
Mining Modular Structure of Processes using Process Line
Diagrams
Karnika Shivhare1, Rushikesh K. Joshi1

1Indian Institute of Technology Bombay, Mumbai, India 400076

Abstract
Process mining algorithms are unable to retain the modularity details of the processes, which are inherent as part of implementations
of process, but get missed out during mining. We propose to mine processes in form of Process Line Diagrams (PLDs) in order to retain
modularity as part of process mining itself.

Keywords
Business Processes, Process Line Diagrams (PLD), Process Mining, Petri Nets, Modular Process Structures, PLD Mining

1. Introduction
Process Line Diagram (PLD) [1] is a visual modeling ap-
proach that bridges gap between high-level visual modeling
languages such as BPMN [2], which are non-compact [3]
[4], complex [5] [4], notational heavy [4], redundant [5]
[6] and ambiguous [7] [8] [9], and low-level mathematical
formalisms such as Petri Nets (PNs) [10] that lack commu-
nications and interaction capabilities required for processes
[1]. It provides capabilities to capture modularity details of
processes.

Modularity of processes refers to inherent structuring
of processes into logical modules or components. Existing
process mining algorithms focus on extracting the execu-
tional structures of processes from their trace logs. These
algorithms utilize different modeling approaches for rep-
resentation of extracted processes. For example, BPMN
miners [11], [12] mine BPMN [2], [13], Alpha miner and
family [14] [15] [16] [17], and Inductive Miners and varia-
tions [18] [19] mine PNs [10], Heuristics miner [20] mines
Heuristics Nets [20], CPN Miner [21] mines Colored Petri
Nets [22], L* Process Miner [23] mines processes as finite
automatons, and DFG Miners [24] [25] mine Directly Fol-
lows Graphs. However, these modeling algorithms do not
extract modularity of processes. Interdependencies, interac-
tions, and boundaries between process modules get missed
during the mining process, which may result in incomplete
or inaccurate process models in this direction. This paper
addresses this critical gap by proposing to preserve process
modularity during mining itself.

Our idea centers on the extraction of modular structures
from process trace sets, aiming to retain implementation-
friendly modularity into the mining process. We utilize
Process Line Diagrams (PLDs) as a means of capturing and
visualizing the modular structure of processes extracted
from trace logs.

2. An Exemplar Illustration
We consider an exemplar Petri Net (PN) shown in Figure
2 to demonstrate step-wise construction of corresponding

PNSE’24, International Workshop on Petri Nets and and Software Engi-
neering 2024
" karnika@cse.iitb.ac.in (K. Shivhare); rkj@cse.iitb.ac.in (R. K. Joshi)
~ https:https://www.cse.iitb.ac.in/~karnika/ (K. Shivhare);
https:https://www.cse.iitb.ac.in/~rkj/ (R. K. Joshi)
� 0000-0001-6490-0380 (K. Shivhare); 0000-0002-2712-1406
(R. K. Joshi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attri-
bution 4.0 International (CC BY 4.0).

PLD. Considering the traceset T= {a.c.t.x.z, a.c.t.y.z, a.c.t.z.x,
a.c.t.z.y, b.c.t.x.z, b.c.t.y.z, b.c.t.z.x, b.c.t.z.y, c.a.t.x.z, c.a.t.z.x,
c.a.t.y.z, c.a.t.z.y, c.b.t.x.z, c.b.t.z.x, c.b.t.y.z, c.b.t.z.y}, we illus-
trate mining of process using Figure 1, to obtain PLD shown
in Figure 3. Process mining algorithms, such as alpha min-
ing [14] are based on footprint matrices and several types
of relations [26]. Our approach generates XOR split, XOR
merge, AND fork, and AND join relationships as demon-
strated respectively using (1) through (4) for our exemplar
Petri Net of Figure 2. The approach differs from the other
process mining algorithms in extraction and construction,
because it directly extracts Process Line Diagrams for pro-
cesses, rather than building PNs.

xor_split: {’t’= {’x’, ’y’}, ’start’= {’a’, ’b’}} (1)

xor_merge: {’t’= {’a’, ’b’}} (2)

and_fork: {’t’= {’z’}, {’x’, ’y’}, ’start’= {’c’}, {’a’, ’b’}} (3)

and_join: {’t’= {’c’}, {’a’, ’b’}} (4)

Absence of a transition in records of any of the relationships
((1) through (4)) can be assumed as an empty set for that
transition. It represents the state of transition being not
involved in that relationship. For example, there are no
XOR splits from transitions a, b, c, x, y and z in this example,
and thus they do not hold their records in xor_split shown
in (1).

Construction of a process line diagram for the process
begins with construction of a role from unnamed mark-
ing point, start (hidden). Presence of 𝑎𝑛𝑑_𝑓𝑜𝑟𝑘(𝑠𝑡𝑎𝑟𝑡) in
(3), constructs multicast event as shown in Figure 1(a), sub-
sequently followed by two corresponding event catches
into two new roles as shown in Figure 1(b), because
𝑎𝑛𝑑_𝑓𝑜𝑟𝑘(𝑠𝑡𝑎𝑟𝑡) forks transition start into {c} and {a, b}.
We name the multicast event and its corresponding event
catches as a combination of two forks i.e. here abc. One
of these event catches, representing the forking from start
into {c}, is immediately followed by construction of tran-
sition c due to absence of XOR merge and AND join at
transition c. It is shown in Figure 1(c). Transition c is in-
volved in 𝑎𝑛𝑑_𝑗𝑜𝑖𝑛(𝑡) = {𝑐}, {𝑎, 𝑏} representing and_join
at transition t. Ergo, a throw event t is constructed next to
transition c as shown in Figure 1(d). An event catch t to
correspond to this event throw t is constructed in a new
role as shown in Figure 1(e), because merge(s)/join(s) exist
at transition t and a role for transition t is not created yet.
This newly created role is responsible for connecting all
joins and merges incoming into transition t before its ac-
tual execution. It holds synchronisation conditions imposed

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:karnika@cse.iitb.ac.in
mailto:rkj@cse.iitb.ac.in
https:https://www.cse.iitb.ac.in/~karnika/
https:https://www.cse.iitb.ac.in/~rkj/
https://orcid.org/0000-0001-6490-0380
https://orcid.org/0000-0002-2712-1406
https://creativecommons.org/licenses/by/4.0


Figure 1: Walk through construction of PLD shown in Figure 3 for exemplar Petri Net shown in Figure 2: (a) AND forking
through Multicast event, (b) Corresponding event catches for Multicast event, (c) Constructing transition c in absence of AND
join and XOR merge at c, (d) event throw t after transition c for AND join at transition t, (e) corresponding event catch t, (f) a
selection guard for XOR split, (g) constructing transition a in absence of AND join and XOR merge at a, (h) an event throw t
corresponding to AND join and XOR merge at transition t, (i) Constructing an event catch t in series of previous event catch
t, (j) Constructing the the other branch of the selection guard, (k) Constructing transition t, (l) Constructing multicast event
throw for AND fork from transition t.

Figure 2: An exemplar PN for construction of corresponding
PLD.

for actual execution of transition t to occur. The mining
process subsequently continues for the event catch abc for
the second fork, which originates from start and forks into
{𝑎, 𝑏}. Existence of multiple (here, two) transitions in this
fork, represents XOR split into transitions that are present
in 𝑎𝑛𝑑_𝑠𝑝𝑙𝑖𝑡(𝑠𝑡𝑎𝑟𝑡) = {𝑎, 𝑏}. Ergo, the event catch (abc)
of second fork is followed by a selection guard as shown
in Figure 1(f). The guard is split into two XOR split paths,
which represent paths corresponding to multiplicity (tran-
sitions in the fork) i.e. a and b in this fork. One of these
xor split paths, corresponding to transition a, is followed
by immediate construction of transition a due to absence of
XOR merge and AND join at transition a. It is illustrated in
Figure 1(g).

It can be observed using (2) and (4) that transition a is
involved in 𝑥𝑜𝑟_𝑚𝑒𝑟𝑔𝑒(𝑡) = {𝑎, 𝑏} and 𝑎𝑛𝑑_𝑗𝑜𝑖𝑛(𝑡) =
{𝑐}, {𝑎, 𝑏} i.e. XOR merge and AND join taking place at
transition t. Consequently, an event throw t is constructed
next to transition a as shown in Figure 1(h). Notably, de-
spite involvement of transition a in both XOR merge and

Figure 3: Process Line Diagram (PLD) for Figure 2 exemplar PN.

AND join, event throw t is constructed only once. A corre-
sponding event catch t is constructed to continue the role
that holds all joins and merges for transition t, which occur
before its actual execution, as presented in Figure 1(i). Like-
wise, Figure 1(j) illustrates construction of the other XOR
split path, corresponding to transition b. Transition b is
constructed, and followed by construction of a subsequent
event throw due to (2) and (4). It can be observed that a
new event catch is not constructed, because an XOR merge
requires a single event catch and it has already been created
during construction of previous XOR split path. As shown
in Figure 1(k), the transition t is constructed for its actual
execution, after all the merges and joins synchronising its
execution through event catches on its role are constructed.



The mining approach iterates to continue the flow of
process construction. The AND fork, originating from tran-
sition t, 𝑎𝑛𝑑_𝑓𝑜𝑟𝑘(𝑡) = {𝑧}, {𝑥, 𝑦}, is constructed using
multicast event xyz as shown in Figure 1(l), and its corre-
sponding event catches xyz in two new roles to represent
forkings into {z} and {x,y} are then constructed as shown in
Figure 3. This construction for AND fork relationship from
transition t into z,y and x is similar to that from start into c,
a and b. Thus, the remainder of process mining continues
in similar manner to obtain PLD shown in Figure 3, with
event catches xyz followed by construction of transition z,
and construction of selection guard depicting XOR split into
transitions y and x, which are subsequently constructed
respectively on splits from the selection guard. These roles
and split paths end in absence of further relations from
transition z, y and x respectively.

3. Conclusion and Future Work
In contrast to traditional PN and allied extractor mining algo-
rithms, which generate complex, non-modular outputs, the
paper presented an idea that can retain inherent modularity
inside a process during process mining. The paper explores
extraction of processes in the form of Process Line Diagrams
(PLDs), as compared to other process mining algorithms that
mine processes as BPMN, Petri Nets, heuristic nets, process
trees, Directly follows graphs, finite automatons, etc., which
do not attempt to preserve modularity details. The paper
utilizes the implementation-friendly modular modeling ap-
proach of PLDs for representation of extracted processes. It
is illustrated through an exemplar Petri Net converted into
PLD. An automated evaluation system for process line dia-
grams for testing volumes of logs is the next step in direction
of PLD modeling and mining. PLD mining algorithms can
be developed to utilize the entire toolset of process line dia-
grams in mined processes, and incorporate patterns given
in [27]. Also, PLD mining algorithms can be extended to
incorporate data related features of processes.

References
[1] K. Shivhare, R. K. Joshi, Process line diagrams (plds):

An approach for modular process modeling, in: Proc.
of the 16th Inn. in Software Eng. Conf., ACM, 2023.

[2] OMG, Business process model and notation, specifica-
tion version 2.0, document no. formal (2011).

[3] I. Compagnucci, F. Corradini, F. Fornari, B. Re, Trends
on the usage of BPMN 2.0 from publicly available
repositories, LNBIP, Springer, 2021.

[4] M. z. Muehlen, J. Recker, How much language is
enough? theoretical and practical use of the business
process modeling notation, in: Advanced Information
Systems Engineering, Springer, 2008.

[5] S. Anna, Towards a taxonomy of business process and
its anomalies, Int. Journal of Computer Science and
Network Security 21 (2021).

[6] H. Leopold, J. Mendling, O. Günther, Learning from
quality issues of bpmn models from industry, IEEE
Software 33 (2016).

[7] E. Börger, O. Sörensen, B. Thalheim, On defining the
behavior of or-joins in business process models, J. UCS
15 (2009).

[8] M. Dumas, A. Grosskopf, T. Hettel, M. Wynn, Se-
mantics of standard process models with or-joins, in:

On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS, Springer, 2007.

[9] F. Corradini, C. Muzi, B. Re, L. Rossi, F. Tiezzi, Bpmn
2.0 or-join semantics: Global and local characterisa-
tion, Information Systems (2022).

[10] T. Murata, Petri nets: Properties, analysis and applica-
tions, IEEE Trans Reliab 51 (1989).

[11] R. Conforti, M. Dumas, L. García-Bañuelos, M. La Rosa,
Bpmn miner: Automated discovery of bpmn process
models with hierarchical structure, Inf. Systems (2016).

[12] J. De Weerdt, S. K. L. M. vanden Broucke, F. Caron, Bidi-
mensional process discovery for mining bpmn models,
in: BPM Workshops, Springer, 2015.

[13] W. V. D. Aalst, C. Stahl, Modeling Business Processes:
A Petri Net-Oriented Approach, Information Systems,
MIT Press, 2011.

[14] W. Aalst, van der, A. Weijters, L. Maruster, Workflow
mining: which processes can be rediscovered?, vol-
ume 74 of BETA publicatie, Technische Universiteit
Eindhoven, 2002.

[15] W. M. P. van der Aalst, B. F. van Dongen, Discovering
workflow performance models from timed logs, in:
Engineering and Deployment of Cooperative Informa-
tion Systems, Springer, 2002.

[16] A. Alves De Medeiros, B. Dongen, van, W. Aalst, van
der, A. Weijters, Process mining : extending the alpha-
algorithm to mine short loops, BETA publicatie : work-
ing papers, Technische Universiteit Eindhoven, 2004.

[17] L. Wen, W. Aalst, J. Wang, J. Sun, Mining process
models with non-free-choice constructs, Data Min.
Knowl. Discov. 15 (2007).

[18] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Dis-
covering block-structured process models from event
logs: a constructive approach, in: Petri Nets, 2013.

[19] J. N. van Detten, P. Schumacher, S. J. J. Leemans, An
approximate inductive miner, in: ICPM, 2023.

[20] A. Weijters, W. van der Aalst, A. A. D. Medeiros, Pro-
cess mining with the HeuristicsMiner algorithm, Tech-
nische Universiteit Eindhoven, 2006.

[21] A. Rozinat, R. Mans, M. Song, W. Aalst, van der, Dis-
covering colored petri nets from event logs, Int. Jour-
nal on Software Tools for Technology Transfer (2008).

[22] K. Jensen, A brief introduction to coloured petri nets,
in: E. Brinksma (Ed.), Tools and Algorithms for the
Construction and Analysis of Systems, Springer, 1997.

[23] K. Shivhare, R. K. Joshi, Exploring l* for process min-
ing, in: PNSE at Petri Nets, CEUR-WS.org, 2023.

[24] W. Aalst, Process discovery from event data: Relating
models and logs through abstractions, 2018.

[25] W. Aalst, A practitioner’s guide to process mining:
Limitations of the directly-follows graph, Procedia
Computer Science (2019).

[26] W. M. P. van der Aalst, Foundations of Process Discov-
ery, Springer International Publishing, 2022.

[27] K. Shivhare, R. K. Joshi, Trace language: Mining micro-
configurations from process transition traces, in: Petri
Nets and Software Engineering at Petri Nets, 2022.


	1 Introduction
	2 An Exemplar Illustration
	3 Conclusion and Future Work

