task is started at the beginning.
Whenever it finds a generator of the symmetry group, it reports this generator to the portfolio manager
for updating the equivalences. If equivalence classes change, known results are propagated to the new
members of the equivalence class. Using this strategy, we can evaluate every global property for the 𝑛
dining philosophers problem with 5𝑛 places and 4𝑛 transitions by solving only up to 5 local problems.
This is a dramatic speed up, especially for large 𝑛.

6. Conclusion

We studied the verification of aggregating global properties. The proposed approach has a few similarities
to state-of-the-art model checking for Petri nets. For both types of verification tasks, we run a portfolio
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offering various verification methods, including methods that strongly benefit from Petri net structure
theory. For both types of verification problems, we try to separate the problem into as many as possible
subproblems such that solving the subproblems requires less memory.

There are, however, remarkable differences between model checking and the verification of global
properties. The first difference is the sheer number of subproblems we end up with. In model checking,
we may be able to rewrite the formula under investigation into a Boolean combination of a few
sub-formulas and verify them separately. An aggregating global property can be split into as many
subproblems as we have places or transitions in the net. For this reason, we need to squeeze out as
much bycatch as possible from the solved subproblems. While the subproblems in model checking tend
to be heterogeneous, subproblems for global properties are homogeneous. That is why it is possible to
apply symmetries in a different manner. Instead of using them for state space reduction, we may apply
them to generate additional bycatch by propagating results from solved problem instances to unsolved
problem instances.
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