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Abstract
Both Petri Nets and finite automata are prone to the state explosion problem. A recent line of research shows
the state explosion in finite automata is captured by a notion of convexity. We outline how the result on finite
automata can be exploited to suggest a new approach for studying Petri nets.
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Petri nets are widely used to model distributed systems. The expressive power of this formalism
comes to a price: Petri nets are prone to the state explosion problem [1]. A Petri net can describe
a system that may have infinitely many states, thus making it difficult to analyze and simulate the
system’s behavior. Given a Petri net and an initial marking, the reachability graph is a (possibly infinite)
graph describing all markings of the Petri nets reachable from the initial marking by firing transitions
(see Figure 1). A classical result shows that it is possible to decide whether the reachability graph is
finite by constructing the Karp-Miller tree of the Petri net. To limit the complexity of the reachability
graph, it is possible to add (topological) constraints to the Petri nets that ensure that the reachability
graph is small or at least finite, while still allowing the modeling of a wide range of systems (see [2]
for a survey). A Petri net is structurally bounded if the reachability graph is finite for every choice of
the initial marking. An important special case of structurally bounded Petri nets is that of conservative
Petri nets, in which after firing any transition, the total number of tokens is the same as before firing
the transitions. Alternatively, we can add constraints that depend on a parameter 𝑘 to parameterize
the size of the reachability graph as a function of 𝑘. For example, a Petri net is 𝑘-bounded if every
marking reachable from the initial marking has the property that no place contains more than 𝑘 tokens.
In particular, an 1-bounded Petri net is safe.

Petri nets can be seen as an extension of finite automata. In automata theory, a similar state explosion
occurs when we apply the powerset construction to convert a nondeterministic automaton (NFA) into a
deterministic automaton (DFA) recognizing the same regular language: if an NFA has 𝑛 states, then the
equivalent DFA can have up to 2𝑛 − 1 states (see Figure 1). While the expressive power of NFAs is the
same as the expressive power of DFAs, determinism is extremely helpful in studying the properties
of an automaton. Some basic problems in automata theory — such as the emptiness problem and the
equivalence problem — are PSPACE complete on NFAs but can be solved in almost-linear time on DFAs.
The natural question is whether for automata it is possible to follow the same path that we sketched for
Petri nets — adding constraints to the topology of the considered NFAs to control the state explosion.

A recent line of research in automata theory has shown that, indeed, a notion of convexity captures
the complexity of the powerset construction and establishes an unexpected connection between data
compression and automata theory, thus leading to Wheeler automata [3]. A Wheeler NFA is endowed
with a total order on the set of all states. In Figure 2, the total order is given by the numbering of the
states. First, the total order respects equally-labeled edges: for example, if we consider edges (10, 5, 𝑏)
and (11, 6, 𝑏), we have 10 < 11, and consistently we have 5 < 6. Second, if we consider edges with
distinct labels — such as (5, 2, 𝑎) and (11, 7, 𝑏) — we have 𝑎 < 𝑏 and consistently the end states satisfy
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Figure 1: Top left: A (conservative) Petri Net, with initial marking (1, 1, 0, 0, 0), meaning that 𝑝1 and 𝑝2 contain
1 token and 𝑝3, 𝑝4 and 𝑝5 contain 0 tokens. Top Right: The corresponding reachability graph. Bottom left: An
NFA. Bottom right: The equivalent DFA obtained by the powerset construction. Every state in the equivalent
DFA corresponds to a nonempty set of states in the original NFA.

2 < 7. Wheeler automata admit a compressed representation that supports efficient pattern-matching
queries. This is crucial in bioinformatics, where both time-efficient and space-efficient algorithms
are required. For example, de Bruijn automata are used in genome assembly [4], and every de Bruijn
automaton is a Wheeler automaton.

Surprisingly, if we start from a Wheeler NFA and we apply the powerset construction, in the worst
case the equivalent DFA does not have 2𝑛− 1 states, but only 2𝑛− 1 states. This paradigm was recently
extended to arbitrary automata by introducing a new parameter 𝑝 [5, 6, 7]. Informally speaking, an
automaton has parameter 𝑝 if we can partition the set of all states into 𝑝 sets so that the convexity
properties of Wheeler automata hold for all the edges leaving the same set and reaching the same set.
In other words, 𝑝 identified a relaxed notion of convexity. In the worst case, 𝑝 is equal to the number
𝑛 of states, and the case of Wheeler automata corresponds to 𝑝 = 1. Unexpectedly, the results on
Wheeler automata can be extended to arbitrary automata and, in particular, if we apply the powerset
construction to an NFA with 𝑛 states, the equivalent DFA has at most 2𝑝(𝑛− 𝑝+ 1)− 1. In the worst
case, 𝑝 = 𝑛 and we retrieve the bound 2𝑛 − 1. For 𝑝 = 1 (the Wheeler case), we retrieve the bound
2𝑛− 1. Most importantly, the quantity 2𝑝(𝑛− 𝑝+ 1)− 1 is only exponential in 𝑝, so we can avoid the
state explosion for small 𝑝 (that is, if we have “quasi-convexity”).

Our goal is to extend the convexity paradigm to Petri nets. This is both of theoretical and practical
interest. Currently, we do not know natural classes of automata for which 𝑝 is — say — at most 5. At
the same time, many Petri nets describing real systems have a small 𝑝 — intuitively, many real systems
are “quasi-convex”. For example, the Petri nets modeling the manufacturing system in Figure 2 can be
divided into 4 linear components (one for each component and one describing the process after the
merging). Every linear component can be seen as a total order, so it is intuitively reasonable to claim
that 𝑝 is at most 4 in our example.

We have three main objectives. First, we formalize the notion of convexity (or quasi-convexity)
and we study the properties of convex Petri nets (boundness, reachability, and so on), focusing on
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Figure 2: Left: A Wheeler NFA. Right: A Petri net modeling a manufacturing system where three distinct
components are processed independently and then merged to obtain the final product (adapted from [8]).

the state explosion. Second, we show how convex Petri nets can model a broad spectrum of real
systems by providing case studies. Lastly, we study the languages recognized by convex Petri nets. We
know that finite automata recognize regular language (finite strings) and 𝜔-regular languages (infinite
strings). Wheeler automata recognize an interesting subclass of regular languages — Wheeler languages
— that always admit a minimum Wheeler automata, an algebraic characterization, and a Myhill-Nerode
theorem [3]. Petri nets can also be studied as acceptors of finite words [9] and infinite words [10], so
the natural question is how to extend Wheeler languages to Petri nets by introducing the notion of
convex (or Wheeler) Petri net language.
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