
Design of a Hardening Module for Automatically Securing
Containers
Luca Verderame1,*, Luca Caviglione2

1DIBRIS - University of Genova, Via Dodecaneso 35, Genova, I-16146, Italy
2National Research Council of Italy, Via de Marini, I-16149, Genova, Italy

Abstract
Modern microservices need to quickly face changes both in terms of technology and requirements of users. To
address such a challenging scenario, developers and IT operators should be able to concentrate on integration and
delivery tasks, possibly without having to deal with security aspects. In this vein, the creation of architectures for
supporting the DevOps pipeline is an important goal. Yet, assessing the security of containers is a difficult task,
especially when considering distributed or large-scale deployments.

To cope with such complexity, this paper presents the design of a hardening module for automatically securing
containers. Such a mechanism is part of the framework envisioned in Project Securing Containers - SecCo, which
aims at offloading the DevOps software development paradigm from security-related tasks.

Keywords
Container security, DevSecOps, CI/CD security

1. Introduction

Recent large-scale and adaptive Internet services require a paradigm shift in both the development and
deployment phases. To meet performance goals and make the software more efficient and cost-effective,
as well as to reduce issues and conflicts during the development stages, an emerging approach leverages
microservices. In essence, the functionalities of a full-featured application are broken down into a set of
small, independent components [1]. However, transforming a monolithic software into a set of compact
entities poses many challenges. For instance, modern scenarios are often hybrid and contain serverful
and serverless services, thus accounting for non-negligible planning and development efforts [2]. In this
perspective, the DevOps model helps to balance the complexity-efficiency trade-off required by modern
and fast-paced large-scale platforms. Specifically, microservices can be maintained, improved, and
released in a quicker manner if compared to monolithic applications. Moreover, their smaller footprint
allows for re-usability and makes possible the creation of cloud-native applications in an (almost) easy
manner.

To pursue the vision of microservices, including the massive adoption of cloud platforms to cut costs
and enjoy full scalability properties, containers play a critical role. Specifically, they offer lightweight
execution environments that can be composed through simple interfaces or chained through the network
[3]. Another important benefit of containers deals with the ability to migrate them across different
machines, for instance, to implement load balancing or self healing policies [4]. Alas, properties such as
flexibility and rapid deployment do not come for free. Container-based microservices have a security
posture difficult to assess in a comprehensive manner and also require a non-negligible understanding
of the entire development flow [5]. This can be mitigated by decoupling the Continuous Integration
and Continuous Delivery (CI/CD) process from the counterpart devoted to security: developers and IT
operators should then solely concentrate on the CI/CD phase without dealing with security-oriented
tasks. As an example, specific security constraints may entail static and runtime guarantees built
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into the execution environment. Similarly, developers could “offload” part of their pipeline by using a
third-party service offering hardening strategies in a black box manner.

Therefore, this paper presents the design of the hardening component of the (Securing Containers)
architecture [6]. In more detail, the goal of is to engineer a framework for securing containers in
an automatic manner. The module responsible for hardening is critical, as it largely contributes to
combining development (Dev), security (Sec), and operations (Ops) by providing developers with a set
of container templates that match the functional requirements of the application and adhere to security
best practices.

In this perspective, the contribution of this paper is twofold: it provides a thorough discussion
of the architecture envisioned in SecCo, and it presents the preliminary assessment of the tools and
technologies to build the hardening pipeline in terms of security liniting and container security scanning
tools.

The rest of the paper is structured as follows. Section 2 introduces the architecture at the basis of
the framework, Section 3 presents the design of the hardening module, and Section 4 discusses the
implementation choices with emphasis on the tools that can be used to prepare hardened containers.
Section 5 reviews the literature dealing with container security and Section 6 concludes the paper and
outlines future research directions.

2. Overall Architecture of the SecCo Framework

This section showcases the architectural components at the basis of the pipeline (see [6] for a thorough
discussion). Specifically, the hardening, compliance verification, and runtime monitoring modules coop-
erate to implement the process needed to secure containers and make them more suitable for building
production-quality microservices. We recall that aims at automatizing all the steps characterizing the
DevOps paradigm, which are needed to successfully deploy a container. To this aim, all the needed
techniques, mechanisms, and tools, are coherently grouped into the following functional components:

• Hardening: this functional component is devoted to make containers compliant with security
best practices, functional requirements, as well as constraints characterizing the application
under development. For instance, the CI/CD team should define supported/required network
protocols [7], transport ports and services that could be remotely accessed, or the type of optional
libraries required by the various containers. To properly work, the hardening module should
be able to gain information on the requested containers (e.g., type and number) and a precise
shortlist of security constraints. A first outcome is to route the CI/CD team to already-hardened
containers. In case a pre-existing container exists, the developers can then directly retrieve the
already-hardened image and prevent the pipeline from being triggered for producing a new object
from scratch. On the contrary, the need to process a new container will trigger this module. In
general, this requires querying external repositories, such as the Docker Hub, to search for images
matching the criteria specified by the CI/CD team. Candidate containers are then subjected
to threat and vulnerability assessments to recognize the main attack vectors, isolate security
hazards/vulnerabilities, and define the optimal patching/mitigation techniques. Concerning the
process used to patch a container, it can range from the modification of the container (e.g., the
Dockerfile of a Docker container) to the injection of additional security services/libraries that
can guarantee the required confidentiality, authentication, and authorization functionalities. To
mention a possible example, the hardening module could patch a container to make it able to use
a TLS service (e.g., a termination proxy), an Identity Provider, and an OAuth module. Despite the
hardening procedure that has been enforced, the last step entails configuration/customization
procedures to actually release the container in its final form.

• Compliance Verification: this functional component embraces all the mechanisms needed to
outline how the container must act at runtime with respect to a set of desired security requirements.
The module is then responsible for verifying security policies. In this vein, the preliminary step
demands for checking the compliance of the various containers composing a microservice against



a list of security specifications that can be evaluated “offline”, i.e., in a static environment. To
be useful, the outcome must clearly state how to customize/instrument containers to support
the runtime monitoring phase. In order to operate, the functional component for the compliance
verification envisioned in should be fed by developers with two bits of information. The first is
the set of hardened containers hosting the developed microservice application. The second is a
thorough definition of the security policy characterizing the given application scenario. To make
some examples, security requirements could prevent the adoption of non-root users, enforce
restrictions of protocols or endpoints as well as specify runtime permissions such as impeding to
switch APIs at runtime. To verify whether a container adheres to a well-defined security policy,
a behavioral model should be used, e.g., to evaluate if the security-sensitive interactions of the
container (e.g., with the container engine) are admissible. Concerning possible techniques for the
compliance verification procedures, we mention automated security verification methods such as
model-checking [8].

• Runtime Monitoring: this functional component groups all the mechanisms needed to eval-
uate security requirements in an “online” fashion, including unexpected runtime interactions
between containers and the underlying engine. As a result, this module is responsible for both
the verification of the compliance of dynamic and static security policies. In this perspective,
techniques that can take advantage of kernel augmentation and code layering as well as the use
of efficient tools like the extended Berkeley Packet Filter should be taken in high regard [9, 10].
A successful monitoring service should also be able to evaluate corner cases and unexpected
runtime interactions among containers, including collusive attack templates or the presence of
information-hiding-capable threats [11]. Lastly, runtime monitoring may also require suitable
methodologies for automatic security enforcement and to interrupt interactions that violate
(dynamic) security policies. We point out that, runtime monitoring can be also used to reveal the
presence of threats and vulnerabilities not considered in the “offline” phase. Moreover, runtime
monitoring may help to mitigate the impact of zero-days not known at the time of implementing
the hardening procedure.

A detailed discussion of the design of the hardening module envisioned in is presented in the
following.

3. Design of the Hardening Module

This section deals with the design of the Hardening Module, which is in charge of processing the set
of requested containers and the security constraints of the CI/CD team to verify the availability of
pre-hardened images from the Hardened Templates DB. This enables the CI/CD team to directly obtain
pre-hardened, standardized templates, alleviating the need to construct and secure containers from
scratch.

Figure 1 depicts the overall functional architecture. In essence, the hardening process happens
between the planning (denoted as PLAN ) and the development (denoted as DEVELOP) phases. In more
detail, for any new container, the Hardening Processor initiates the Container Template Builder process
by considering the container specification and the security requirements. As a first step, the service
searches for suitable existing containers from external repositories, such as Docker Hub, to serve as a
baseline. The selection is contingent upon both functional and security requirements. For instance, if
the CI/CD team aims to deploy a Docker container hosting a Postgres database, the Container Template
Builder identifies the official image1 on Docker Hub as the foundational one. Subsequently, the Container
Template Builder generates a minimal Dockerfile specification tailored to meet the requirements of the
CI/CD team and initiates a security hardening procedure. This step endeavors to pinpoint potential
security risks or vulnerabilities within the resulting container image and formulate optimal strategies
to rectify or mitigate them, thereby minimizing the attack surface.

1https://hub.docker.com/_/postgres
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Figure 1: Architecture of the Hardening Module.

The initial phase of the security assessment involves Security Linting of the template. Linters are
used to systematically scrutinize Dockerfiles for various security-related issues (often referred to as
smells), such as the use of outdated base images with known vulnerabilities or the embedding of hard-
coded secrets or sensitive information. Based on these findings, the Security Linting process can either
automatically rectify the issues or alert the CI/CD team and suggest appropriate fixes.

The resulting Dockerfile is then utilized to build an image leveraging the Image Builder and subjected
to a vulnerability assessment phase. This step generates a report detailing potential vulnerabilities
present in the image. Depending on the nature and severity of the hazards, the Container Template
Builder may either automatically address the vulnerability or report it to the developer.

The patching phase encompasses modifying the container specification, such as the Dockerfile of a
Docker container, and the integration of on-demand security services and libraries via SecService Injection.
These services furnish core functionalities such as confidentiality, authentication, and authorization to
the container without their explicit implementation. Examples of such security services include a TLS
service (e.g., termination proxy).

The security assessment process may be iterated multiple times to evaluate incremental patches or
fixes automatically applied by the Hardening Module or implemented by the CI/CD team, ensuring that
the resultant template maintains a residual risk below a predefined threshold.

4. Towards Implementation of the Hardening Module

This section presents the preliminary steps performed to implement the Hardening Module. In more
detail, we conducted an assessment focusing on security linting and container scanning tools tailored
for the Docker ecosystem. The goal of this research/design activity is to identify the best technologies
that could support the building of the Hardening Module. Specifically, we examined documentation and
performed a series of prime hands-on assessments. To this aim, we relied upon several key parameters
to ensure robust security practices as suggested in [12].

Firstly, we considered if a tool supports the SARIF format2, i.e., a standardized method for sharing

2https://www.oasis-open.org/committees/sarif/
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Table 1
Security Linters for the Docker ecosystem.

Tool Last Release CIS Docker Security
Benchmark

OWASP Top 10 Output SARIF

Dockle 2023 ✓ ✓ ✓

Docker-Bench-Security 2023 ✓ ✗ ✗

Hadolint 2023 ✗ ✓ ✓

Docker Cleaner 2023 ✓ ✓ ✗

dockerfile-lint 2023 ✗ ✗ ✗

Docker Scout 2024 ✓ ✓ ✓

Kics 2023 ✓ ✓ ✗

static analysis results. In fact, the compatibility with SARIF facilitates the seamless integration with
various development and security tools, streamlining the overall security workflow. Furthermore, our
evaluation encompassed the adherence of the tools to the CIS Security Docker Benchmark [13] and
the OWASP TOP 10 Security risks [14]. Ensuring compliance with these benchmarks is crucial for
mitigating known vulnerabilities and strengthening the overall security posture of microservices. In
the following, we provide details on the obtained results.

4.1. Selection of Security Linters

Several security linters for Docker images exist, each one with its own focus and approach. Specifically,
Dockle [15] and Docker Bench for Security [16] are explicitly tailored to evaluate the security of
Dockerfiles and support checks aligned with the recommendations in the CIS Docker benchmark,
ensuring adherence to industry standards. Hadolint [17] is a linter that parses the Dockerfile into an
abstract syntax tree and performs rules on top of it, thereby ensuring a wider coverage compared to
other open source tools [18]. Binnacle [18] is a tool that studies and detects Docker smells in Dockerfiles.
Compared to other linters, this tool also analyzes the presence of smells inside GitHub and performs a
comparison with a high-quality set of Dockerfiles. Additionally, Docker Cleaner [19] incorporates repair
techniques based on CIS Docker Benchmark and OWASP Docker Security Cheat Sheet [20], leveraging
language-docker for parsing Dockerfiles and suggesting patches. Recently, Docker developers have
integrated their own security tool, namely Docker Scout [21], for searching and fixing vulnerabilities in
the Docker images. Checkmarx KICS (Keeping Infrastructure as Code Secure) [22] is a robust static
analysis tool to analyze configurations of Docker containers written in Dockerfiles. By leveraging its
rule-based engine, Checkmarx KICS thoroughly examines Dockerfiles to identify potential security
vulnerabilities, misconfigurations, and compliance issues. The tool can be integrated with vulnerability
databases and compliance standards like CIS benchmarks. This ensures that Docker containers adhere
to the highest security standards.

Table 1 provides a summary of our analysis. Specifically, the table reports the most relevant publicly-
available security linters for the Docker ecosystem that we considered for our hardening module.
As shown, the table details the year of the last release of each tool, as well as the evaluation of the
compliance with respect to CIS Docker Security Benchmark, and the OWASP TOP 10 Security Risk.
Lastly, the table also reports whether a tool supports the SARIF format.

4.2. Selection of Stating Application Security Testing Tools

In recent years, there has been a significant effort by both academia and industry to develop robust
Docker image security scanners to address the growing need for securing containerized applications.
Numerous tools have emerged, each offering unique features and capabilities for identifying and
mitigating vulnerabilities of the Docker ecosystem. For the design of the Hardening Module, we have
focused on some of the most widely used open-source Docker image security scanners available today.

Specifically, Trivy [23] is an open-source Docker image vulnerability scanner that supports the



Table 2
Container scanning tools for the Docker ecosystem.

Tool Last Release CIS Docker Security
Benchmark

OWASP Top 10 Output SARIF

Trivy 2023 ✓ ✗ ✓

Clair 2023 ✗ ✓ ✗

Snyk 2023 ✗ ✓ ✓

Grype 2023 ✗ ✗ ✓

Docker Scout 2023 ✓ ✓ ✓

Dagda 2021 ✗ ✓ ✗

OpenSCAP 2023 ✓ ✓ ✗

analysis of Docker images, OCI3 images, and container filesystems. Trivy leverages vulnerability
databases like the National Vulnerability Database and the Red Hat Security Data API to identify known
vulnerabilities in the software packages and dependencies installed within Docker images. Its fast
scanning capabilities and direct integration with CI/CD pipelines make it a popular choice among
DevOps teams for continuously assessing the security posture of containerized applications. Clair
[24] is a powerful open-source vulnerability scanner designed specifically for Docker containers. It
performs static analysis on Docker images to identify known vulnerabilities in the software packages
and additional libraries. The tool can seamlessly integrate with container registries such as Docker
Hub, allowing for automatic scanning of images as they are pushed or pulled. A major benefit of Claris
is rooted in its modular architecture and adoption of a RESTful API, which make it highly extensible
and suitable for integration into various container security workflows. Snyk [25] is a comprehensive
security platform that offers vulnerability scanning and monitoring for Docker containers. It can
be integrated into the software development lifecycle, providing developers with tools to find, fix,
and prevent vulnerabilities in their code and dependencies, including Docker images. As regards the
vulnerability database used, the tool can rely on information from public sources and proprietary
research, ensuring comprehensive coverage of known vulnerabilities. Nevertheless, Snyk offers both
static analysis for scanning Docker images before deployment and runtime monitoring for detecting
vulnerabilities in running containers. Another software for fast and accurate scanning of container
images for known vulnerabilities is Grype [26]. In essence, it offers a command-line interface that
allows users to scan Docker images and generate detailed vulnerability reports. It can be used to identify
vulnerabilities in various package ecosystems, including Linux distributions and programming language
libraries.

In addition to the security linting functionalities, Docker Scout can also be used to evaluate the
vulnerabilities inside images by creating a full inventory of the packages called a Software Bill of
Materials. It then correlates this inventory with a continuously updated vulnerability database to identify
vulnerabilities of images. Concerning static analysis, Dagda [27] can perform both pre-deployment
scanning and runtime monitoring. For the case of pre-deployment scanning, it analyzes Docker images
for known vulnerabilities and misconfigurations, Instead, when used for runtime monitoring, it checks
the behavior of running containers and detects suspicious activities or potential security breaches.
Despite being mainly a tool for security compliance, OpenSCAP [28] also offers capabilities for scanning
container images. It leverages the Security Content Automation Protocol to assess the security of
Docker images against predefined security profiles and benchmarks. As an output, OpenSCAP provides
detailed reports highlighting compliance with security standards such as the DISA STIG and NIST SP
800-53.

To summarize, Table 2 reports the selection of container scanning tools that we have assessed for
integration into the Hardening Module of the pipeline of . Specifically, the table outlines the most
recent release year of the tool and evaluates the compliance with the CIS Docker Security Benchmark,
coverage of OWASP TOP 10 Security Risks, and support for the SARIF format.

3https://opencontainers.org/
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4.3. Discussion

As a result of the analysis performed on the various security linters and container scanning tools,
we have identified the software components that are most suited for meeting the requirements of
the Hardening Module to be deployed within the framework of . In more detail, among the security
linters discussed in Section 4.1, Docker Scout and Docker Cleaner exhibit full compliance with CIS and
OWASP standards. Additionally, they incorporate built-in heuristics to automatically patch analyzed
Dockerfiles, thereby contributing to the hardening phase at the basis of the Container Template Builder.
As regards container scanning tools presented in Section 4.2, both Tryvy and OpenSCAP emerge as
open-source solutions capable of supporting both the OWASP TOP 10 and the CIS Docker Security
Benchmark. Moreover, they offer native support for the SARIF format, which surely facilitates the
seamless integration and interoperability with other components that populate the Hardening Module.

5. Related Work

According to a recent survey, the majority of works dealing with container security proposes to ad-
dress hazards by focusing on the development phase [29]. In this perspective, static analysis tools
demonstrated to be effective, especially for revealing the presence of known CVEs in container images
[30], [24]. However, many tools used in production-quality environments have the limit of not con-
sidering vulnerabilities of third-party libraries or additional software packages. As a result, they are
characterized by a very modest detection rate and should be used “with care” when handling sensitive
or mission-critical containers [31]. Another limitation of static analysis tools is due to their scope.
Specifically, many packages only consider a single container image, hence missing the evaluation of
possible interactions with the container engine or local/remote microservices [29]. Unfortunately,
this reduces the effectiveness of the approach when used against a modern microservice architecture,
which could be highly mutable, heterogeneous and orchestrated in a complex manner, especially to
guarantee scalability and performances of monolithic counterparts [32]. Therefore, a common approach
to face challenges in container security is to take advantage of two strategies at once. The first strategy
exploits mechanisms devoted to vulnerability analysis [33],[34]. The second strategy exploits various
mitigation workarounds based on well-defined patterns or best practices [35],[36]. Another relevant
case considered by the literature deals with the orchestration phase, which is a core building block
of cloud-native applications. Alas, the majority of cloud-oriented security platforms still requires a
comprehensive process to enforce security within the standard operation flow. A possible idea is to
deploy a Secure Container Orchestrator engine based on hardware-based trusted execution environment
technologies for data protection [37]. Another viable approach is to take advantage of the peculiarities
of the software architecture. For instance, when Kubernetes is used, AppArmor policies for secure
cloud-native deployments are demonstrated to be effective [38].

For the specific case of Docker containers, the work in [39] introduces a comprehensive solution that
integrates existing security analysis tools (e.g., SonarQube) for enhancing the global security posture of
a deployment. Dynamic testing techniques can also be adopted to further advance in performance. As
an example, they can be employed to “coordinate” three different automated dynamic testing techniques:
Web Application Security Testing, Security API Scanning, and Behaviour Driven Security Testing [40].
When generalization is not possible, an effective solution entails the definition and creation of specific
security profiles. For instance, AppArmor can be used to produce profiles to enforce access policies and
mitigate risks caused by zero-day vulnerabilities [41]. Access control has also been used too: appropriate
rules can be considered effective [42]. Yet, suitable cryptographic protocols (e.g., TLS and OAuth) to
enhance the security should be considered in the most critical container ecosystems [43]. Indeed, more
holistic approaches should be also considered as envisioned in [6] and the references therein.

Lastly, a relevant amount of work has been done for the specific case of Docker containers, mainly
owing to their widespread diffusion. An increasing number of publicly available containers have relevant
security vulnerabilities that can be exploited quite straightforwardly [44], [45], thereby indicating
that current security practices are far from being reliable. For example, a recent research paper [46]



showcased that the 51% of ∼4 million images hosted in Docker Hub have exploitable vulnerabilities.
As regards securing Docker containers, we mention the work in [47], which considers exploiting the
information on the relationship of vulnerable software packages and documented issues of Docker
images. Another idea relies upon the static analysis of Dockerfiles, especially to search for potential
vulnerabilities of the used software components and libraries [48]. Besides, the increasing degree of
sophistication of attacks, for instance, threats aiming at increasing the energy footprint of a datacenter,
accounts for new techniques to reveal potential hidden communication paths that can be used to
orchestrate offensive campaigns [49]. As regards online detection through syscalls or fine-grained
behaviors, a possible approach is to use kernel augmentation to inspect agentless applications or prevent
the need for sidecar containers [10].

6. Conclusions and Future Work

This paper presented the overall architecture at the basis of Project , which can be used as a reference
template to automatize security operations needed in modern DevOps pipelines. A major benefit of
having a comprehensive framework is to let developers and IT operators to solely concentrate on
the delivery process. The framework is composed of three core modules, i.e., hardening, compliance
verification, and runtime monitoring. As discussed, the hardening module should process the set of
requested containers and the security constraints of the CI/CD team to build container templates that
have a minimal footprint in terms of security risks. The preliminary assessment made in this paper lays
the foundation for the hardening pipeline by analyzing and discussing the relevant tools to support the
security linting and container scanning tasks for the Docker ecosystem.

Future works aim at advancing the development of the overall framework and integrating all the
required software components into a prototype to test performance on real container images collected
“in the wild”. For the specific case of the hardening module, the main mid-term research questions to be
addressed range from the suitability of pre-existent tools (e.g., security linters) to an efficient solution
to integrate the various output to fully assess the security of containers. A possible approach that we
are considering is to use Large Language Models to process logs.
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