
ECC’s Achilles’ Heel: Unveiling Weak Keys in
Standardized Curves
Enrico Talotti1, Matteo Paier1,2 and Marino Miculan1,3,*

1University of Udine - Dept. of Mathematics, Computer Science and Physics, Italy
2IMT Alti Studi Lucca, Italy
3Ca’ Foscari University of Venice - Dept. of Environmental Sciences, Informatics and Statistics, Italy

Abstract
The strength of Elliptic curve cryptography (ECC) relies on curve choice. This work analyzes weak keys in
standardized curves, i.e., private keys within small subgroups of the auxiliary group Z*

𝑝. We quantify weak
key prevalence across standardized curves, revealing a potential vulnerability due to numerous small divisors
in auxiliary group orders. To address this, we leverage the implicit baby-steps giant-steps algorithm, which
transforms the complex elliptic curve discrete logarithm problem into a simpler problem within Z*

𝑝. This enables
efficient detection of weak keys in small-order subgroups.

Our findings highlight the importance of rigorous key testing in applications using standardized ECC. While
random weak keys are unlikely, malicious actors could exploit this by manipulating key generation libraries. To
this end, we show how users can assess their private key vulnerabilities and mitigate risks by eliminating weak
keys. Hence, this work contributes to improved ECC security through proactive key management practices.

Keywords
Elliptic curve cryptography (ECC), Key vulnerabilities, Weak keys, Standardized curves.

1. Introduction

Elliptic curve cryptography (ECC) plays a crucial role in securing modern communication and data
storage due to its efficient implementation and strong security guarantees. However, the practical
effectiveness of ECC hinges on the judicious selection of appropriate curves that resist various attacks.
Evaluating the robustness of standardized curves against potential weaknesses is an ongoing challenge.

This paper focuses on the vulnerability of weak keys in standardized elliptic curves. We define
“weak keys” as private keys residing within small subgroups of the auxiliary group Z*

𝑝, potentially
compromising their security. Our objective is to quantify the prevalence of such keys across prevalent
standardized curves and provide efficient methods for their detection.

To achieve this, we leverage the implicit baby-step giant-step algorithm (iBSGS) presented in [1, 2, 3].
This algorithm leverages a group action mapping elements from Z*

𝑝 to the elliptic curve group, effectively
transforming the complex elliptic curve discrete logarithm problem into a simpler problem within Z*

𝑝.
This transformation capitalizes on the well-understood subgroup structure of Z*

𝑝, enabling efficient
identification of weak keys belonging to small-order subgroups.

Our analysis unveils a potential vulnerability in many standardized curves, where a significant
portion of private keys reside in small subgroups of the auxiliary group. This vulnerability arises due to
the presence of numerous small divisors in the auxiliary group order. While the likelihood of randomly
encountering a weak key remains low, malicious actors could exploit this weakness by manipulating
key generation libraries employed by applications. Such manipulation could allow them to construct
private keys readily recoverable from their corresponding public keys using the iBSGS algorithm. To
mitigate this risk, rigorous testing of generated keys within applications becomes crucial.

Furthermore, we have implemented all relevant algorithms in Rust and PARI/GP; these implemen-
tations are available at [4]. By utilizing these tools, users can assess the vulnerability of their private

ITASEC 2024: The Italian Conference on CyberSecurity, April 08–12, 2024, Salerno, IT
*Corresponding author.
$ talotti.enrico.1@spes.uniud.it (E. Talotti); matteo.paier@imtlucca.it (M. Paier); marino.miculan@uniud.it (M. Miculan)
� 0009-0000-7588-7169 (M. Paier); 0000-0003-0755-3444 (M. Miculan)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:talotti.enrico.1@spes.uniud.it
mailto:matteo.paier@imtlucca.it
mailto:marino.miculan@uniud.it
https://orcid.org/0009-0000-7588-7169
https://orcid.org/0000-0003-0755-3444
https://creativecommons.org/licenses/by/4.0

keys, thus proactively strengthen their cryptographic security by identifying potential weak keys.
Overall, this paper contributes to the field of ECC security by offering a comprehensive analysis of

weak keys in standardized curves, introducing an efficient detection method using the iBSGS algorithm,
and highlighting the importance of proactive key testing.

The rest of the paper is organized as follows. In Section 2 we recall basic definitions about elliptic
curves, the discrete logarithm problem, and the baby-step giant-step algorithm. The implicit version of
this algorithm, dubbed iBSGS, is presented in Section 3. Section 4 covers the main contribution of this
paper: first, we show how to apply the iBSGS algorithm for testing whether a key is weak; then, we
analyse elliptic curves actually used in practice, providing an estimation of the weak keys which can be
found within a given bound. Conclusions and directions for future work are in Section 5.

2. Preliminary Work

In this section, we lay the groundwork for our analysis by revisiting some fundamental concepts. We
first recall elliptic curves; next, we describe the discrete logarithm problem in additive groups, such as
those arising from elliptic curves. Finally, we recall the baby-step giant-step algorithm, a powerful tool
for solving the DLP.

2.1. Elliptic Curves

An elliptic curve (EC) 𝐸 over a field K, denoted 𝐸/K, is given by the Weierstraß equation

𝐸 : 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥+ 𝑎6 (1)

where the coefficients 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ K are such that for each point (𝑥1, 𝑦1) ∈ K2
satisfying

Equation (1), the partial derivatives do not vanish simultaneously.
We refer to points on the curve 𝐸 as points with coordinates in K satisfying Equation (1). Points on

𝐸 with coordinates in the base field K form the set of K-rational points of E; we denote this set by

𝐸(K) =
{︀
(𝑥1, 𝑦1) ∈ K2 : 𝑦21 + 𝑎1𝑦1 + 𝑎3𝑦1 = 𝑥31 + 𝑎2𝑥

2
1 + 𝑎4𝑥1 + 𝑎6

}︀
It is well-known that this set can be turned into an additive group (𝐸(K),⊕,𝒪) where the group law

is given by the chord-tangent operation ⊕ and the identity is given by the point at infinite 𝒪 [5, 6, 7].
In this work we focus exclusively on elliptic curves defined over finite fields of characteristic different

from 2 and 3 so we can assume that the EC is given by a short Weierstraß equation:

𝐸 : 𝑦2 = 𝑥3 + 𝑎4𝑥+ 𝑎6 (2)

Moreover, we can assume the elliptic curve group 𝐸(K) to be of order 𝑝 where 𝑝 is a prime. This is
done for cryptographic purposes, since it increase the complexity of the Discrete Logarithm Problem.

2.2. Discrete Logarithm Problem

Let (𝐺,⊕) be an additive cyclic group of prime order 𝑝 and 𝑃 a generator for 𝐺. The map

𝜙 : Z → 𝐺

𝑛 ↦→ [𝑛]𝑃 = 𝑃 ⊕ 𝑃 ⊕ · · · ⊕ 𝑃⏟ ⏞
𝑛 times

has kernel 𝑝Z, thus 𝜙 leads to an isomorphism between (𝐺,⊕) and (Z/𝑝Z,+) := Z𝑝. The problem
of computing the inverse map is called the discrete logarithm problem (DLP) to the base of 𝑃 . It is the
problem, given 𝑃 and 𝑄, to determine 𝛼 ∈ Z such that 𝑄 = [𝛼]𝑃 . Note that 𝛼 is unique only modulo
the group order.

The complexity of this problem depends on the choice of 𝐺 and its operation. If 𝐺 = Z𝑝 with
generator 1, the discrete logarithm of 𝑛 ∈ Z𝑝 is 𝑛 itself. If we choose a generator 𝑎 ∈ Z𝑝, where 𝑎 ̸= 1,
the problem is still easy to solve because it reduces to compute the inverse of 𝑎 modulo 𝑝.

2.3. Baby-Step Giant-Step Algorithm

The baby-step giant-step algorithm (BSGS algorithm) was firstly published by Shanks to compute ideal
class numbers of quadratic number fields [8, 9]. Here we present it in a more general form and we use
it to solve the DLP.

The BSGS method is based on the following:

Lemma 1. Let 𝑛 be a positive integer. Put 𝑚 := ⌊
√
𝑛⌋+ 1. Then for any 𝛼 with 0 ≤ 𝛼 < 𝑛 there are

integers 𝑖, 𝑗, with 0 ≤ 𝑖, 𝑗 ≤ 𝑚− 1, such that 𝛼 = 𝑖+ 𝑗𝑚.

Proof. If we divide 𝛼 by 𝑚 we have 𝛼 = 𝑗𝑚 + 𝑖 with 0 ≤ 𝑖 ≤ 𝑚 − 1. We note that 𝛼 ≤ 𝑛 − 1 =
𝑚2 − 1 = 𝑚(𝑚− 1) + (𝑚− 1) and we know that 𝑖 ≤ 𝑚− 1. Hence we have 0 ≤ 𝑗 ≤ 𝑚− 1.

Assume now that the order of 𝑃 ∈ 𝐺 is 𝑛 and 𝛼 an integer modulus 𝑛. Let 𝑄 = [𝛼]𝑃 , then we have

𝑄⊕ [−𝑗𝑚]𝑃 = [𝑖]𝑃,

for some 𝑖, 𝑗 as in Lemma 1. We have the following:

Proposition 1. Let (𝐺,⊕) be a finite, additive, cyclic group of order 𝑛 and let 𝑃 be a generator of 𝐺. The
following algorithm solves the discrete logarithm problem [𝛼]𝑃 = 𝑄 in 𝑂(𝑚 log𝑚) steps, where 𝑚 is
define as follows.

1. Let 𝑚 := ⌊
√
𝑛⌋+ 1.

2. Create the two lists:

baby-steps: 𝑃, [2]𝑃, . . . , [𝑚]𝑃

giant-steps: 𝑄⊕ [−𝑚]𝑃,𝑄⊕ [−2𝑚]𝑃, . . . , 𝑄⊕ [−𝑚2]𝑃

Then there exist 0 ≤ 𝑖, 𝑗 < 𝑚 such that 𝑄 ⊕ [−𝑗𝑚]𝑃 = [𝑖]𝑃 and 𝛼 = 𝑗𝑚 + 𝑖 is the solution to the
discrete logarithm problem.

Proof. To compute the two lists we take at most 2𝑚 group operations. By Lemma 1, there exists a
match between the two lists, that can be found in log

√
𝑛 steps by using standard searching algorithms

or hash tables. Hence, the total running time for the algorithm is 𝑂(𝑚 log𝑚) steps.

3. Implicit Baby-Step Giant-Step Algorithm

In this section we describe an implicit version of the BSGS algorithm [1, 2, 3]. The main idea is to
define a group action of Z*

𝑝 on the additive group 𝐺. In this way we can use the multiplicative group
Z*
𝑝 as auxiliary group, thus reducing the discrete logarithm problem of (𝐺,⊕) to a problem in Z*

𝑝.
The advantage of this approach is that Z*

𝑝 has many subgroup and one can exploit its rich and well
understood subgroup structure.

Assume (𝐺,⊕) to be a finite, additive, cyclic group of prime order 𝑝 and let 𝑃 be a generator. We
define the following (faithful) group action:

𝜌 : Z*
𝑝 −→Aut(𝐺)

𝛼 ↦−→ 𝜌𝛼 : 𝐺 −→ 𝐺

𝑃 ↦−→ [𝛼]𝑃

It is easy to see that 𝜌 is a group homomorphism with kernel

ker 𝜌 = {𝛼 ∈ Z*
𝑝 : 𝜌𝛼(𝑃) = 𝑃} = {1}

If 𝜙 ∈ Aut(𝐺) and 𝑃 is a generator for 𝐺, then 𝜙(𝑃) = [𝛼]𝑃 for some 𝛼 ∈ Z*
𝑝. Thus we have an

isomorphism Z*
𝑝 ≃ Aut(𝐺) and we can identify the element [𝛼]𝑃 ∈ 𝐺 with 𝛼 ∈ Z*

𝑝.

We want to solve the discrete logarithm problem in 𝐺 by using the auxiliary group Z*
𝑝. Let 𝑧 be a

primitive element of Z*
𝑝, then 𝛼 = 𝑧𝑘 for some 0 ≤ 𝑘 < 𝑝 and 𝑄 = [𝑧𝑘]𝑃 . Let 𝑚 := ⌊√𝑝⌋+ 1. If we

divide 𝑘 by 𝑚 we get 𝑖, 𝑗 with 0 ≤ 𝑖, 𝑗 ≤ 𝑚− 1 such that 𝑘 = 𝑖+𝑚𝑗, as in Lemma 1. It follows that
𝑄 = [𝑧𝑘]𝑃 = [𝑧𝑖+𝑗𝑚]𝑃 = [𝑧𝑖][𝑧𝑗𝑚]𝑃 , which leads to

[𝑧−𝑗𝑚]𝑄 = [𝑧𝑖]𝑃

However, we know that 𝑄 = [𝛼]𝑃 , thus we have [𝑧−𝑗𝑚][𝛼]𝑃 = [𝑧𝑖]𝑃 and this implies 𝑧−𝑗𝑚𝛼 = 𝑧𝑖

mod 𝑝. Hence, if we find such an 𝑖 and 𝑗, we can compute 𝛼 = 𝑧𝑖+𝑗𝑚 and we have the solution of the
discrete logarithm problem. We can now proceed as in Proposition 1.

We put 𝑚 := ⌊√𝑝⌋+ 1 and we build the two following lists:

baby-steps: [𝑧]𝑃, [𝑧2]𝑃, . . . , [𝑧𝑚]𝑃

giant-steps: [𝑧−𝑚]𝑄, [𝑧−2𝑚]𝑄, . . . , [𝑧−𝑚2
]𝑄

Using binary search, we find a match that solves the DLP in time 𝑂(𝑚 log𝑚). The algorithm
described above is what we call implicit baby-step giant-step (iBSGS).

If a divisor 𝑑 of 𝑝 − 1 is known, this idea can be improved. Let 𝑧𝑑 = 𝑧
𝑝−1
𝑑 be a generator for the

order 𝑑 subgroup of Z*
𝑝. We put 𝑚′ := ⌊

√
𝑑⌋+ 1 and run the implicit baby-step giant-step by using 𝑧𝑑

instead of 𝑧, that is, using the following lists:

baby-steps: [𝑧𝑑]𝑃, [𝑧
2
𝑑]𝑃, . . . , [𝑧

𝑚′
𝑑]𝑃

giant-steps: [𝑧−𝑚′

𝑑]𝑄, [𝑧−2𝑚′

𝑑]𝑄, . . . , [𝑧−𝑚′2

𝑑]𝑄

If the unknown 𝛼 lies in the 𝑑-order subgroup of Z*
𝑝, then 𝛼 will be equal to 𝑧𝑘𝑑 for some 𝑘 modulus

𝑑 and the algorithm will find a match [𝑧−𝑗𝑚′

𝑑]𝑄 = [𝑧𝑖𝑑]𝑃 . Hence, [𝑧−𝑗𝑚′

𝑑][𝛼]𝑃 = [𝑧𝑖𝑑]𝑃 , which lead to
𝛼 = 𝑧𝑖+𝑗𝑚′

𝑑 and the DLP is solved in times 𝑂(𝑚′ log𝑚′).
In this case we either find 𝛼 or verify that 𝛼 is not in the order 𝑑 subgroup after at most 𝑑 iterations.

Thus, if 𝑑 is sufficiently small and 𝛼 lies in the 𝑑-order subgroup, the DLP can be solved much easily.
To summarize:

Theorem 1. Let 𝐺 be an additive, cyclic group of prime order 𝑝, with generator 𝑃 . Let 𝑄 = [𝛼]𝑃 be
another given element of 𝐺 (with 𝛼 unknown). For a given divisor 𝑑 of 𝑝− 1, let 𝐷 be the subgroup of Z*

𝑝

of order 𝑑. Then, one can decide whether 𝛼 belongs to 𝐷 in 𝑂(
√
𝑑) steps. Moreover, if 𝛼 belongs to 𝐷, the

same algorithm will find the discrete logarithm 𝛼 in 𝑂(
√
𝑑) steps.

In cryptographic applications using elliptic curve cryptosystems, the integer 𝛼 represent the 𝑝𝑟𝑖𝑣𝑎𝑡𝑒
𝑘𝑒𝑦, while the point 𝑄 = [𝛼]𝑃 is the 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦. Therefore, every public key for which the correspond-
ing private key lies in a small subgroup of Z*

𝑝 is deemed to be weak.

4. Weak Key Testing in ECC

This section tackles the vulnerability of weak keys in standardized elliptic curves. We begin by demon-
strating how the iBSGS algorithm can efficiently test whether a key within a given curve belongs to a
small-order subgroup of the auxiliary group Z*

𝑝. Subsequently, we conduct a comprehensive analysis
of standardized curves, enumerating weak keys residing in subgroups with orders below a specified
threshold for each individual curve. Finally, we present a concise overview of our implementation of
these algorithms in Rust and PARI/GP.

4.1. Testing whether a key is weak

A simple approach to test whether the private key corresponding to a public key is weak is to set a
bound 𝐵 for the order of the subgroups of Z*

𝑝. We can run the iBSGS algorithm on all divisors of 𝑝− 1
that are less than 𝐵. However, this would be inefficient and redundant, because testing whether a key
is in a subgroup of order 𝑑 also covers all subgroups of order divisible by 𝑑. Thus, we instead generate a
list of integers 𝑑1 < 𝑑2 < · · · < 𝑑𝑡 ≤ 𝐵 dividing 𝑝− 1 such that 𝑑𝑖 ∤ 𝑑𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑡.

As an example, let us consider the elliptic curve secp192r1 (P192) [10]. The curve is defined over the
finite field F𝑞 where 𝑞 is a prime specified by the standard. The generator in affine coordinates is

𝑃 = (602046282375688656758213480587526111916698976636884684818,

174050332293622031404857552280219410364023488927386650641)

and its order is the prime

𝑝 = 6277101735386680763835789423176059013767194773182842284081.

By using a computer algebra system (e.g., PARI/GP or SageMath [11, 12]), one can factor 𝑝− 1 in few
seconds, and compute the primitive element 𝑧 = 3 in the auxiliary group Z*

𝑝. Let us choose a bound
𝐵 = 27. There are 9 non trivial divisors of 𝑝− 1 below 𝐵, namely 2, 4, 5, 8, 10, 16, 20, 40, 80. In order
to test whether a given private key is in any of the subgroups of these orders, it suffices to test only the
subgroups of order 𝑑 = 80 as the first eight subgroup orders divide 80, and thus any element of one of
these smaller orders is also an element of the subgroup of order 80.

Let us choose a public key as the point

𝑄 = (816153167907635701966328593112488159610772858343321595848,

706528454659135103431962832049267760754872971757068059209)

If we run the iBSGS algorithm, we find a match in a couple of seconds. This gives us the discrete
logarithm in base 𝑃 of 𝑄:

𝛼 = 3902464043483517614357752686118068675663797609365657037670

which is the corresponding private key.

4.2. Analysis of Weak Keys

In this subsection we investigate elliptic curves described in [10, 13] and other curves used by OpenSSL
[14]. For each curve, we enumerate the weak keys appearing in subgroups of order bounded by
𝐵 ∈ {232, 264, 2128, 2160}. As described in Section 3, the cost to determine whether a given key is weak
with respect to the bound 𝐵 is roughly 216, 232, 264, 280 groups operations. Due to the magnitude order
of the results, and to facilitate an easier comparison, we compute the base-2 logarithm of each number
(i.e. the number of bits of its representation).

For each curve we describe:

𝑏(𝑝) number of bits of the prime number 𝑝 which is the order of the generator of group 𝐸(F𝑞);

𝑛𝐵 base-2 logarithm of the number of weak keys with order bounded by B. Since 𝜑(𝑑) is the number of
generators of a cyclic group of order 𝑑, i.e., the number of elements of order exactly 𝑑, we define

𝑛𝐵 = log2
∑︁
𝑑|𝑝−1
𝑑≤𝐵

𝜑(𝑑)

𝑐𝐵 base-2 logarithm of the worst-case number of elliptic curve scalar multiplications required to
test whether a key comes from a subgroup of order bounded by 𝐵 using iBSGS algorithm. Let
𝑅(𝑝,𝐵) = {𝑑1, . . . , 𝑑𝑡 : 𝑑𝑖 | 𝑝− 1, 𝑑𝑖 ≤ 𝐵, 𝑑𝑖 ∤ 𝑑𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑡}. We define

𝑐𝐵 = log2
∑︁

𝑑∈𝑅(𝑝,𝐵)

2⌈
√
𝑑⌉

Curve 𝑏(𝑝) 𝑛232 𝑐232 𝑛264 𝑐264 𝑛2128 𝑐2128 𝑛2160 𝑐2160

brainpoolP160r1 160 33.6 19.4 67.0 36.5 130.0 67.3 160.0 81.0
brainpoolP192r1 192 11.7 6.8 11.7 6.8 108.1 55.1 108.1 55.1
brainpoolP224r1 224 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0
brainpoolP256r1 256 4.2 3.3 4.2 3.3 4.2 3.3 4.2 3.3
brainpoolP320r1 320 34.7 20.3 42.2 22.2 42.2 22.2 42.2 22.2
brainpoolP384r1 384 33.3 18.7 66.0 35.5 130.0 67.5 160.7 82.3
brainpoolP512r1 512 35.0 20.6 68.1 37.7 132.7 70.3 163.3 85.0

Table 1
Weak keys analysis Brainpool curves (log2 scale).

4.2.1. Analysis of Weak Keys on secp192r1

Here we describe the weak keys analysis of the curve secp192r1, as in Section 4.1. We use the computer
algebra system PARI/GP [11] for computations. Similarly, we can perform the weak keys analysis for
other NIST’s curves using the values of 𝑝 presented in [10, 15].

The elliptic curve group of secp192r1 is cyclic of prime order

𝑝 = 6277101735386680763835789423176059013767194773182842284081

and the divisors of 𝑝− 1 below the bound 𝐵 = 232 are

{2, 4, 5, 8, 10, 16, 20, 40, 80, 2389, 4778, 9556, 11945, 19112, 23890, 38224, 47780, 95560, 191120}

thus by removing redundant divisors we get

𝑅𝐵(𝑝) = {191120}

Doing the calculations we find that 𝑛𝐵 = 17.54 and 𝑐𝐵 = 9.8. This shows that secp192r1 has
approximately 217.54 weak keys lying in subgroups of order below the bound 𝐵 = 232 and they can
be detected in roughly 29.8 group operations in the elliptic curve group. We can repeat the test with a
bound 𝐵 = 2160 and this leads to 2109.0 weak keys, computable in roughly 255.6 group operations.

4.2.2. Analysis of Standard Curves

Our analysis of weak keys within commonly used elliptic curves, specifically focusing on recommended
and standardized ones, aims to identify them and to specify the worst-case scenario for their detection,
expressed as the required number of scalar multiplications.

The results are summarized in tables, according to curve characteristics and standards: curves
from the Brainpool standard (Table 1), curves defined over prime fields (Table 2), curves over binary
fields (Table 3), and curves specifically used in Wireless Transport Layer Security (Table 4), a security
protocol employed in the WPA architecture to ensure privacy, data integrity, and authentication during
communication between wireless devices.

The data show that many curves have an abundance of weak keys at all levels, due to rather smooth
factorization of 𝑝− 1 and, in particular, many divisors of 𝑝− 1 below the given bound 𝐵. The actual
counts of weak keys vary among the curves, but several of them has around 2160 weak keys within the
bound 𝐵 = 2160.

Tables 1 to 4 show notable examples of curves that have remarkably few weak keys, especially
Brainpool256r1, Brainpool224r1, secp224k1 and ECCp-359. Curves such as secp193r2, Curve25519,
c2pnb163v3 and ECCp-353 have few weak keys at lower bounds, but many at 𝐵 ≥ 2128. Therefore, the
difficulty of identifying weak keys in these curves varies depending on the attacker’s computational
resources. While computationally constrained attackers may find this task arduous, adversaries with
sufficient computational power encounter a significantly reduced barrier, due to the fact that the density
of weak keys does not scale linearly.

Curve 𝑏(𝑝) 𝑛232 𝑐232 𝑛264 𝑐264 𝑛2128 𝑐2128 𝑛2160 𝑐2160

secp112r2 109 3.7 19.5 66.3 36.0 109.8 55.9 109.8 55.9
secp128r1 128 31.8 18.0 66.0 35.4 128.0 65.0 128.0 65.0
secp128r2 126 31.5 16.8 31.5 16.8 126.0 64.0 126.0 64.0
secp160k1 160 18.0 10.0 18.0 10.0 94.8 48.4 160.5 81.8
secp160r2 160 21.6 11.9 21.6 11.8 93.1 47.8 160.0 80.6
P-192 192 17.5 9.8 17.5 9.8 109.0 55.6 109.0 55.6
secp224k1 224 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
P-224 224 29.0 15.5 29.0 15.5 29.0 15.5 29.0 15.5
Curve25519 253 7.04 4.8 7.04 4.8 114.3 58.2 144.7 73.4
secp256k1 256 24.1 13.1 64.7 34.2 129.4 67.0 147.9 75.0
secp256r1 256 36.0 21.5 69.3 38.8 133.2 70.8 165.3 86.9
SM2 256 32.5 18.13 59.7 30.8 59.7 30.8 59.7 30.8
P-384 384 13.5 7.8 13.5 7.8 103.3 52.7 103.3 52.7
E448 446 33.1 18.9 64.7 34.2 128.8 66.2 160.8 82.2
P-521 521 31.4 16.7 50.0 26.0 128.8 66.3 130.5 66.2

Table 2
Weak keys analysis for curves over prime fields (log2 scale).

Curve 𝑏(𝑝) 𝑛232 𝑐232 𝑛264 𝑐264 𝑛2128 𝑐2128 𝑛2160 𝑐2160

c2pnb163v1 162 37.8 23.6 70.9 40.7 134.1 71.9 160.8 82.8
c2pnb163v2 162 26.4 14.2 26.4 14.2 26.4 14.2 160.3 82.2
c2pnb163v3 162 8.8 5.4 8.8 5.4 8.8 5.4 160.9 82.3
c2tnb191v1 190 10.3 6.2 50.7 26.3 124.7 63.4 149.6 75.8
c2tnb191v2 190 20.1 11.0 20.1 11.0 118.68 60.3 118.6 60.3
c2tnb191v3 188 31.8 17.0 37.6 19.8 117.0 59.5 156.6 78.3
c2pnb208w1 192 31.4 16.7 31.4 16.7 31.4 16.7 31.4 16.7
sect193r2 193 2.0 2.0 2.0 2.0 110.2 56.1 110.2 56.1
c2tnb239v1 238 30.2 16.4 55.6 28.8 55.6 28.8 55.6 28.8
c2tnb239v2 237 14.6 8.3 14.6 8.3 14.6 8.3 14.6 8.3
c2tnb239v2 235 30.6 16.4 64.0 33.5 84.4 43.2 158.4 80.2
c2tnb271v2 256 13.0 7.5 66.3 36.0 123.0 62.5 146.0 74.0
c2pnb304w1 288 30.0 16.0 66.3 36.2 132.1 70.0 164.1 85.8
ECCp-353 353 6.3 4.3 6.3 4.3 108.9 55.5 158.3 80.2
c2pnb368w1 352 33.4 19.3 36.9 19.4 128.1 66.0 129.1 65.6
c2tnb431r1 417 31.4 16.7 31.4 16.7 118.6 60.3 118.6 60.3
ECCp-359 359 5.2 3.6 5.2 3.6 5.2 3.6 5.2 3.6

Table 3
Weak keys analysis for curves over binary fields (log2 scale).

In most cases, however, our analysis show that the probability that a randomly selected key is weak
(simply given by the number of weak keys divided by the total number of keys) is very low. Thus, only
verifiable randomness in key generation, demonstrably achieved through rigorous audits, can ensure
the low probability of picking weak keys susceptible to this attack.

Moreover, a malicious party could cause users to be assigned weak keys, for example via compromised
key generation software. To mitigate potential vulnerabilities, it is thus highly advisable that each
participant validates the security of their own private key through self-testing, before exposing the
public key for any purpose. Conversely, in scenarios demanding high security, a participant should
verify the public key of the other party in order to ensure the exchange is robust to attacks up to a
bounded computational effort.

It is interesting to notice that we can also use the described method to generate private keys that are
secure against this kind of attacks. For this aim we restrict them to be a random power of 𝑧

𝑝−1
𝑟 , where

𝑧 is a primitive root in Z𝑝 and 𝑟 is a large prime factor of 𝑝− 1, thus forcing the private key to lie in an
𝑟-order subgroup of Z*

𝑝.

Curve 𝑏(𝑝) 𝑛232 𝑐232 𝑛264 𝑐264 𝑛2128 𝑐2128 𝑛2160 𝑐2160

wap-wsg-idm-ecid-wtls1 112 32.7 18.6 42.1 22.1 112 57.0 112 57.0
wap-wsg-idm-ecid-wtls3 162 19.2 10.6 59.3 30.6 122.0 62.0 160.2 82.0
wap-wsg-idm-ecid-wtls4 112 33.1 18.6 64.6 34.1 112.0 57.0 112.0 57.0
wap-wsg-idm-ecid-wtls6 112 17.1 9.5 17.1 9.5 112 56.9 112 56.9
wap-wsg-idm-ecid-wtls7 160 31.5 16.8 55.3 28.6 127.6 65.3 159.2 81.1
wap-wsg-idm-ecid-wtls8 112 30.0 16.2 47.7 24.8 112 57.0 112 57.0
wap-wsg-idm-ecid-wtls9 160 33.1 18.9 65.0 34.6 129.0 66.8 159.5 82.0
wap-wsg-idm-ecid-wtls10 231 33.0 18.6 64.0 33.5 73.2 37.6 159.8 81.5
wap-wsg-idm-ecid-wtls11 232 33.0 18.3 64.7 34.3 87.6 44.7 160.6 82.0
wap-wsg-idm-ecid-wtls12 224 29.0 15.5 29.0 15.5 29.0 15.5 29.0 15.5

Table 4
Weak keys analysis for Wireless Transport Layer Security curves (log2 scale).

4.3. Software Implementation

We implemented the finite fields arithmetic and the elliptic curve arithmetic using the Rust programming
language. We employ the Montgomery ladder algorithm in the generation of private and public key
pairs, thus fortifying resistance against side-channel attacks.

Moreover, we implemented the iBSGS algorithm presented in [2, 3] to test whether a given public
key derives from a weak private key (up to a certain bound).

Using PARI/GP we implemented a script to calculate the number of weak keys up to a given bound
and the worst-case complexity of finding them in terms of scalar multiplications.

It is noteworthy that identifying weak keys in a specific curve primarily involves computing the
divisors of 𝑝 − 1, which translates to factoring. The comprehensive analysis of standardized curves
was completed within several days, primarily using a computer with a Intel® CoreTM i3-2350M CPU @
2.30GHz × 4 cores, running Linux. All these tools are available at [4].

5. Conclusions

In this work we have presented a comprehensive analysis of standardized elliptic curves employed
in prevalent applications. Our objective has been to quantify the prevalence of weak keys, defined as
private keys residing within subgroups of the auxiliary group Z*

𝑝 whose orders fall below a specified
threshold (and hence amenable to recovery attacks). Furthermore, we have established the worst-case
complexity associated with verifying whether a given key possesses this vulnerability.

To achieve these results, we leverage the implicit baby-step giant-step algorithm [1, 2, 3]. This
algorithm hinges on defining a group action that maps elements from Z*

𝑝 to the elliptic curve group
𝐸(K). By doing so, the elliptic curve discrete logarithm problem (DLP) is effectively transformed into
a problem within Z*

𝑝, where it benefits from a well-defined and well-understood subgroup structure.
Consequently, the primary advantage of this approach lies in reducing the DLP’s complexity for private
keys belonging to small-order subgroups of Z*

𝑝.
Our analysis reveals a potential vulnerability in many standardized curves where a significant number

of private keys reside within a small subgroup of the auxiliary group. This arises from the presence
of numerous small divisors in the auxiliary group order. While the likelihood of randomly selecting a
weak key remains low, malicious actors could exploit this weakness by manipulating the key generation
libraries utilized by applications. This manipulation would enable the construction of private keys
readily recoverable from their corresponding public keys via the iBSGS algorithm. Consequently, it is
imperative for applications to implement rigorous testing of keys generated by these libraries prior to
their usage. In fact, we have implemented all the algorithms used in this paper in Rust and PARI/GP.
These tools, available at [4], empower users to assess the susceptibility of private keys to these specific
attack vectors.

Future Work. To counteract the positive impact of using the iBSGS algorithm, a possible solution
would be to standardize elliptic curves whose group order is a safe prime, i.e., a prime 𝑝 such that
𝑝 = 2𝑟 + 1 where 𝑟 is also a prime. More effort should be made in order to evaluate and assess the
possible pitfalls of using such a prime.

Moreover, it would be interesting to use the implicit representation to improve other algorithms such
as the Pohlig-Hellman [6, 7], akin to what it was done for the Pollard’s kangaroo algorithm in [3].

Acknowledgments

This work has been partially supported by the Department Strategic Project on Artificial Intelligence
(2020-25) of the University of Udine, and the project SERICS (PE00000014) under the NRRP MUR
program funded by the EU - NGEU. We thank Luca Campa for discussions and suggestions about the
content of this paper.

References

[1] U. M. Maurer, S. Wolf, The relationship between breaking the Diffie-Hellman protocol and comput-
ing discrete logarithms, SIAM Journal on Computing (1999). doi:10.1137/S0097539796302749.

[2] P. Kushwaha, A. Mahalanobis, A probabilistic baby-step giant-step algorithm, arXiv preprint
arXiv:1701.07172 (2017).

[3] M. J. Jacobson, Jr., P. Kushwaha, Removable weak keys for discrete logarithm-based cryptography,
Journal of Cryptographic Engineering (2020). doi:10.1007/s13389-020-00250-7.

[4] E. Talotti, Elliptic curve cryptography weak keys, Available at https://github.com/cysecud/ecc_
weak_keys, 2024.

[5] J. Silverman, The arithmetic of elliptic curves, Springer, 2009.
[6] D. R. Stinson, M. B. Paterson, Cryptography theory and practice, Chapman and Hall/CRC, 2018.
[7] J. Hoffstein, J. Pipher, J. Silverman, An Introduction to Mathematical Cryptography, Springer, 2008.
[8] D. Shanks, Class number, a theory of factorization, and genera, in: Proc. Symp. Math. Soc.,

volume 20, 1971, pp. 415–440.
[9] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993.

[10] L. Chen, D. Moody, A. Regenscheid, K. Randall, Recommendations for discrete logarithm-based
cryptography: Elliptic curve domain parameters, Technical Report, National Institute of Standards
and Technology, 2019.

[11] parigp, PARI/GP, Available at https://pari.math.u-bordeaux.fr/, 2023.
[12] sagemath, SageMath, Available at https://www.sagemath.org/, 2023.
[13] J. Merkle, M. Lochter, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and

Curve Generation, RFC 5639, 2010. URL: https://www.rfc-editor.org/info/rfc5639. doi:10.17487/
RFC5639.

[14] The OpenSSL Project, OpenSSL: The open source toolkit for SSL/TLS, 2023. Available at www.
openssl.org.

[15] crocs, Center for research on cryptography and security, Available at https://neuromancer.sk/std/
search/, 2023.

http://dx.doi.org/10.1137/S0097539796302749
http://dx.doi.org/10.1007/s13389-020-00250-7
https://github.com/cysecud/ecc_weak_keys
https://github.com/cysecud/ecc_weak_keys
https://pari.math.u-bordeaux.fr/
https://www.sagemath.org/
https://www.rfc-editor.org/info/rfc5639
http://dx.doi.org/10.17487/RFC5639
http://dx.doi.org/10.17487/RFC5639
www.openssl.org
www.openssl.org
https://neuromancer.sk/std/search/
https://neuromancer.sk/std/search/

	1 Introduction
	2 Preliminary Work
	2.1 Elliptic Curves
	2.2 Discrete Logarithm Problem
	2.3 Baby-Step Giant-Step Algorithm

	3 Implicit Baby-Step Giant-Step Algorithm
	4 Weak Key Testing in ECC
	4.1 Testing whether a key is weak
	4.2 Analysis of Weak Keys
	4.2.1 Analysis of Weak Keys on secp192r1
	4.2.2 Analysis of Standard Curves

	4.3 Software Implementation

	5 Conclusions

