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Abstract
Country-wide infrastructures and large-scale data centers demand protection against high-end cyber
threats, potentially including nation-state attackers and vulnerabilities deployed within the infrastructure
itself through supply chain attacks. In such a scenario, a compelling defensive strategy consists of running
protection measures on different hardware than the one supporting the applications being protected.
While this is relatively simple for protection mechanisms that can be implemented in software, the
challenge lies in achieving this goal when deploying protection means capable of being dynamically
migrated and run at wire-speed over network links at 100 Gbps and more.

In this direction, this paper proposes the notion of Portable High-Speed Network Security Filters.
These are packet/flow-level filters that can be written once with a single programming abstraction,
migrated inside different network vantage points, including Smart NICs and even the newly emerging
Small Form-factor Pluggable switch Ports (SFPs), and capable of providing hardware-grade performance
and wire-speed operation.

To implement and deploy such filters, we propose to combine the portability of eBPF software code
with the programmability of FPGA hardware. Moreover, filters can be deployed with no hardware pro-
gramming effort, by further employing our novel technology called eHDL, which allows the compilation
of eBPF tasks into highly efficient VHDL hardware pipelines. The feasibility of our proposed approach
is concretely showcased over 100 Gbps network links, by demonstrating the seamless porting of the
filtering part of the well-known Suricata Intrusion Detection System, a Firewall and a DDoS mitigation
Network Function to an Alveo U50 SmartNIC.
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1. Introduction

The increasing volume and diversity of internet traffic, coupled with the ever-evolving cyber
threat landscape, demand advanced and scalable network defense frameworks. When defending
nationwide network infrastructures or high-end enterprise data centers, crucial factors for
effective defense include the ability to real-time manage very high traffic volumes (hundreds of
Gbps) for prompt detection and response to attacks.

Furthermore, evolving cyber threats require agile defense. Direct programming of packet
processing tasks on programmable hardware like FPGA offers flexibility and hardware-grade
performance. However, programmability alone may not suffice; equally vital is the ease and
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affordability of implementing adjustments and updates to protection mechanisms by the opera-
tional team. This becomes especially critical in the face of sudden attacks, where relying on
product developers for timely updates may not be practical.

In addition to the above considerations, when striving to protect against high-end cyber
threats, including the possibility of nation-state attackers exploiting vulnerabilities through
supply chain attacks, a new critical aspect arises: determining the physical deployment of
protection measures. There is a growing concern about the potential presence of untrusted
hardware devices, with a community sentiment [1, 2, 3] suggesting that vulnerabilities might
even be embedded in third-party commercial off-the-shelf hardware components. Consequently,
greater effort must be pursued into the separation between the hardware running protection
measures from the hardware supporting the applications being protected. This would ensure
the avoidance of single points of failure that could occur if both defense and the protected
system operate on the same hardware platform.

Right now, this challenge, especially when dealing with high performance and scalable
approaches, has only been marginally addressed. Most efforts to fight malware have in fact
focused on two main areas: Network-wide protection via perimetral defenses and Network
Intrusion Detection Systems (NIDS) and end-point protection via specialized security software
such as Endpoint Detection and Response (EDR) or their extension into Extended Detection
and Response (XDR), which involve software agents installed in end hosts, servers and network
nodes.

We posit that the current disaggregation trend [4, 5] we are witnessing in networked systems
is a great opportunity not only to improve network performance, but also to improve security.
The emergence of technologies such as Smart Network Interface Cards (Smart NICs) or even
Smart Small Form-factor Pluggable switch Ports (SFPs) [6, 7, 8] would in principle permit to
deploy network intelligence at the microscopic level of even a single switch port, thus improving
defensive security measures via a more capillary and diversified spread of protection means
across the entire network infrastructure.

In this strategic direction, our specific contribution revolves around the promotion of what
we refer to as Portable High-Speed Network Security Filters. Conceptually, the idea is simple:
design network traffic filters which can be migrated wherever needed inside the network, and
deployed across different physically distinct hardware, including smart NICs and smart SFPs.
To make such a vision practical, the crucial question to ask is: which technology choices are
appropriate to enable seamless portability across software components and programmable
hardware? We explicitly target programmable hardware, as high-performance solutions need
fast stream processing of traffic and quick response times, and the challenge is how to retain
the flexibility and programmability to keep up with the constantly evolving landscape of cyber
threats and attacks, meanwhile enabling a forward-looking near-Tbps-level efficiency of traffic
processing directly enforced via hardware processing pipelines.

In this paper, we advocate for the combination of two standard technologies (eBPF and FPGA)
via a third novel technology, which we have recently proposed under the name eHDL. While
eBPF takes the role of portable programming language for our filters, and FPGA provides the
programmable hardware support, eHDL permits to seamlessly "compile" eBPF network security
filtering tasks into extremely efficient VHDL hardware pipelines which can be operated at hun-
dreds of Gbps and can hence be deployed to strategic points within the network infrastructure -



smart NICs and SFPs being natural targets.
Other than highlighting the potential benefits of this approach, we concretely demonstrate its

feasibility through test cases operating at 100 Gbps speed, by showing the seamless porting of
two eBPF-based network functions, the well known Suricata IDS and a custom firewall, within
an Alveo U50 SmartNIC.

2. Motivation, Technical Challenges and Use Cases

There are several "classical" reasons that advocate for the design of traffic filtering mechanisms
capable of being deployed at various points in a network.

Improved Security. This is the main motivation for relocatable security functions, as the
distribution of packet filtering and firewalling functions enables a more capillary protection
approach. It permits to more easily and naturally manage and isolate security domains, and
implement more advanced forms of adaptive security posture, where security measures can
be tailored to specific segments of the network. Moreover, it ensures that security measures
are not centralized in a single point but are instead spread across the network, offering a more
robust defense against potential threats, and a greater resilience and robustness to failures.
Additionally, it facilitates the detection and prevention of lateral movements, which are typically
challenging to counteract using solely centralized Network Intrusion Detection Systems (NIDS)
[9, 10, 11].

Performance. Another traditional and well known motivation revolves around performance.
Portability and distribution of security tasks, accomplished by placing packet filtering and
firewall functions closer to the source or destination of the traffic, can indeed help reducing
latency, improve scalability, and optimize resource utilization.

Hardware Diversity. In addition to all this, we posit that a third compelling and perhaps more
fresh motivation resides in the opportunity of diversifying the platforms which run the defensive
mechanisms from the hardware that runs the potential attacker’s target. This is especially
important in scenarios where hardware trustworthiness many not be anymore guaranteed [1],
e.g. because of potential supply chain attacks [2, 3] by nation state actors. Placing, for instance,
traffic filters over a smart NIC, instead of deploying it as an agent running on the end host,
provides a diversified and more secure architecture by isolating critical security functions from
host vulnerabilities, hence mitigating the risk of attackers escalating privileges on the host.
Indeed, Smart NICs operate with their own dedicated firmware and processing capabilities,
so that the control of the end host by an attacker is not yet sufficient to disable the defense
deployed in the NIC. We argue that Hardware Isolation of security tasks is a well established
concept in Hardware Security contexts [12, 13, 14, 15] however the Network Security domain
lacks this aspect.

2.1. Technical Challenges

On its own, the dynamic placement of security functions across the network wouldn’t pose any
specific or unique challenges when handled through software implementations. However, the



scenario changes drastically when the objective is to create programmable traffic filtering and
processing tasks designed to operate at wire speed over very high-speed links, typically in the
order of hundreds of Gbps.

The natural solution would be to leverage FPGA technology, which is today deployed over
several Network Interface Cards (i.e., smart NICs) and which we expect to be included in
the future also within smart Small Form-factor Pluggable switch Ports (SFPs). FPGA-based
NICs offer excellent performance and high flexibility, allowing programmers to define a wide
range of functions within available hardware resources. Unlike other NIC accelerators like
network processing ASICs or many-core System-on-Chip SmartNICs, FPGA NICs provide added
flexibility to support diverse accelerators for various applications. However, programming
FPGAs is challenging and often requires a dedicated team of hardware specialists, complicating
integration with software and operating system development.

We address such challenge by designing our portable hardware filters as detailed in section 3,
i.e. using the eBPF programming language for coding the filters themselves, and our recently
proposed eHDL technology [16] for compiling eBPF programs into VHDL .

2.2. Potential Use Cases

With no pretense of completeness, we discuss hereafter a few examples where we envision
Portable Filters placement and argue how this can bring security improvements.

• Switch Small Form-factor Pluggable (SFP) Ports: A Portable Filter could be placed inside
the SFP of a switch allowing for the monitoring of all traffic passing through that port. This
is particularly effective for detecting malicious traffic or unauthorized data exfiltration
attempts on specific network segments.

• Between the Firewall and Network Switch: Placing a Portable Filter between the firewall
and the network switch can provide an additional layer of security. This placement can be
used to further scrutinize traffic that has been allowed by the firewall, ensuring that threats
do not slip through cracks due to firewall misconfiguration or zero-day vulnerabilities.
This scenario of course require very clever and complex functions to be handled by the
Portable Filter itself.

• Directly Connected to Servers or Critical Endpoints: For high-value servers or critical
infrastructure components, Portable Filters can be placed directly before these devices.
This setup ensures that any data sent to or from these critical assets is inspected, possibly
tailoring the Filter to the specific needs of the device.

• In Branch Office Connections: In a distributed network architecture, Portable Filters
can be placed at the entry/exit points of branch office connections to the main network.
This can help in enforcing consistent security policies across the organization and in
monitoring traffic for potential threats specific to remote locations.

• Virtualized Environments: In networks that heavily utilize virtualization, Portable Filters
can be deployed between nodes that deploy several virtualized network segments. This
allows for the monitoring and control of traffic between virtual machines, which is crucial
in a cloud or virtualized data center environment.



• VPN Gateways: For networks that utilize Virtual Private Networks (VPNs) for remote
access, placing Portable Filters at the VPN gateways can help in inspecting encrypted
traffic once it is decrypted at the gateway. This ensures that malicious traffic from remote
devices is caught before it enters the main network.

• Old Untrusted Hardware: A Portable Filter could be placed at the edge of possibly vulner-
able hardware devices that might have been infected due to possibly outdated software
or simply put hardware devices that we’re unsure whether they can be exposed to the
internet or not.

• Hardware Trojans/ Hardware Bugs: a malicious activity can be detected by the Portable
Filters that are directly connected to Hardware devices that potentially are vulnerable to
hardware exploitations (Spectre, Meltdown) or simply we’re not sure about third-party
commercial off the shelf (COTS) hardware we want to use and prefer a Portable Filter
implementation rather than developing our own custom hardware.

• IoT Gateway: an IoT environment has to enforce security over several different devices.
A Portable Filter implementing a carefully deployed IDS for IoT devices [17] can prove
viable securing the whole IoT network cascaded from this device.

In the above scenarios, we envision Portable Filters as a plug-and-play way of deploying
security across different network vantage points, without the need for comprehensive changes
to the existing networking infrastructure.

3. Tecnological Enablers and Proposed Solution

This section aims to prove the feasibility of hardware-based portable traffic filters. We first
describe the two crucial catalysts for our Portable Filters, and specifically the eBPF programming
language and the FPGA hardware technology. We then describe eHDL, an innovative approach
proposed in our recent work [16]. As detailed later, eHDL is, in short, an eBPF to VHDL
compiler which permits to produce, with no human effort in terms of hardware programming,
very efficient hardware pipelines from eBPF packet and traffic processing scripts. By merging
the flexibility of eBPF with the performance effectiveness of FPGA, without requiring any
specific HW programming skill from the designer, eHDL appears to us as a valuable and very
effective technology for deploying Portable Filters across the entire networking stack. Moreover,
it is worth to remark that our approach builds upon fully established technologies, ensuring
backward compatibility and reusability, eliminating the need to develop new hardware devices
or new programming languages. Indeed, as discussed in Section 4, we show the seamless porting
of the unmodified eBPF filtering portion of Suricata, a well known and widely used IDS, into an
FPGA Smart NIC.

3.1. eBPF

The original Berkeley Packet Filter (BPF) was introduced in 1992 to efficiently filter packets
within the kernel space before capturing them in a user space application. In recent years, the
extended Berkeley Packet Filter (eBPF) has emerged as an even more powerful and flexible
tool for programming the Linux kernel without altering its source code or loading kernel



modules. Its versatility spans various domains, including networking, security, and performance
monitoring, making it well-suited for our objectives. We require a language that allows network
engineers to define precise actions on packet streams, and eBPF is an ideal choice for two
reasons: i) its widespread usage and familiarity, and ii) its XDP hook is specifically tailored for
networking, avoiding the loss of generality associated with more general-purpose languages.
XDP programs operate independently of the broader network processing stack, preemptively
addressing critical security and management tasks to regulate traffic before it reaches the host
system. In production environments, XDP is employed for packet filtering (e.g., Suricata), load
balancing (e.g., Katran), and DDoS detection/mitigation (e.g., Cloudflare’s L4Drop).

Examples of sophisticated stateful Network Security Functions suited to be implemented
with eBPF/XDP include:

• Network Intrusion Detection and Prevention Systems: With the enhanced visibility
of the eBPF framework, the programmer can create advanced packet filtering rules that
go beyond traditional IP/port filtering, allowing for deep packet inspection (DPI) and
analysis. In this way, it can apply complex logic and rules to detect malicious patterns
making on-the-fly decisions to either drop, forward, or modify traffic [18][19][20].

• DDoS Mitigation: Efficiently absorbing large DDoS attacks is becoming more and more
important in recent years, given the rapid growth in access networks speeds. eBPF and
XDP help solve the performance requirements for mitigating such attacks by intercepting
and discarding unwanted traffic before it reaches the applications [21].

• Firewalls: Originally, software implementations of firewalls used NETFILTER/iptables
as the data plane choice. eBPF is a suitable option for efficiently classifying packets and
executing complex network policies with minimal performance overhead [22].

• Security Policies for CNIs (Cilium): Container Network Interfaces (CNIs) are network
plugins for K8s, enabling the networking between pods in a K8s deployment. Recently,
many popular CNIs like Cilium[23] and Calico[24] have transitioned from utilizing
NETFILTER/iptables for the implementation of network functions to adopting eBPF,
aiming for enhanced scalability. An important feature of a CNI is the execution of
Network Security policies defined by the user, which is implemented using the eBPF
framework as well [25].

For these reasons, eBPF was selected as the enabling technology for programmability in our
Portable Filters deployment.

3.2. FPGA

We now turn our attention to the numerous advantages that position FPGA hardware as the
second critical enabler for the deployment of Portable Filters. The rationale is threefold, as
outlined below:

• i) Performance: FPGA performances for filtering workloads are unmatched by software
implementations of the same functions;

• ii) Programmability: compared to ASIC counterparts, FPGAs trade off performance
with programmability;



• iii) Portability: We argue that FPGAs are being deployed in several points of the comput-
ing stack, thanks to the new trend of heterogeneous computing. In this context, FPGAs
prove to be enablers for the physical separation we need in our Portable Filters.

FPGAs offer exceptional performance in packet processing, boasting high throughput
(∼100Gbps) and low latency (∼100ns). Despite the traditionally high engineering costs linked
to low-level languages like VHDL and Verilog, the mainstream adoption of FPGAs has surged.
This shift is attributed to the rise of High-Level Synthesis (HLS) tools like Vitis HLS and Chisel,
which simplify FPGA design by supporting higher-level languages such as Python and C++.

Moreover, in recent years FPGA vendors are targeting towards the future approach of het-
erogeneous computing where general purpose CPUs alone can’t handle the growing need
for specialized hardware. To try and keep on scaling computing performances in the post
Moore era, a new approach is being leveraged. The core concept involves distributing different
computing tasks across distinct hardware modules; for instance, neural network inference tasks
are expedited by the Neural Engines. This approach is exemplified by System on Chips (SoCs)
that integrate segments of FPGA fabric with general-purpose processors, such as ARM or RISCV,
within the same chip. A case in point is the AMD-Xilinx Versal ACAP, where FPGA resources,
multiple "Scalar Processors", and Neural Engines dedicated to neural network inference co-
exist on a single chip. Other examples are Microchip Polarfire SoC[26], Intel Agilex SoC[27].
Moreover, interest in the chiplet market is rising for several reasons, including enhanced chip
performance and improved production yields. The fundamental idea here is to manufacture
specialized hardware chips that can later be modularly linked with each other. It is noteworthy
within this context that the FPGA market is expanding and increasingly capturing the attention
of leading chip manufacturers, such as AMD-Xilinx and Intel-Altera.

In this heterogeneous landscape, we envision the deployment of reconfigurable hardware
in a variety of devices. Expanding on this vision, we identify four scenarios where a small
FPGA segment could be integrated into the computing stack, aligning with our Portable Filter
deployment strategy. As elaborated in Section 4.2, Portable Filter implementations require a
modest amount of FPGA resources, thereby facilitating deployment in smaller form factor FPGA
devices.

• A possible deployment scenario could be embedding a Portable Filter directly within the
Small Form-factor Pluggable (SFP) module of a switch. This allows for comprehensive
traffic monitoring and the detection of malicious activities as all data passing through
that particular switch port is scrutinized in real-time.

• Portable Filters can as well be strategically positioned at the network interface card
(NIC) level of individual devices. By integrating security measures at the NIC, every
communication originating or terminating from the device can be filtered.

• Inside a server that uses a System on a Chip (SoC), we can place a Portable Filter right
within the FPGA portion of the SoC itself alongside the CPU. This way, it’s in the same
chip as the computing component but still kept separate, boosting security by keeping
different functions divided.

• Another pivotal placement for Portable Filters is within the router infrastructure. By
installing these secure devices at key junctures in the routing process, network adminis-



Figure 1: Possible placement of Portable Filters

trators gain the ability to scrutinize and filter incoming and outgoing traffic, effectively
thwarting potential threats before they reach critical network components.

In figure 1, we illustrate the first three examples we discussed (the fourth would have been
represented similarly) to show the physical separation we envision. It is worth to mention that
the Portable Filters applicability is not limited to the four examples presented above. Instead,
we believe that forthcoming technological advancements will facilitate additional placement
options throughout the entire networking stack.

Clearly, the complexity of the Portable Filter function is closely tied to the specific FPGA
module adopted. For example, implementing a complete Network Intrusion Detection System
(NIDS) might demand substantial FPGA resources, making it suitable for inclusion in a SmartNIC.
Conversely, a simple Firewall or Access Control List could be easily accommodated within small
form factor FPGA boards, such as those found in a System on Chip (SoC), potentially allowing
for multiple implementations within the same SoC.

3.3. eHDL

Our main contribution that paves the way for simple implementation of Portable Filters is eHDL
[16].

eHDL is a compiler that takes unmodified eBPF/XDP programs and deploys custom FPGA
designs. The core of the eHDL design is a packet processing pipeline written in low-level VHDL
code that is tailored to the eBPF program. In this way we provide careful resource usage while
maintaining high performances. The eHDL pipeline is not bounded to a single FPGA SmartNIC
and is customizable enough to be placed in boards from different FPGA vendors.

The concept of Portable Filters can be enabled by eHDL. We leverage the needed programma-
bility given by eBPF needed to keep up with increasing and evolving threats while utilizing the
power of hardware implementations of Network Function. It is notable, and it will be further
examined in Section 4, how implementations of simple Network Security Functions are viable
with a minimal impact on hardware resources.

As FPGA devices are being deployed in more and more portions of the computing stack, our
vision extends to an eHDL pipeline capable of executing real-time stream packet processing
across several devices.

eHDL proves viable to implement Portable Filters due to the following reasons:



• Programmability: Leveraging eBPF for networking functions ensures that our approach
remains flexible and adaptable.

• High Performance and Low Power Consumption: eHDL pipelines are designed to operate
at line-rate, maximizing efficiency and minimizing energy usage.

• Portability: The increasing integration of FPGA fabric across various computing layers
defines our system’s adaptability.

• Physical Decoupling: By isolating the Portable Filter within the FPGA fabric, we achieve
a clear separation from traditional hardware devices, that is typically deployed on x86
server CPUs for both security and computational tasks.

4. Experimental POCs

To validate the practicality of Portable Filtering, in which physical segregation between security
functions from computing functions is enforced, we conducted three test cases employing a
Firewall, an Intrusion Detection System (IDS), and a DDoS Detection and Mitigation Network
Function. All of the three Network Functions have been developed using the eBPF language.

Our experimental setup includes three components: (i) an AMD-Xilinx SmartNIC Alveo
u50, which serves as the Portable Filter in our network architecture; (ii) a 100Gbps Mellanox
ConnectX-5 NIC equipped with a DPDK-based traffic generator, capable of achieving line-
rate traffic with 64B packets, translating to 148 million packets per second (Mpps); and (iii)
two distinct x86 computers that host these NICs, designated as the Attacker machine and the
Computing Machine for the purposes of our study.

The two NICs are directly connected with a 100Gbps link. The Portable Filter is hosted in the
Computing Machine while the Mellanox ConnectX is hosted in the Attacker machine. With
this testbed, we aim to emulate the physical separation between the SmartNIC, which is solely
tasked with performing security functions, and the x86 server attached to it via the PCIe bus,
where network traffic is further processed. The Portable Filter acts as an intermediary between
the incoming malicious traffic and the Computing Machine. In Figure 2, the testbed setup for
the following proof-of-concept test cases is represented.

The three Network Functions developed in eBPF have then been implemented inside the
SmartNIC using the corresponding eHDL pipeline designs, and subsequently flashed into the
Alveo u50 FPGA board.

4.1. Network Functions

Suricata. Suricata [20] is an open-source IDS and Intrusion Prevention System (IPS) that is
widely recognized for its efficiency and versatility. Developed by the Open Information Security
Foundation (OISF), Suricata is designed to provide real-time traffic analysis and threat detection
capabilities. Some portions of the packet processing code is developed using eBPF in the XDP
hook which allows us to seamlessly generate its corresponding eHDL pipeline. In this paper,
we target the Packet Filtering program implemented in XDP, which identifies flows by the
5-tuple and selectively blocks the traffic according to configurable rules. Unfiltered packets are
efficiently directed to the host through our high-performance driver, which also implements



Figure 2: Testbed Representation

AF_XDP sockets for fast packet IO to user space, ensuring seamless integration with the Suricata
framework for the remaining NIDS functionalities.

Firewall. The Firewall Network Function applies wildcard matching on the 5-tuple (IP source
and destination addresses, Layer 4 source and destination ports, IP protocol) to classify the
traffic based on configurable rules. This is achieved through the use of five eBPF hash maps, each
keyed by a distinct field from the 5-tuple. Finally, the outcome from each table is represented as
a bitmask, indicating the rules that were matched. These bitmasks are then combined through
the use of De Bruijn sequences, resulting in the identification of the original wildcard rule that
was matched. This Network function is inspired by bpf-iptables[22].

DDoS Detection and Mitigation. This Network Function is designed to perform DDoS
detection and mitigation using packet filtering and rate limiting. It employs several maps to
track statistics and manage blacklists for both IPv4 and IPv6 addresses, enabling it to drop or
allow packets based on predefined rules. The program parses incoming packets to determine
their type (IPv4 or IPv6) and applies logic to either pass, drop, or blacklist the packets based
on their source IP addresses and other metrics such as the rate in Packets per Second (pps)
and bits per second (bps). Additionally, it features dynamic rate limiting capabilities, adjusting
thresholds in real-time to optimize network performance. This approach allows for early
DDoS detection and mitigation by preemptively filtering unwanted or potentially harmful
packets before they reach the application layer. This Network Function was adopted from the
open-source FlowSentryX [28] project.

4.2. Performance Assessment

The three Network Functions were easily deployed in our testbed due to the programmability
that eBPF offers and our eHDL FPGA integration. They performed at line rate with a modest
amount of FPGA resources used, as shown in table 1. Latency values have to be intended as
end-to-end values measured at the Traffic Generator side as a difference between sent and
received timestamps, which means the latency value is composed by the sum of 2 times the
propagation in the fiber cable (TX and RX) and the crossing of the eHDL pipeline in the Alveo u50.
Resources values (Flip-Flops, LookUpTables, BlockRAMs) have been expressed as a percentage
of utilization of the resources provided by the FPGA chip in the Alveo u50 board.



Throughput Latency FFs LUTs BRAM
Suricata 100Gbps 1116ns 4.93% 7.23% 13.62%
Firewall 100Gbps 1027ns 4.95% 7.19% 13.62%
DDoS 100Gbps 1256ns 4.24% 6.28% 14.25%

Table 1
Performances and Area impact for both the Suricata and the Firewall Network Functions implemented
using eHDL inside the Alveo u50 FPGA

These results demonstrate a minimal resource occupation on hardware for the implementation
of Portable Filters. Although our testing was limited to a SmartNIC implementation, we are
confident that adapting these filter designs to the diverse hardware stack associated with the
emerging trend of heterogeneous computing including chiplets, SoCs, and small form factor
FPGAs is achievable.

5. Conclusion

This paper presented our vision for Portable Filters. With this work we introduced a flexible
and efficient solution to the evolving challenges of network security. Portable Filters ensure
physical decoupling between computing and security functions.

Portable Filters are deployment of Network Security functions developed using the eBPF
language and implemented in FPGA hardware through the use of eHDL pipeline designs.

We made efforts to prove its near future widespread adoption and provided three test cases
that performed at 100Gbps at around 1 microsecond of latency.
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