
PLD-SiM: Process Line Diagram Simulator and
Modeler
Akshit Rajput1, Karnika Shivhare1 and Rushikesh K. Joshi1

1Department of Computer Science Engineering, Indian Institute of Technology Bombay, Mumbai, India

Abstract
This paper introduces a browser-based tool for modeling applications with Process Line Diagrams
(PLDs)[1]. The tool aims at providing a modular and logical approach for building process architecture
models to bridge the gap between high-level process notations, low-level formal process models and
implementation programming languages. While high-level process models primarily rely on manual
practices for architectural detailing and trace conformance checking, the paper presents a user-assisted
trace simulator to visually inspect the behavior of a process. The interface enables the user to obtain
pen-paper snapshots from the process through dry run in the visual simulator. The visual modeler
implements the syntactic rules of the PLD primitives, including roles, events, choices, and event syn-
chronization. The same are enforced by the simulator for active prototyping through visual traces.

Keywords
Process Modeler, Workflow Modeling, Process Automation, Process Debugger, Process Line Diagram,
PLD-SiM, PLD

1. Introduction

Process Line Diagram (PLD) [1] is a visual modeling approach for modeling of business pro-
cesses in a modular fashion. It is a logical model of process architecture, which is aimed at
bridging the gap between the high-level notational front such as BPMN [2], low-level formal
models such as Petri nets [3], and implementation languages. It is known that high-level vi-
sual modeling is prone to engineering defects, and high-level visual languages, including the
standard specification BPMN, carry notational defects such as non-compactness, bulkiness,
complexity [4][5], redundancy [6] [7], and ambiguity [8] [9] [10]. In contrast, low-level formal
modeling languages such as Petri nets do not have the richness of high-level notations that
are required for easy comprehension at user-level or architectural-level modeling of processes.
Trading off these gaps, Process Line Diagram (PLD) provides a minimalistic but a sufficiently
high-level toolset of modeling notations. PLDs support modular models of processes, and they
also bring the modeling phase closer to the implementation phase by introducing the concept
of modular concurrency and structuredness at the modeling stage itself. This early integration
of modular concurrency into the process is aimed at reducing error possibilities that may be
incorporated during transition into implementation. The PLD approach weighs in the idea of
implementation-friendly modeling notation by strongly recommending early modeling in a
modular fashion.

PNSE’24, International Workshop on Petri Nets and Software Engineering, 2024
" akshitrajput@cse.iitb.ac.in (A. Rajput); karnika@cse.iitb.ac.in (K. Shivhare); rkj@cse.iitb.ac.in (R. K. Joshi)
� 0009-0005-8654-2437 (A. Rajput); 0000-0001-6490-0380 (K. Shivhare); 0000-0002-2712-1406 (R. K. Joshi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

182

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:akshitrajput@cse.iitb.ac.in
mailto:karnika@cse.iitb.ac.in
mailto:rkj@cse.iitb.ac.in
https://orcid.org/0009-0005-8654-2437
https://orcid.org/0000-0001-6490-0380
https://orcid.org/0000-0002-2712-1406
https://creativecommons.org/licenses/by/4.0


Akshit Rajput et al. CEUR Workshop Proceedings 182–191

Its minimalistic toolset consists of 19 elements. Through its role-based modeling features,
PLDs drive design thinking in terms of trace conformance with the desired process behavior.

This paper discusses PLD-SiM, a tool which bundles both modeler and simulator for PLD
diagrams. The modeler segment of the tool is inclusive of syntactic modeling checks that are
performed in accordance with the definition of well-formedness of PLD notations. They include
checks for synchronization through naming correspondence in message and event throw-catch
pairs. The simulator can be used to execute a modeled process in prototype mode going over its
control flows. The simulation process in this tool is equipped with user-interactivity to enable
modelers to carry out refinements. By running the process in prototype mode in the simulator,
an architect can find the exact location in the model that deviates from the desired process
behavior. Once the deviation has been found, iterative refinement to the model can be carried
out as a debugging action and the prototype execution can be repeated.

2. Literature Survey

There are tools available for modular process modeling using other notations such as Appian[11],
Bizagi [12], and Camunda [10][13] for Bussiness Process Modeling Notation (BPMN)[2] and
Decision Modelling & Notation (DMN)[14]. Along with their modeling properties, these tools
provide low-code automation that facilitates rapid design, development, and deployment of
workflows and applications for organizations. AgroUML [15], MagicDraw tool [16], and Dia
[17] are some tools that are used to model Unified Modeling Language (UML) [18]. However,
UML does not support the richness of abstractions required for business process modeling.
CPN tools (currently CPN IDE) [19] presents a graphical environment for the development, and
simulation of colored Petri net models for the design and analysis of complex systems. Tools
Appian[11], Bizagi[12] and Camunda [10][13] are used for high-level modeling notations BPMN
and DMN.

The PLD approach prescribes a role-centric process-behavior-driven modeling with a focus
on structuredness in the initial stages. In order to aid automation of architectural detailing
and trace conformance checking for PLD models, the PLD-SiM modeler implements a visual
simulator.

3. PLD-SiM (PLD Simulator and Modeler)

The PLD-SiM tool follows a two-tier architecture with three components, namely, Interface,
Modeler, and Simulator. Now we discuss the working and use of each of the three components.

3.1. PLD-SiM Interface

The user interface comprises a toolkit panel, a canvas, and a functionality group. It is responsible
for maneuvering the entire functioning of PLD-SiM processes, inclusive of model designing in
PLD, trace simulation, process debugging, load-store of processes from and to JSON format,
generating operational XML for processes etc. Now, we describe the components of the interface
to further elaborate Figure 1.

183



Akshit Rajput et al. CEUR Workshop Proceedings 182–191

On the left-hand side of the canvas in Figure 1, modeling elements of PLD-SiM are enlisted.
They include a total of 19 elements. In addition, it also includes an annotation text-box, and a
join primitive for conditional and selection guard. These 21 elements in the toolset can be used
in combination to model a process. The entire toolset is summarised in Table 1.
Role: It is the first used element in the toolset, and it represents the role of an actor, which

may be a logical active process entity or a person or a resource in real life. It is a unit of
concurrency. Every other model element is part of some or the other role in the model. Without
a role, no element except textboxes can be placed. A role is created as a vertical flow line, which
can be extended as and when more elements are added to it. When a new role or any other
element such as a message element is created, the tool prompts for its name. In Figure 1, the
modeled process has Order Fulfillment and Procurement as its two roles.
Task: It denotes an activity performed by a role. In design terms, it usually represents the

execution of a function performing some specific functionality to generate a desired result in
the process. A task is depicted as a small filled circle, and it is always associated with some role.
Examples of tasks in Figure 1 are Check Availability, inform customer, order from supplier, ship
article, check availability with supplier, and Financial settlement. They are from two roles in the
model. In a Petri net model, a task is typically depicted as a transition, whereas, BPMN has
multiple special notations for different types of tasks.
Gateway: There are two types of gateways, namely, conditional gateway and selection

gateway. The former represents a branching with conditions mentioned on their respective
paths. On the other hand, a selection gateway also depicts an exclusive choice, but it models a
non-deterministic branching such as user selection. In both gateways, only one path continues.
In Figure 1, the gateway after task check availability in role Order Fulfillment is a conditional
gateway.
Guards: They provide event and message based branching options in the PLD-SiM, permitting

Figure 1: PLD-SiM user interface with an Order Fulfillment and Procurement process mod-
eled

184



Akshit Rajput et al. CEUR Workshop Proceedings 182–191

a role to wait for some specific message or an event notification arriving from another role. If
one of the guard messages or event notifications is received, the respective branch is continued.
In Figure 1, the guard after event procurement is an event notification guard. It branches based
on the type of event notification received in the immediate previous event receive action. In
Figure 1, there are three types of procurement notifications: late delivery, undeliverable, and on
time delivery.
Communications: Messages and events are used for modeling inter-role interactions. Event-

based and message-based interactions along with their variants are possible in PLD-SiM. A
message send and a matching message receive primitives are used for message communication.
The name of the Message received and the message sent need to match. In Figure 1, Order in
the Customer role is a message send action, and Order in the Order Fulfillment role is a message
received. In message send to a specified process messaging mechanism, a message is sent to a
particular role. Message Receive from a specified Process receives a message from a specified role.
The name of the target role is specified.

For event-based communication, PLD-SiM has a separate toolset. The primitive Event Throw to
Matching Catch represents an event throw, which is supposed to be caught by a matching Event
Catch from Matching Throw in another role. In figure 1, the procurement in the Order Fulfillment
role is an example of Event Throw to Matching Catch, and procurement in the Procurement role
is an example of Event Catch from Matching Throw. This event communication is performed
over matching event names, irrespective of the role in which they appear. PLD-SiM also supports
role-specific event communication via primitives Event Throw to Specified Process and Event
Catch from Specified Process.

Multicast Message and Multicast Event are communication channels for multicast mode. These
bulk operations can be chosen to enhance parallelism in communication.
Textbox aids modelers in adding additional captions or annotations in a process. It can exist

independently as a reference note. They do not have any behavioral implications.
Join button enables modelers to merge branches inside a single role.

3.2. PLD-SiM Modeler

The PLD-SiM modeler is responsible for providing meaning to the elements, connecting them
into a process, defining and storing required states for simulation, and ensuring modeling
validations of a PLD process. The interface is responsible for handling the location of each
element of the drawing on the canvas, whereas, the PLD-SiM modeler defines the relative
position of each element in the model. Moreover, the PLD-SiM modeler defines JSON properties
and definitions for each element of the model. It then connects all the elements to form them
into an in-memory process data structure in accordance with PLD rules.

PLD-SiM Modeler is equipped with a set of process validations that are required to be met
during the process. For each element, while performing addition, modification, or removal on
the canvas, the Interface interacts with the Modeler component to validate the change a user
wishes to draw. It then creates a validated code-based representation for the modeled PLD
process in JavaScript with data in JSON notation. This data includes coordinates on canvas, IDs,
names and properties of elements, and the connections between elements.

185



Akshit Rajput et al. CEUR Workshop Proceedings 182–191

Element Name Element
Design

Role
Task

Condition Gateway

Selection Gateway

Event Guard

Message Guard

Message Send to Mes-
sage Receive
Message Receive from
Matching Send
Message Send to Speci-
fied Process

<P>

<M>

Message Receive from
Specified Process

<P>

<M>

Multicast Message

Event Throw to Match-
ing Catch

Event Catch from Match-
ing Throw

Event Throw to Speci-
fied Process

<P>

<M>

Event Catch from Speci-
fied Process

<P>

<M>

Multicast Event

Local Database

Global Database

Loopback

Join

Table 1: PLD-SiM Toolset Figure 2: Nobel prize process model

186



Akshit Rajput et al. CEUR Workshop Proceedings 182–191

Figure 3: Incident management process

3.3. Modeling Validations

The tool does not allow any validation criteria to be violated at any point in time during
modeling. The following are a few modeling validations imposed by the tool.
Inclusion Properties ensure syntactically correct inclusion of an element inside another

element in a model. A task can only appear over a role in the process drawing, i.e. a task
definition can only be included inside a role definition. A role is a part of the process definition.
Also, a guard can only be defined within a role. Each branch in an Event-based guard begins
with an event catch, and each branch in a Message-based guard begins with a message received.

Naming mandates all roles and tasks to have names. Primitives Message Send to Matching
Receive, Message Catch from Matching Send, Multicast Message have a mandatory message name
attached to them. For primitives Message Send To Specified Process and Message Receive from
Specified Process, besides the message name, a role name also needs to be identified, in order
to name the role to which the message is to be sent or from which the incoming message
is to be caught. Similarly, Event Throw to Matching Catch, Event Catch from Matching Throw,
Event Throw to Specified Process and Event Catch from Specified Process have mandatory event
descriptions attached to them. These communication primitive pairs are thus identified with
their matching names, using which a communication gets established.
Branching validations All branches in conditional gateways have conditions specified in

text form. Each flow branch inside a role following an event guard must have Event Catch
from Matching Throw as its first element. Similarly, after a Message Guard in every branch, the
role flow must have a Message Receive from Matching Send primitive as its first element. These
well-formedness rules of PLD are ensured by the PLD-SiM modeler. The tool prompts the user
whenever naming information, and mandatory primitives are required from the user.

187



Akshit Rajput et al. CEUR Workshop Proceedings 182–191

3.3.1. PLD Simulator

The PLD-SiM Simulator is responsible for providing simulation of the modeled processes. It
utilizes the model data generated by the modeler to create a simulation environment for the
process, which is presented on the interface for the users to view and interact to carry out a
simulation run. The tool uses a token-based and interactive method with a three-colored scheme
for simulation. All elements and the process are shown in black color during the modeling
mode. In simulation mode, black color represents all deactivated places of the process. Green
color token showcases all available choices for the process at a given point in the simulation run.
Multiple elements might have a green token in a state at a single point of time. Red color tokens
are used for guard and gateway choices. A user can pick any of the green or red color tokens to
move into the next step in the simulation. The simulator then generates the tokens for the next
possible token places according to the current choice of the token interactively indicated by the
user. Thus, the PLD-SiM modeler tool provides a user interactive simulation process for the
users to verify and debug the modeled process. Another simulation run of the same process can
provide a different trace as per the choices made by the user during the simulation.

The simulator enables selective tracing and debugging of a process, as any trace can be
simulated by the user as far as it is within the model’s state space. Interactive tracing can be
used in debugging of a process to carry out conformance validation as per the trace requirements.

4. Example Display

In this section, we discuss PLD models of two examples that have been modeled in the tool.
These examples are modeled based on the examples given in the OMG’s (Object Management
Group) BPMN by Example [20][2].

4.1. Nobel Prize process

Figure 2 shows the PLD model of the noble prize process [20] in the PLDMS tool. [Note: Since
the tool at present does not support timed processes, the timer in the original process has been
modeled as a start trigger message.] The process starts in September, when a timer trigger is
activated at the Nobel committee role. The committee multicasts a Nomination Form and sends
a message Collect Completed Nomination Forms to role Form Collection. Role Form Collection
completes task Collect Completed Nomination Forms and sends message Completed Nomination
Forms to role nobel Committee, which completes the task Screen and select preliminary candidate.

After this, a condition guard is placed, which models the condition by the committee regard-
ing the need for an expert. The two conditions Need For Expert and No Need For Expert provide
the two alternative flows. If needed, role Expert is contacted with a message List Of Preliminary
Candidate. Role Expert carries out task Assess Candidate Work. In this task, the expert accesses
the work of candidates for analysis. The expert sends back a message Candidate Assessment
Report to role noble comittee. In the case of selection of another condition not needing an expert,
the committee carries out task Write Recommendation Report. At this time, both the branches of
the condition guard are merged. The role nobel Commitee carries out task Write Recommenda-
tion Report and sends message Report With Recommendation to role Nobel Assembly. Role noble

188



Akshit Rajput et al. CEUR Workshop Proceedings 182–191

committee sends a recommendation report to role Nobel Assembly, via message Report With
Recommendation. Role Nobel Assembly carries out task Discussion of Nomination, and it com-
pletes task Select Laurate. After selecting the laurate, they make an announcement. A message
is sent to both Nobel Laurate and nobel Commitee, via a multicast message Announcenment. The
committee holds the ceremony, with task Hold Nobel Prize Ceremony to complete the process.

4.2. Incident Management

Figure 4 shows the PLD simulation trace of the incident management process shown in Figure
3. Each state shows the role that is active in that step. In this process, a role VIP Customer sends
a message Problem to role Key Account Manager. Role Key Account Manager asks questions to
role VIP Customer via message Question. Role VIP Customer replies to those questions through
message Answers. After analyzing the answers from role VIP Customers, role Key Account
Manager executes a condition regarding handling of the issue. The two conditions Can Handle
and Can not Handle provide the two alternative flows. If role Key Account Manager can not
handle the issue, then the role sends a message Issue to another specific role 1st level support.
This communication is done using a message Message Sent to Specified Process element. This
message variant is used to send a message to a particular role. If the branch Can Handle is
chosen by role 1st Level Support, a message Solution Explanation is sent to role VIP Customer.

On receiving message Issue, if the first level support can handle the issue and execute condition
Result, it sends a message Feedback to role Key Account Manager. If the branch with condition
Not Result is chosen, a message Issue is sent to role 2𝑛𝑑 Level Support. The role 2𝑛𝑑 Level Support
makes a conditional decision about handling the issue. The conditions specified are sure and
unsure. If role 2𝑛𝑑 Level Support is sure of the result, it sends a message Feedback to role 1𝑠𝑡

Level Support. If it is unsure about the solution, then it forwards message Issue to role Software
Developer. Role Software Developer returns message Feedback to role 2𝑛𝑑 level support as its
solution. In this way, the communication proceeds to sort out the issue raised. These steps are
shown in Figure 4 depicting the simulation trace.

4.3. A brief comparison to BPMN

Figure 3 shows a model of the incident management process in PLD-Sim. Owing to its richness,
a BPMN diagram typically reflects a complex structure and a high notational knowledge even
while making a relatively simpler process. On the other hand, the PLD model shows a simpler,
and an ambiguity-free architecture. The simulation run of the same is shown in Figure 4. In the
PLD-SiM tool, communication mechanisms like message and event send and receive, with a
compact toolset comprising 19 elements reduces learning time to start with modeling a process,
avoiding possible ambiguities and variations, and model complexity. Model complexity is usually
observed in high-level modeling notations as in BPMN[21], which has a large set of symbols
and multiple alternatives. The incident management process modeled in PLD-SiM requires only
five elements, namely, the Message Send, Message Receive, Task, Role, and Conditional gateway
to complete the whole process. A smaller set of elements is intended to make it easier to model
and learn for a new user. Whereas, modeling in BPMN[21] requires an understanding of a wide
variety of symbols and abstractions.

189



Akshit Rajput et al. CEUR Workshop Proceedings 182–191

Figure 4: Simulation states of a trace in Incident Management process in the PLD-SiM

5. Conclusions and future work

We presented PLD-SiM, a tool that provides a platform to model and simulate PLD processes.
PLD is an alternative to BPMN with a compact notation set, and a tracing-friendly notation
around concurrent roles, intra-role branching, and inter-role communication. The user can
simulate and debug the process model using selective inputs from the user, as the tool provides
a seamless approach to debugging the processes. Further, we look forward to convert the
processes into Petri Nets for formal analysis, and to integrate code generation for automation.

References

[1] K. Shivhare, R. K. Joshi, Process line diagrams (plds): An approach for modular process
modeling, in: Proceedings of the 16th Innovations in Software Engineering Conf., 2023.

190



Akshit Rajput et al. CEUR Workshop Proceedings 182–191

[2] Object Management Group (OMG), OMG Business Process Model and Notation (BPMN)
Version 2.0 Specification, 2011. URL: http://www.omg.org/spec/BPMN/2.0.

[3] T. Murata, Petri nets: Properties, analysis and applications, Proc. of the IEEE 77 (1989).
[4] A. Suchenia, Towards a taxonomy of business process and its anomalies, International

Journal of Computer Science & Network Security 21 (2021) 230–240.
[5] M. z. Muehlen, J. Recker, How much language is enough? theoretical and practical use of

the business process modeling notation, Seminal Contributions to Information Systems
Engineering: 25 Years of CAiSE (2013) 429–443.

[6] H. Leopold, J. Mendling, O. Günther, Learning from quality issues of bpmn models from
industry, IEEE software 33 (2015) 26–33.

[7] T. Rozman, G. Polancic, R. V. Horvat, Analysis of most common process modeling mistakes
in bpmn process models, Eur SPI’2007 (2008).

[8] E. Börger, O. Sörensen, B. Thalheim, On defining the behavior of or-joins in business
process models., J. Univers. Comput. Sci. 15 (2009) 3–32.

[9] F. Corradini, C. Muzi, B. Re, L. Rossi, F. Tiezzi, Global vs. local semantics of bpmn 2.0
or-join, in: 44th International Conference on Current Trends in Theory and Practice of
Computer Science, SOFSEM 2018, Springer, 2018, pp. 321–336.

[10] F. Corradini, C. Muzi, B. Re, L. Rossi, F. Tiezzi, Bpmn 2.0 or-join semantics: Global and
local characterisation, Information Systems 105 (2022) 101934.

[11] A. R. Kunduru, Cloud bpm application (appian) robotic process automation capabilities,
Asian Journal of Research in Computer Science 16 (2023) 267–280.

[12] O. Gjoni, Comparison of two model driven architecture approaches for automating business
processes, moskitt framework and bizagi process management suite, Mediterranean Journal
of Social Sciences 6 (2015) 615.

[13] E. Schäffer, V. Stiehl, P. K. Schwab, A. Mayr, J. Lierhammer, J. Franke, Process-driven ap-
proach within the engineering domain by combining business process model and notation
(bpmn) with process engines, Procedia CIRP 96 (2021) 207–212.

[14] J. Taylor, J. Purchase, Real-world decision modeling with DMN, Meghan-Kiffer Press
Tampa, 2016.

[15] W. Complak, A. Wojciechowski, A. Mishra, D. Mishra, Use cases and object modelling
using argouml, in: On the Move to Meaningful Internet Systems: OTM 2011, Hersonissos,
Crete, Greece, October 17-21, 2011. Proceedings, Springer, 2011, pp. 246–255.

[16] E. Planas, J. Cabot, How are uml class diagrams built in practice? a usability study of two
uml tools: Magicdraw and papyrus, Computer Standards & Interfaces 67 (2020) 103363.

[17] M. Ozkaya, Are the uml modelling tools powerful enough for practitioners? a literature
review, IEt software 13 (2019) 338–354.

[18] L. Khaled, A comparison between uml tools, in: 2009 Second International Conference on
Environmental and Computer Science, 2009, pp. 111–114. doi:10.1109/ICECS.2009.38.

[19] J. Kurt, M. K. Lars, Coloured petri nets modeling and validation of concurrent systems
(2009).

[20] Object Management Group (OMG), OMG BPMN by Examples, 2010. URL: http://www.
omg.org/spec/BPMN/2.0/examples/PDF.

[21] M. Chinosi, A. Trombetta, Bpmn: An introduction to the standard, Computer Standards &
Interfaces 34 (2012) 124–134.

191

http://www.omg.org/spec/BPMN/2.0
http://dx.doi.org/10.1109/ICECS.2009.38
http://www.omg.org/spec/BPMN/2.0/examples/PDF
http://www.omg.org/spec/BPMN/2.0/examples/PDF

	1 Introduction
	2 Literature Survey
	3 PLD-SiM (PLD Simulator and Modeler)
	3.1 PLD-SiM Interface
	3.2 PLD-SiM Modeler
	3.3 Modeling Validations
	3.3.1 PLD Simulator


	4 Example Display
	4.1 Nobel Prize process
	4.2 Incident Management
	4.3 A brief comparison to BPMN

	5 Conclusions and future work

