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Abstract
Operating systems are continuously offering new capabilities to detect malware. In this context, a new
approach that has been recently proposed for the Linux world is based on virtualizing Write (W) and
Execute (X) permission of pages in the address space of an application. This method has enabled the
operating system kernel to determine any point in time where a page with updated content is accessed
again by the CPU for instruction fetches. This offers new opportunities to track encrypted (packed)
malware, which decrypts itself into writable/executable pages in the address space of an application.
However, till today, the testing of this solution has been limited to desktop environments. In this article
we perform benchmarking of WX permission virtualization in the context of a Web server system,
providing the community with indications on the feasibility of this solution in service environments.
The representatives of our study lies on the usage of server side technology that is adverse to WX
virtualization. In particular we configured the Web server by relying on JIT (Just-in-Time) compilation
for managing interpreted language, like PHP. This can give rise to higher volumes of write and fetch
accesses in pages in the address space, hence leading to higher need for kernel level interception of page
usage when WX permission is virtualized. The outcome of this study supports anyway the feasibility
of WX permission virtualization in such representative server side context. Also, beyond interesting
performance results, showing the very limited intrusiveness of this solution, we also report data for
assessing its effectiveness in detecting malware, also comparing it with a competitor signature-based
malware detector.
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1. Introduction

Fighting malware is an increasingly bigger challenge, and several different solutions have been
proposed in the literature (see, e.g., [1, 2]). One core aspect that has been addressed is related to
encrypted (packed) malware, which typically decrypts itself in executable virtual pages before
running the attack steps. This type of malware is particularly complex to face, since techniques
like executable-file analysis [3], cannot deal with the runtime installation of malware code on
writable/executable virtual pages in the address space when the application is already active.
At the same time, some operating system solutions oriented to runtime/dynamic analysis have

ITASEC 2024: The Italian Conference on CyberSecurity, April 08–11, 2024, Salerno, Italy
*Corresponding author.
$ pasquale.caporsao@cnit.it (P. Caporaso); giuseppe.bianchi@uniroma2.it (G. Bianchi);
francesco.quaglia@uniroma2.it (F. Quaglia)
� 0009-0001-0552-7894 (P. Caporaso); 0000-0001-7277-7423 (G. Bianchi); 0000-0002-5616-7980 (F. Quaglia)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:pasquale.caporsao@cnit.it
mailto:giuseppe.bianchi@uniroma2.it
mailto:francesco.quaglia@uniroma2.it
https://orcid.org/0009-0001-0552-7894
https://orcid.org/0000-0001-7277-7423
https://orcid.org/0000-0002-5616-7980
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


focused their attention on making snapshots and analyzing executable-page contents just when
they are accessed for instruction fetch at runtime [4, 5, 6, 7].

Among the recent solutions in this direction, we can find JITScanner [8], a package for
security enhancement in the Linux world, in particular with focus on the x86 architecture.
The main characteristic of this package, compared to other solutions, is related to its ability
to virtualize Write-Execute (WX) permissions on any page of the address space. Hence, it can
intercept along time both updates of the page content and any access for fetching instructions
from a page with a new content release. This has led JITScanner to be able to identify encrypted
malware that is instead not traceable by relying on well diffused solutions oriented to security.
In particular, solutions like [9, 10], intercept the initial attempt to fetch an instruction from a
modified WX page and mark the page. However, the actual verification of the page content
occurs just once, either immediately or at a later time. This could potentially allow an attacker
to rewrite the malicious page, concealing its actual content before or after the inspection takes
place. JITScanner avoids this problem with its support for the virtualization of WX permission,
which allows the system to track any attempt to fetch instructions from a page that hosts any
updated content, since its last fetch access.

However, until now JITScanner has been tested in desktop scenarios. Hence, all the ex-
perimental results showing its effectiveness—in terms of malware tracking—-and its limited
overhead and adequacy to be employed in systems where most of the applications (if not all of
them) do not represent malware, are somehow limited.

In this article we provide an experimental study where we test JITScanner in the context
of a Web server system. Hence, we enlarge our perspective to the side of services offered in
the Internet. In particular, we provide the results of experiments that have been conducted
relying on the Apache Web server installed on a Linux release and configured in order to rely
on components/modules that can be sees as adversary for the operating mode of JITScanner—in
particular concerning the runtime costs it can give rise to. We recall that this mode is essentially
based on the management of apposite page-faults that are used to discriminate along time the
start of one of the two relevant activities that can happen on a WX page, namely its update or
the CPU access for instruction fetch of some fresh content.

In particular, we configured the Web server to use JIT (Just-in-Time) compiling techniques
for the management of scripts and programs that can be run by relying on language specific
virtual machines, like the PHP runtime system. Hence, the Web server is configured to give rise
to an increased volume of both write and execute accesses on virtual pages, which become the
target of interceptions by JITScanner. This enabled us to assess the usability and interference
of the WX permission virtualization offered by JITScanner in a representative way including
1) adversarial technology (in terms of its effects on the performance we may expect) and 2)
interactivity (in terms of latency for the reply to Web requests by specific users/clients).

We believe this experimental study can provide important indications to the community in
relation to the feasibility and opportunity to exploit this kind of system level defense solutions.

The remainder of this article is structured as follows. In Section 2, we provide a few basics
details on how JITScanner supports the management of WX pages in the address space, which
can help better interpreting the experiments we performed for assessing it, and discuss its
relation to the literature. The experimental study of the impact of WX permission virtualization,
and more generally of the operation mode of JITScanner, on the Apache Web server is presented



in Section 3.

2. Virtualized WX Permission: Concepts and Relation with the
Literature

As mentioned, the virtualization of WX permission offered by JITScanner enables the Linux
kernel to get control any time a virtual page is accessed for instruction fetch after its content
has been updated. This is done with no need for recompiling/reinstalling the Linux kernel, but
rather through the usage of Linux Kernel Module (LKM) technology. The solution is therefore
simply deployable in already installed versions of Linux.

To precisely identify the moment when a memory page is accessed for an instruction fetch,
even after an update of its content, JITScanner relies on the kprobe subsystem provided
by the Linux kernel. More precisely, kretprobe has been used for installing a hook on the
handle_mm_fault() kernel-level procedure. This hook can therefore take a snapshot of the
content of the executable page for off-the-critical-path analysis, and can also synchronously
check if malware signatures are present, right before the CPU actually goes ahead processing
the instructions in that page.

At the same time, the page faults to be intercepted by the hook need to be really triggered. To
achieve this objective, the WX permission virtualization approach offered by JITScanner relies
on ad-hoc management of both the XD and the W bits on the entries of the page table—we recall
that the current implementation of JITScanner is suited for x86 processors. In particular, for
each page where WX permission is virtualized, this solution disables both write and execution
operations by properly setting the above two bits, hence enabling the raise of a page fault—
intercepted by the above mentioned hook—when the update or the fetch of instructions is
actually carried out by the CPU. Clearly, just a single one of the two bits can be kept set to
enable the corresponding operation at anytime—hence enabling just one of the two possible
operations—even though the memory zone the pages belongs too may have been mapped with
both write and execute capabilities. Specifically, a single one of the bits is set to enabled when
one of the two possible usage-phases (write or fetch) starts, so that the start of the other phase
of activity in the page is never missed by the kernel hook (since the other control bit in the page
table has been reset, giving rise to the page fault that handles the permission virtualization
process).

The last important point is related to the full transparency of these kernel level activities,
towards the application level code. In particular, the architecture of JITScanner suppresses
the SIGSEGV signal generated by the invalid write/exe access caused by the virtualization of
the access permissions to prevent the kernel from terminating the user program or making it
run a SIGSEGV handler—in fact, the page fault is generated exactly by the WX virtualization
mechanism offered by JITScanner. Hence, the application can write and execute stuff in a page
with (virtualized) WX permission according to the conventional Posix specification.

In Linux, faults occurring during instruction fetches are managed within the architecture-
specific code of the kernel before calling the handle_mm_fault() function. However, these
functions cannot be directly hooked using the kprobe mechanism. Hence, JITScanner places a
kernel probe on the force_sig_fault() function, which is triggered whenever an invalid



Table 1
Comparison with literature solutions

JITScanner [8] MAAR [11] ClamAV [5] Tracee [12] Deep-Hook [4] Falco [13] Will. et al. [7]
Can be used on
non-virtualized
environment ✓ ✓ ✓ ✓ X ✓ ✓

Allows for dynamic
analysis ✓ ✓ X ✓ ✓ ✓ ✓
Remains effective
against packed
malware ✓ ✓ X ✓ ✓ ✓ ✓

Uses signatures
check ✓ X ✓ X ✓ X ✓

Reduces memory
search ranges ✓ na X na X na X
Allows monitoring
of multiple memory
writes on
executable pages ✓ na X na X na X

memory access occurs.
Overall, this solution enables the identification of the timeline of the interleaves between

updates and instruction-fetch on any individual WX page, making it not possible for a malware
to run decrypted code that is not analyzed by an external observer.

Additional mechanisms are also added in JITScanner for managing the change of permission
in the accesses to virtual pages (e.g. through the mprotect() system call), so that the above
virtualization scheme for access permissions, and the interception of instruction-fetch from a
fresh page content is still carried out even after the (already updated) page is no longer writable.

Given that the focus of this article is on assessing the effectiveness and the intrusiveness of
this solution in terms of performance and response latency in the context of services offered on
the Web, before entering details of the experimental study we think it is important to provide a
comparison of how JITScanner distances from the literature, just thanks to the introduction of
WX permission virtualization.

We report in Table 1 the outcome of the comparison considering six alternative solutions.
These solutions cover an ample range of options that are currently available for malware
detection since they offer either memory checking mechanisms [5, 11, 4, 7] or behavioral
analysis [12, 13]. However, even considering advanced solutions like Deep-Hook [4] or the
proposal in [7], which essentially offers a step ahead over OmniUnpack [6], the innovation
and relevance of JITScanner appears evident. In particular, none of the other solutions enables
the check of an executable page multiple times, in particular when a fetch takes place after
whichever update of the page. This is an important aspect since the page update is the core
block upon which a encrypted malware is built. Also, the intrinsic behavior of JITScanner
appears to be well structured since it avoids checks on pages that no thread of the application is
actually using for fetching machine instructions. Although this enables amortizing the actual
costs for malware detection, we feel the study we provide in the following section can definitely
add important hints on the feasibility of JITScanner—and WX permission virtualization—to
offer a performance effective solution for continuously monitoring applications and services in
the Web, protecting against malware code.



3. Experiments

3.1. Test-bed Platform

All tests have been performed with an Apache2 Web Server running on an Ubuntu Server LTS
22.04 Virtual Machine with Kernel Version 5.15.0 hosted on an Esxi Hypervisor. The machine
was equipped with 4 Virtual CPUs and 8 GBs of RAM.

In our study, we augmented JITScanner with new configurations, which allow us to better
categorize its performance overhead. The prototype allows for four distinct configurations:

• Virtualization Only: This configuration solely incorporates the functionality of the WX
permission shadow state machine. Upon encountering a fault, it intercepts the fault but
does not perform any additional actions on the page that triggered it. This configuration
serves as a baseline for the other configurations, providing indications only only the
overhead associated with context switches between user and kernel modes.

• Transfer Only: In this mode, when a page triggers a fault and transitions to Execution (X)
mode, JITScanner copies the page and transfers it to the user agent. Subsequently, the
user agent may perform asynchronous analysis to detect potential malicious behavior, in
our case this is represented by a simple signature check with YARA rules.

• Sync Only: This configuration implements a synchronous check on the page that triggers
the fault, conducted by JITScanner directly within the kernel. Currently, this check
involves searching for a single signature throughout the entire page.

• Sync + Transfer: This configuration combines the functionalities of the "Sync Only" and
"Transfer Only" configurations described above.

As for the experiments, these can be categorized into two distinct categories: performance
and effectiveness. We discuss each category below.

Effectiveness Tests. To assess the effectiveness of JITScanner, we deployed an application
known as DVWA (Damn Vulnerable Web Application) on the Web Server. DVWA is a training
tool designed to be susceptible to multiple vulnerabilities, in our study we decided to use a
Command injection attack. We simulated an attack scenario wherein an adversary attempts
to exploit this vulnerability—via specific URLs of the Web server—by loading and executing
malware at the server side. Then we installed on the server the ClamAV open-source malware
detection tool, as well as JITScanner to evaluate how they respond to such an attack.

For the malware dataset, we selected the "VirusShare_ELF_20200405," which is the latest
dataset provided by the free malware sharing website VirusShare, comprising approximately
40,000 samples [14]. To showcase the effectiveness of JITScanner, and of a representative tool
we used as competitor, namely ClamAV [5], we executed the samples both in their original
state and after packing them with a simple packer sourced online [15]. From the original 40,000
samples we picked 1930 samples that where compatible with our chosen packer and scanned
them with ClamAV. Out of these, we extracted 466 samples which ClamAV associated to an
immediately identifiable malware family, these are reported in Table 2. After this, we run all



Table 2
Families of the samples used

Family Name Malware type Number of samples
Emotet Trojan 2
Mirai Botnet 52

Tsunami Botnet 71
Gafgyt Trojan 320

XMRIG Miner Coin-miner 21

samples, both in plain and in packed form, under JITScanner and logged the pages whose
accesses in write-execute and/or execute mode have been intercepted1.

For the logged pages of the samples associated with a family, we chose the most common
signature, ensuring that it did not yield any false positives during normal operations in our tests.
Finally we added these signatures to the user agent of JITScanner, deploying it and reanalyzing
all samples on our automated malware testing facility, namely PHOENIX [16]. Overall, for
this effectiveness test, we relied on the Transfer Only setup of JITScanner, thus demanding the
malware identification step to the user level agent, while keeping active at kernel level only the
WX permission virtualization mechanisms that allows the generation of the snapshot of pages
to be checked.

Performance Tests. To quantify the performance overhead of JITScanner on the Web server,
we exploited the same Web application utilized in the effectiveness study. This has been done
by also configuring the PHP JIT compiler on the Web server to induce additional stress on the
system, primary caused by the overhead incurred during the initial execution of instructions
fetched from the JIT-compiled pages. Additionally, to further increase the impact of our system
on the server, we disabled all forms of caching, including those for the Apache Web server and
the PHP engine. This will increase the overhead caused by JITScanner, since it necessitates the
re-interpretation of every page upon each request. Successively, utilizing the open-source tool
"httperf" we conducted latency measurement on the server. The tool was configured to execute
multiple sets of 1000 requests, and we measured the average response time. We opted for this
metric in order to focus our analysis on the aspect of interactivity of the client browser vs the
Web server.

3.2. Results

Effectiveness Tests. Our testing focuses on two primary objectives:

1. Measuring the "signature flexibility" of JITScanner, which is the extent to which signatures
from plain malware remain effective for a variant in the same family.

2. Measuring the "signature retention" of JITScanner, which is the extent to which signatures
from plain malware remain effective for their packed counterparts.

1All the datasets exploited in this study have been made available at:
https://github.com/Capo80/Malware_Datasets



Table 3
Signature flexibility of JITScanner and ClamAV

Family Detected Plain Total Samples Signature Flexibility
JITScanner Emotet 2 2 100%
ClamAV Emotet 1 2 50%
JITScanner Tsunami 57 71 80.2%
ClamAV Tsunami 33 71 46.47%
JITScanner XMRIG_Miner 13 21 61.90%
ClamAV XMRIG_Miner 8 21 38.09%
JITScanner Gafgyt 76 320 23.75%
ClamAV Gafgyt 238 320 74.75%
JITScanner Mirai 15 52 28.84%
ClamAV Mirai 8 52 15.38%

To assess point 1, we decided to select the most common signature for each family, which we
identified through our log of extracted pages. Subsequently, we compared the effectiveness of
this signature against the most common signature detected by ClamAV. Hence, we carried out a
fair comparison, considering both ClamAV and JITScanner equipped with somehow equivalent
knowledge bases. This is an interesting scenario to test also considering that these two solutions
rely on signatures of very different information parts, namely mostly data for ClamAV vs binary
code for JITScanner. The results are presented in Table 3, as we can see, JITScanner has a
comparable or superior effectiveness across all analyzed families, with the exception of Gafgyt.
This discrepancy is likely attributable to the limited number of pages per sample captured in our
logs for Gafgyt—the average is 4—which is significantly lower compared to other families, this
prevented us from finding an effective signature. We believe that this type of malware detects
that it is running on a testing environment (e.g., because of the detection of a reduced number
of CPUs) and gives rise to a rapid termination. Such short or failed executions can lead not to
intercept actual activities that the malware can (at least potentially) carry out via WX pages
that include code signatures—which would have been observed by JITScanner. However, at the
same time this is the scenario where the malware becomes essentially idle, not really leading to
real security problems.

To assess point 2, we compared the traces extracted from the plain malware to those obtained
from the packed samples. It is clear that all signatures are retained if the pages extracted from
the plain sample constitute a subset of those extracted from the packed sample. The packed
samples will obviously execute over more pages, as they need to decrypt the payload from
memory. The details of the experiments are summarized in Table 4. As observed, there exists a
substantial difference between the effectiveness of ClamAV and JITScanner when dealing with
packed malware. ClamAV lacks a mechanism for detecting signatures at runtime. This makes
it not capable to effectively detect packed samples once their actual signature in unpacked in
memory for its actual usage. Conversely, JITScanner is able to use the same signatures for
almost all samples examined. Also, some malwares are no longer recognized because either
the unpacker did not successfully lead to the execution of the malware code (hence JITScanner
could not intercept the fetch of the malware instructions from memory) or the unpacking led
to different access permissions for a few pages. As for the latter aspect, we found that some



Table 4
Signature retention of JITScanner and ClamAV

Sign. in Plain Sign. in Packed Total Samples Signature retention
ClamAV 515 0 515 0%
JITScanner 515 391 515 75,91%

Table 5
Slowdown of page requests

Page name Slowdown
instructions.php 7,5%
php_info.php 7,9%
low.php 3.8%
index.php 3.3%

pages that are setup with read-execute permission with a regular loading of the ELF are instead
setup as read-only by the unpacker. In this case, JITScanner does not perform any snapshot
of the read-only page for a final check of its content when it is materialized—such snapshot is
instead done for read-execute pages, and this gives rise to a different signature characterizing
the application.

Performance Tests. The results of the performance tests are shown in Figure 1, and slowdown
results—compared to the scenario where the LKM of JITScanner is not mounted at all on the
Web server—are reported in Table 5. As for the execution time shown in Figure 1, it has been
evaluated by setting up requests on the same machine where the server is hosted, in order to
avoid interference and delay contributions related to networking. Hence the reported values
represent the server side latency for handling the URL requests. From the data, we can observe
that no significant overhead is encountered across any Web server URL, regardless of the size
of input/output data involved in the request and the response time. The highest overhead
is observed for the most complex page, php_info.php, and reaches approximately 7.9%. The
absence of discernible overhead can be attributed to the underlying architecture of PHP JIT,
in fact, studies [17] have shown that only a small percentage of code is typically executed
in JIT mode on conventional Web pages. Hence, the measured overhead is predominantly
caused by the execution and analysis of new pages accessed by server processes, along with the
generation of certain WX pages by the PHP JIT compiler itself. This observation is reflected
in the negligible overhead incurred by small web pages such as low.php and index.php, which
likely contain minimal, if any, code processed through the JIT compiler. Conversely, larger web
pages like instructions.php or others which contain more elaborate PHP code, like php_info.php,
may undergo some code execution in JIT mode, resulting in a comparatively larger, yet still
acceptable, overhead.
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Figure 1: Request Latency under JITScanner

4. Conclusions

System-level engineers are continuously offering new solutions for malware detection. Along
this line, one approach that has been recently presented—which works via innovative facilities
added to the Linux kernel via LKM technology—is based on supporting the identification of any
point in time where a thread executes either the update, or the fetch of instructions from a page
with Write (W) and Execute (X) permissions. In other words, each time the CPU fetches an
instruction from a page that has been re-updated, the kernel level software takes control, thus
working as the hypervisor for the virtualized management of WX permission. The advantage
of this solution is the possibility to take snapshots of the (dynamically updated) pages that
are actually used for keeping instructions that are executed, giving the possibility to carry out
signature checks on the code that a malware software can run at any instant of time—possibly
after de-packing it into some WX page.

Till today this solution has been tested in desktop environments, while in this article we



address its benchmarking at the server side. In particular, we tested it in the context of a Web
server, configuring the operations of the server side software in a way that is somehow adverse
to WX virtualization. More in details, we analyzed the performance that can be ensured via
this solution—and hence its overhead—when considering that the Web server is configured to
use JIT (Just-in-Time) compiling techniques. This generates larger volumes of occurrences of
WX accesses to pages that are destined to host JIT compiled code, which require more frequent
interception of the accesses when WX permission is virtualized in the Linux kernel.

Beyond performance, we also tested the effectiveness of the malware detector based on
WX permission virtualization, namely JITScanner [8], in such Web server environment, also
assessing it against a competitor solution, namely ClamAV [5]. An interesting point in this
study is related to the fact that these two solutions are based on signature check on different
information portions—mostly data in ClamAV vs binary code in JITScanner. Hence, beyond
porting innovation thanks to testing in the server side environment, this article also provides the
reader with hints on the outcomes of comparing such two kinds of signature-search methods.

We feel our study can be of real interest for engineers working in the area of security since
WX virtualization is a technique that oversteps all previous existing solutions working at kernel
level, which rely on the interception of fetches from pages in the address space. In particular,
literature studies like [10, 9] can guarantee the signature check of the page content only when it
is accessed via fetch for the first time. But they do not support the interception of the fetch from
a page anytime it can host a new content—new binary code to be run by a malware, thanks
to dynamic updates of its content. WX permission virtualization exactly enables this tracking,
hence resulting a valid alternative for security enhancement.
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