
Hyperproperties for Safe and Secure RFID Systems
Ludovico Fusco

1,*,†
, Alessandro Aldini

1,*,†

1Department of Pure and Applied Sciences, University of Urbino, Italy

Abstract
Although there have been many contributions to the rigorous description and verification of RFID-based systems

and their safety and security properties, there has yet to be much progress toward an explicit formalization of

information flow policies for such systems in terms of hyperproperties. In this paper, we introduce three classes

of hyperproperties related to the analysis of anti-collision protocols for RFID tags: hyper-reachability, hyper-

adaptivity, and generalized non-interference. As a modeling framework, we employ an event-based model (suitable

for representing a large portion of existing RFID systems, both with passive and battery-powered tags) featuring

a component-oriented notion of state and allowing us to express hyperproperties in terms of event satisfaction

by component configurations. For each hyperproperty, we provide a formalization à la Clarkson-Schneider and a

hyperlogic characterization. We also propose some insights about decidability issues.

Keywords
Hyperproperties, RFID systems, Anti-collision protocols, Hyperlogics

1. Introduction

Since its official patenting in the 1980s, the Radio-Frequency Identification (RFID) technology has been

experiencing relentless advancement due to its extreme versatility and usability in a wide range of

contexts such as access control, logistics, retail, and supply chain management [1]. Moreover, as an

enabling technology for the IoT computing paradigm, RFID today underpins new systems and protocols

for object identification/data acquisition in smart environments [2]. At the same time, RFID-based

systems are proving vulnerable to attacks conducted against RFID technology, such as cloning, replaying,

relaying, and even backend attacks that exploit RFID vulnerabilities to inject commands to the backend

of the system, including middleware and database management systems [3, 4, 5].

Despite a large number of contributions to the formal description and verification of RFID-based

systems and protocols, to the best of our knowledge, no foundational framework has yet been proposed

for the explicit formalization of information flow policies for RFID systems in terms of hyperproper-

ties [6]. The need for studies in this direction has emerged especially, though not always explicitly, in

the area of information security (see, e.g., [7, 8, 9, 10, 11]).

This paper aims to be a first step toward a taxonomy of hyperproperties for RFID systems, laying

the foundation for a general framework for their formalization. To this end, we introduce a low-level,

trace-based model suitable for representing a large portion of existing RFID systems (both with passive

and battery-powered tags) implementing tree protocols for tag collision arbitration [12]. Our model

features a component-oriented, event-based notion of state allowing us to express hyperproperties in

terms of event satisfaction by component configurations. Our model assumes a prior high-level specifi-

cation in terms of Kripke structures, automata, or labeled transition systems, which is not provided in

this paper. The notions of state and trace are therefore intended to derive from such a specification.

Moreover, system executions are assumed to be synchronous and discrete-time.

Within this framework, we introduce three classes of hyperproperties for the analysis of tree-based

anti-collision protocols for RFID tags, and we discuss the safety and security conditions they allow us to

ITASEC 2024: The Italian Conference on CyberSecurity, April 08–12, 2024, Salerno, Italy
*
Corresponding author.

†
These authors contributed equally.

$ l.fusco2@campus.uniurb.it (L. Fusco); alessandro.aldini@uniurb.it (A. Aldini)

� https://www.uniurb.it/persone/alessandro-aldini (A. Aldini)

� 0009-0001-5844-2894 (L. Fusco); 0000-0002-7250-5011 (A. Aldini)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:l.fusco2@campus.uniurb.it
mailto:alessandro.aldini@uniurb.it
https://www.uniurb.it/persone/alessandro-aldini
https://orcid.org/0009-0001-5844-2894
https://orcid.org/0000-0002-7250-5011
https://creativecommons.org/licenses/by/4.0

investigate. The three classes are hyper-reachability, hyper-adaptivity, and generalized non-interference.

While generalized non-interference is an instance of the general template introduced in [13], hyper-

reachability and hyper-adaptivity are novel and specifically designed for RFID systems. For each class,

we provide a classical definition in the style of [6] and a formalization in a suitable hyperlogic [14].

It turns out that hyper-reachability and generalized non-interference are expressible in HyperLTL,

while hyper-adaptivity requires the first-order logic FO[<,𝐸]. On the basis of the quantifier prefix of

each formula obtained, we provide information on decidability and complexity results with respect to

the problems of satisfiability and model checking in the combined input Kripke structure/HyperLTL

formula (the latter problem in the cases of hyper-reachability and generalized non-interference only).

The paper is organized as follows. In Section 2, we provide some background information about

RFID technology and tree-based anti-collision protocols for RFID tags. In Sections 3 and 4, we present

our abstract model of an RFID system and set up the machinery for hyperproperty formalization. In

Section 5, we propose our three classes of hyperproperties for RFID verification. In Section 6, we provide

some closing remarks and indicate possible directions for future research.

2. Background

2.1. RFID systems

An RFID system is made up of three main components: a controller, a reader, and a batch of tags. A

tag is a transponder consisting of a microchip connected to an antenna. The microchip can store and

process (a small amount of) data, which can be transmitted by the antenna in the form of radio signals.

RFID tags can be either passive, semi-passive or active. Passive tags do not have an embedded power

source. Semi-passive and active tags, on the other hand, are provided with an internal battery, but differ

in an important respect: in the former, the battery powers the microchip and possibly some additional

on-board component (e.g., a sensor), but does not supply energy for signal transmission; in the latter,

it performs both functions. The reader is a device (also equipped with its own antenna) capable of

uniquely identifying, tracking or locating tags by generating an electromagnetic field. The controller

is a backend workstation connected to the reader via a network interface (either wired or wireless).

Depending on the particular infrastructure the RFID system is integrated into, the controller carries out

a number of different tasks. First and foremost, it is responsible for collecting and somehow processing

the raw data captured by the reader.

An RFID system is activated each time the reader emits a data request signal through its antenna.

In the case of passive and semi-passive systems, if a tag is within the reader’s interrogation zone, the

signal transmitted by the reader is picked up by the tag’s antenna and converted into electrical energy

for the microchip’s circuitry. At this point, the tag transmits the requested information to the reader

via load/backscatter modulation. In the case of active systems, the tag responds to the reader using its

own power source.

2.2. The symmetry problem

In this paper, we only consider systems where the communication between the reader and the tags

takes place on a single multiple access channel. In such a context, tag-to-reader collisions [15] can

occur whenever two or more tags respond to a data request from the reader at the same time. Indeed,

simultaneous reply transmissions interfere with each other and, as a result, the reader cannot distinguish

between the tags. This situation is commonly referred to as the symmetry problem. As for collision

arbitration, we assume that the system implements a well-known tree algorithm based on random bit

extraction by the tags and identification via binary address by the reader. Originally developed in the

broader context of conflict resolution techniques in shared communication channels, this protocol was

independently introduced and studied in [16, 17, 18]. Over time, it has undergone several modifications

and optimizations, many of which have been successfully applied to the RFID context [12].

Table 1
Input and output ports of S.

C R tag𝑘
Input Output Input Output Input Output

data𝑖𝑛 p_data𝑜𝑢𝑡 reply𝑖𝑛

data_request𝑜𝑢𝑡
address𝑜𝑢𝑡
feedback𝑜𝑢𝑡
data𝑜𝑢𝑡

data_request𝑘𝑖𝑛
address𝑘𝑖𝑛
feedback𝑘𝑖𝑛

reply𝑘𝑜𝑢𝑡
r_bit𝑘𝑜𝑢𝑡

In the event of a collision, the protocol states that the reader sends negative feedback to all tags in

its interrogation zone, asking them to extract a random bit. After that, the reader interrogates all tags

that extracted, say, 0. If a collision still occurs, then this splitting procedure is iterated until the reader

successfully communicates with every tag in the first group. The procedure is then repeated for tags

that initially extracted 1. At the end of the protocol, each tag has its own unique identifying bitstring

(address) consisting of the sequence of outcomes of all its extractions.

3. Model description

In this section, we introduce our model of an RFID system and specify its essential architecture by

detailing the input and output ports relevant to our analysis. On this basis, we define the notions of

event, state, and trace.

3.1. Components and interfaces

We represent an RFID system as a triple S = ⟨C,R,T⟩, where C is the backend controller, R is the

reader, and T = {tag𝑘}𝑘∈𝐾 is a batch of tags indexed over a finite integer set 𝐾 of cardinality |𝐾| > 1.

We denote input and output ports of S using the notation port𝑐, where port is a port name and

𝑐 ∈ {𝑖𝑛, 𝑜𝑢𝑡} is a port type (see Table 1). Each component tag𝑘 is equipped with an input port

data_request𝑘𝑖𝑛 to receive instructions from R and an output port reply𝑘𝑜𝑢𝑡 to send back information.

Clearly, R is provided with the corresponding ports data_request𝑜𝑢𝑡 and reply𝑖𝑛. The raw data that

the reader acquires from the tags are sent to C via data𝑜𝑢𝑡 and received at data𝑖𝑛. Once the data have

been processed, the controller outputs them in their final form through the port p_data𝑜𝑢𝑡. Since the

total number of tags is |𝐾|, a tag collision of multiplicity at most |𝐾| can occur every time the reader

sends a request. In each round of communication, the reader assesses whether the transmissions were

successful or not and sends feedback to the tags in its interrogation zone via the port feedback𝑜𝑢𝑡. In

particular, feedback𝑜𝑢𝑡 returns the values 0 (idle), 1 (success) and 2+ (collision). Feedback is received by

the tags at feedback𝑘𝑖𝑛. In the case of a collision, the tags and the reader enable, respectively, the ports

r_bit𝑘𝑜𝑢𝑡 (used for random bit extraction) and address𝑜𝑢𝑡 (used for tag identification and transmission

attempt authorization during the execution of the anti-collision protocol). The address bitstring and

the random bit are sent to the input port address𝑘𝑖𝑛 of the tag, which compares the last bit of the

address with the extracted random bit, possibly authorizing a new data transmission via reply𝑘𝑜𝑢𝑡 (the

information flows among the ports are depicted in Figure 1).

3.2. Events, states and traces

Our model is based on the primitive notion of event. An event represents the activity state of a single

port of the system. In our framework, events are atomic entities, so they cannot be combined into more

“complex” events, nor can they describe the activity of more than one port. We use ad-hoc notations

for three different types of events. The first one is port𝑐 : 𝑏, where 𝑏∈{0, 1} is a Boolean value. We

write port𝑐 : 𝑏 to express the fact that, depending on 𝑐, an input or an output value for port𝑐 is present

(𝑏 = 1) or absent (𝑏 = 0) and, accordingly, the information flows or does not flow through the port.

Sometimes, we will also need to make explicit what input or output values are present for a certain

data𝑖𝑛

p_data𝑜𝑢𝑡

data𝑜𝑢𝑡

data_request𝑜𝑢𝑡

reply𝑖𝑛

feedback𝑜𝑢𝑡

address𝑜𝑢𝑡

reply𝑘𝑜𝑢𝑡

feedback𝑘𝑖𝑛

data_request𝑘𝑖𝑛

address𝑘𝑖𝑛

r_bit𝑘𝑜𝑢𝑡

Figure 1: Dependencies between input and output ports of controller, reader and tags.

port. So we write port𝑖𝑛▷ 𝑋 and port𝑜𝑢𝑡 ◁ 𝑋 to mean that port𝑖𝑛 is taking the value 𝑋 as input and

port𝑜𝑢𝑡 is returning the value 𝑋 as output, respectively.

Events are the building blocks of the notions of configuration and state. Let X be a component of

S. An event set (e-set) for X is any set of events related to the ports of X. We say that an e-set for X is

well-defined if it contains exactly one event port𝑐 : 𝑏 for each port of X and, whenever 𝑏 = 1, it possibly

contains an event making explicit the value present for port𝑐. A configuration of X is a well-defined

e-set for X. A state of S is a tuple of configurations of the form 𝜎 =
⟨︀
𝐸C, 𝐸R, 𝐸tag1 , . . . , 𝐸tag|𝐾|

⟩︀
. For a

state 𝜎 and a component X, we write 𝜎.𝐸X to denote the configuration 𝐸X at 𝜎. The state space of S is

denoted by ΣS. A trace is an 𝜔-word 𝜏 over ΣS. We denote by 𝑇S the set of execution traces of S.

Finally, we define event satisfaction. We say that an event 𝑒 is satisfied by the configuration of X at

state 𝜎 (notation: 𝜎.𝐸X ⊨ 𝑒) whenever 𝑒 ∈ 𝜎.𝐸X.

3.3. The anti-collision protocol

Following [12], we present below two pseudocodes illustrating the anti-collision protocol from the

perspective of both the reader (Algorithm 1) and a generic tag (Algorithm 2). The instructions are

formulated in accordance with our modeling framework.

Algorithm 1 The protocol run at R

1 𝑎 = [];
2 𝑒𝑛𝑑 = 0;
3 while 𝑒𝑛𝑑 == 0:
4 data_request𝑜𝑢𝑡 ◁ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡
5 address𝑜𝑢𝑡 ◁ 𝑎
6 if reply𝑖𝑛 ▷× : // collision
7 feedback𝑜𝑢𝑡 ◁ 2+
8 𝑎.𝑝𝑢𝑠ℎ(0)
9 else if reply𝑖𝑛 ▷ 𝑣𝑎𝑙𝑢𝑒:

10 feedback𝑜𝑢𝑡 ◁ 1
11 while 𝑎.𝑟𝑒𝑎𝑑() == 1:
12 𝑎.𝑝𝑜𝑝()
13 if 𝑎 == []:
14 𝑒𝑛𝑑 = 1
15 else:
16 𝑎.𝑝𝑜𝑝()
17 𝑎.𝑝𝑢𝑠ℎ(1)
18 else: feedback𝑜𝑢𝑡 ◁ 0

Algorithm 2 The protocol run at tag𝑘

1 𝑎𝑘 = [];
2 𝑒𝑛𝑑 = 0;
3 while 𝑒𝑛𝑑 == 0;
4 data_request𝑘𝑖𝑛 ▷ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡
5 address𝑘𝑖𝑛 ▷ 𝑎
6 if 𝑎 == 𝑎𝑘:
7 reply𝑘𝑜𝑢𝑡 ◁ 𝑣𝑎𝑙𝑢𝑒
8 if feedback𝑘𝑖𝑛 ▷ 2+:
9 r_bit𝑘𝑜𝑢𝑡 ◁ 𝑏

10 𝑎𝑘.𝑝𝑢𝑠ℎ(𝑏)
11 else if feedback𝑘𝑖𝑛 ▷ 1:
12 𝑒𝑛𝑑 = 1

4. Logical framework

A standard approach for describing and reasoning about the behavior of a computational system

is to represent it as the set of all its execution traces, i.e., the sequences of states corresponding to

the computations that the system performs. This method allows to model many policies satisfied by

the system in terms of trace properties (in this perspective, a policy is nothing more than the set of

execution traces complying with it), offering a natural framework for a classification based on the

safety-liveness dichotomy [19]. However, in this context, one cannot specify those policies whose

modeling and verification must take into account the interaction between a system and its environment.

Non-interference [20] and many other fundamental information flow security policies [21] typically

fall into this category.

In their celebrated paper [6], Clarkson and Schneider introduced hyperproperties, a powerful formalism

for expressing such policies. Hyperproperties specify conditions under which the behavior of a system

in certain runs does or does not depend on the characteristics of certain alternative executions. It is

precisely because of this major difference from trace properties that hyperproperties must be formally

modeled as properties of systems. So, if a trace property is a set of execution traces, a hyperproperty is a

set of trace properties. Accordingly, if the definitions of nontrivial trace properties require quantification

on instants of time, those of hyperproperties require an additional level of quantification on traces in

order to impose conditions on different executions and to relate them to each other.

In the following, we show how to formalize hyperproperties for RFID systems in light of our event-

based model.

4.1. Hyperproperties

We start by discussing the modeling of a classical trace property for S, namely reachability, prescribing

that whenever the reader sends a request to the tags, after some time the 𝑘-th tag sends back a successful

response. This is an example of liveness policy, and as such it is expressible in Linear Temporal Logic

(LTL) [22]. Indeed this policy corresponds to the trace property PS[𝑘] ⊆ Σ𝜔
S consisting of all traces

satisfying the LTL formula 2(𝜙→ ◇𝜓) where:

𝜙 := [𝐸R ⊨ data_request𝑜𝑢𝑡 : 1], and

𝜓 := [𝐸tag𝑘 ⊨ reply𝑘𝑜𝑢𝑡 : 1] ∧##[𝐸R ⊨ feedback𝑜𝑢𝑡 ◁ 1].

Note that we assume the reader returns feedback two states after the tag’s response. Let 𝐴𝑃 be a set of

atomic propositions. Observe that the standard semantic clause for 𝑎 ∈ 𝐴𝑃 in LTL is formulated as

𝜏, 𝑖 |= 𝑎 ⇔ 𝑎 ∈ 𝜏 [𝑖], where 𝜏 is a trace and 𝑖 ∈ N. In our case, every such an 𝑎 is the counterpart of

a satisfaction statement of the form 𝜏 [𝑖].𝐸X ⊨ 𝑒. Since states and traces become explicit only at the

semantic level, we unfold the internal structure of atomic propositions using the notation [𝐸X ⊨ 𝑒].
Thus, according to our event-based framework, we obtain

𝜏, 𝑖 |= [𝐸X ⊨ 𝑒] ⇔ 𝑒 ∈ 𝜏 [𝑖].𝐸X ⇔ 𝜏 [𝑖].𝐸X ⊨ 𝑒.

By Kamp’s Theorem [23] (see also [24, 25, 26]), we know that LTL is expressively equivalent to FO[<],
the fragment of first-order logic (with equality) over the class of Dedekind complete linearly ordered

structures with monadic predicates {𝑃𝑎}𝑎∈𝐴𝑃 (in this paper, our reference model is clearly built over N).

With a slight abuse of notation, we write [𝐸X ⊨ 𝑒](𝑥) for the atomic open FO[<] formula corresponding

to [𝐸X ⊨ 𝑒] in LTL. We can therefore redefine PS[𝑘] as the class of all traces 𝜏 ∈ Σ𝜔
S satisfying the

FO[<] formula ∀𝑥.(𝜙(𝑥) → ∃𝑦 > 𝑥.𝜓(𝑦)), where:

𝜙(𝑥) := [𝐸R ⊨ data_request𝑜𝑢𝑡 : 1](𝑥), and

𝜓(𝑦) := [𝐸tag𝑘 ⊨ reply𝑘𝑜𝑢𝑡 : 1](𝑦) ∧ [𝐸R ⊨ feedback𝑜𝑢𝑡 ◁ 1](𝑦 + 2).

In [6], Clarkson and Schneider’s formalization assumes, though does not always explicitly use, a two-

sorted first-order notation allowing quantification both over traces and over instants of time. In this

setting, elementary facts about system behaviors are expressed by binary predicates of the form 𝑃 (𝜏, 𝑖).
We can think of each of these predicates as being associated with an atomic proposition 𝑎 ∈ 𝐴𝑃 . So, in

our context, for 𝑎 = [𝐸X ⊨ 𝑒], we have 𝑃𝑎(𝜏, 𝑖) := 𝜏 [𝑖].𝐸X ⊨ 𝑒.
Going back to the previous example, suppose we want to model an information flow policy based on

PS[𝑘] requiring that for every execution in which the reader globally fails to communicate with the

𝑘-th tag, there is at least one in which communication is successful. For 𝑛 ∈ {1, 2}, let us define:

𝜙(𝜏𝑛, 𝑖𝑛) := 𝜏𝑛[𝑖𝑛].𝐸R ⊨ data_request𝑜𝑢𝑡 : 1

𝜓(𝜏𝑛, 𝑗𝑛) := (𝜏𝑛[𝑗𝑛].𝐸tag𝑘 ⊨ reply𝑘𝑜𝑢𝑡 : 1) ∧ (𝜏𝑛[𝑗𝑛 + 2].𝐸R ⊨ feedback𝑜𝑢𝑡 ◁ 1)

𝜒𝑛
𝑓𝑎𝑖𝑙 := ∀𝑖𝑛.∃𝑗𝑛 > 𝑖𝑛.(𝜙(𝜏𝑛, 𝑖𝑛) → ¬𝜓(𝜏𝑛, 𝑗𝑛))

𝜒𝑛
𝑠𝑢𝑐𝑐 := ∀𝑖𝑛.∃𝑗𝑛 > 𝑖𝑛.(𝜙(𝜏𝑛, 𝑖𝑛) → 𝜓(𝜏𝑛, 𝑗𝑛))

So we can define a hyperproperty HPS[𝑘] consisting of all 𝑇 ⊆ Σ𝜔
S satisfying:

∀𝜏1.∃𝜏2.
(︀
𝜒1
𝑓𝑎𝑖𝑙 → 𝜒2

𝑠𝑢𝑐𝑐

)︀
.

The hyperproperties we introduce in Section 5 are defined in this way.

4.2. Hyperlogics

In recent years, much effort has been devoted to the development of logics for verifying hyperproperties

for both linear and branching time systems. The wide variety of formalisms introduced (known as

hyperlogics) has led to the construction of an expressiveness hierarchy [14] that is constantly being

enriched with new elements. In this paper, we formalize our hyperproperties using the well-known

linear time hyperlogics HyperLTL and FO[<,𝐸].
HyperLTL [27] extends LTL with an additional layer of syntax enabling quantification over trace

variables from a denumerable set 𝑋 = {𝜋1, 𝜋2, . . . }. Further, atomic propositions are annotated with

the trace variables with respect to which they are to be evaluated. Well-formed formulas are defined by

the following grammar:

𝜓 ::= 𝜙 | ∀𝜋.𝜓 | ∃𝜋.𝜓
𝜙 ::= 𝑎𝜋 | ¬𝜙 | 𝜙 ∧ 𝜙 |#𝜙 | 𝜙 𝒰 𝜙

Evaluation of HyperLTL formulas is defined with respect to a set of traces 𝑇 ⊆ ℘(𝐴𝑃)𝜔 and a (partial)

trace assignment Π : 𝑋 → 𝑇 . In the following list, we denote by Π[𝜋 ↦→ 𝜏] the assignment that

coincides with Π except for the trace 𝜏 assigned to 𝜋.

Π, 𝑖 |=𝑇 𝑎𝜋 ⇔ 𝑎 ∈ Π(𝜋)[𝑖]

Π, 𝑖 |=𝑇 ¬𝜙 ⇔ Π, 𝑖 ̸|=𝑇 𝜙

Π, 𝑖 |=𝑇 𝜙1 ∧ 𝜙2 ⇔ Π, 𝑖 |=𝑇 𝜙1 and Π, 𝑖 |=𝑇 𝜙2

Π, 𝑖 |=𝑇 #𝜙 ⇔ Π, 𝑖+ 1 |=𝑇 𝜙

Π, 𝑖 |=𝑇 𝜙1 𝒰 𝜙2 ⇔ ∃𝑗 ≥ 𝑖.Π, 𝑗 |=𝑇 𝜙2 and ∀𝑘 ∈ [𝑖, 𝑗).Π, 𝑘 |=𝑇 𝜙1

Π, 𝑖 |=𝑇 ∀𝜋.𝜙 ⇔ ∀𝜏 ∈ 𝑇.Π[𝜋 ↦→ 𝜏], 𝑖 |=𝑇 𝜙

Π, 𝑖 |=𝑇 ∃𝜋.𝜙 ⇔ ∃𝜏 ∈ 𝑇.Π[𝜋 ↦→ 𝜏], 𝑖 |=𝑇 𝜙

The temporal modalities ◇ (eventually) and 2 (globally) are defined in the usual way, with ◇𝜙 :=
true 𝒰 𝜙 and 2𝜙 := ¬◇¬𝜙. Note that, as regards our case study, the semantic clause for atomic

propositions becomes:

Π, 𝑖 |=𝑇 [𝐸X ⊨ 𝑒]𝜋 ⇔ 𝑒 ∈ Π(𝜋)[𝑖].𝐸X ⇔ Π(𝜋)[𝑖].𝐸X ⊨ 𝑒.

Although HyperLTL allows for the description of a wide variety of hyperproperties, this logic lacks

sufficient syntactic resources to express equality/non-equality statements between instants of time.

This problem does not arise in the first-order logic FO[<,𝐸] [28], which is obtained by extending the

syntax of FO[<] with the addition of a new binary predicate symbol 𝐸 that expresses equality between

instants of time (with respect to either the same or different traces). Starting from a denumerable set of

variables 𝑋 = {𝑥1, 𝑥2, . . . }, well-formed FO[<,𝐸] formulas are given by the following grammar:

𝜓 ::= 𝜙 | ¬𝜓 | 𝜓1 ∧ 𝜓2 | ∀𝑥.𝜓 | ∃𝑥.𝜓
𝜙 ::= 𝑃𝑎(𝑥) | 𝑥 < 𝑦 | 𝑥 = 𝑦 | 𝐸(𝑥, 𝑦)

The intended models of FO[<,𝐸] are structures with universe 𝑇 × N, where 𝑇 ⊆ ℘(𝐴𝑃)𝜔 is a set

of traces. For ⟨𝜏, 𝑖⟩ ∈ 𝑇 × N and 𝑙 ∈ {1, 2}, we denote by 𝑝𝑟𝑜𝑗𝑙(⟨𝜏, 𝑖⟩) the projection on the 𝑙-th
component of ⟨𝜏, 𝑖⟩. The semantics of FO[<,𝐸] is defined with respect to (partial) pair assignments

𝑉 : 𝑋 → 𝑇 × N, according to the following clauses:

𝑉 |=𝑇 𝑃𝑎(𝑥) ⇔ 𝑎 ∈ 𝜏 [𝑖], where 𝜏 = 𝑝𝑟𝑜𝑗1(𝑉 (𝑥)) and 𝑖 = 𝑝𝑟𝑜𝑗2(𝑉 (𝑥))

𝑉 |=𝑇 𝑥 < 𝑦 ⇔ 𝑝𝑟𝑜𝑗1(𝑉 (𝑥)) = 𝑝𝑟𝑜𝑗1(𝑉 (𝑦)) and 𝑝𝑟𝑜𝑗2(𝑉 (𝑥)) < 𝑝𝑟𝑜𝑗2(𝑉 (𝑦))

𝑉 |=𝑇 𝑥 = 𝑦 ⇔ 𝑉 (𝑥) = 𝑉 (𝑦)

𝑉 |=𝑇 𝐸(𝑥, 𝑦) ⇔ 𝑝𝑟𝑜𝑗2(𝑉 (𝑥)) = 𝑝𝑟𝑜𝑗2(𝑉 (𝑦))

𝑉 |=𝑇 ¬𝜓 ⇔ 𝑉 ̸|=𝑇 𝜓

𝑉 |=𝑇 𝜓1 ∧ 𝜓2 ⇔ 𝑉 |=𝑇 𝜓1 and 𝑉 |=𝑇 𝜓2

𝑉 |=𝑇 ∀𝑥.𝜓 ⇔ ∀𝜏 ∈ 𝑇.∀𝑖 ∈ N.𝑉 [𝑥 ↦→ ⟨𝜏, 𝑖⟩] |=𝑇 𝜓

𝑉 |=𝑇 ∃𝑥.𝜓 ⇔ ∃𝜏 ∈ 𝑇.∃𝑖 ∈ N.𝑉 [𝑥 ↦→ ⟨𝜏, 𝑖⟩] |=𝑇 𝜓

FO[<,𝐸] has been shown to be strictly more expressive than HyperLTL [28, Thm. 8]. Nevertheless,

an analog of Kamp’s theorem for HyperLTL has been proved for a fragment of FO[<,𝐸] [28, Thm.

9]. Finally, recall that, with respect to sets of infinite traces, FO[<,𝐸] is expressively equivalent

to the recently introduced Hypertrace Logic [29], whose syntax incorporates and extends the two-

sorted notation of Clarkson and Schneider. All definitions of our hyperproperties can thus be seen as

formalizations in this hyperlogic.

5. Hyperproperties for RFID systems

In this section, we introduce three hyperproperty templates for RFID systems: hyper-reachability,

hyper-adaptivity, and generalized non-interference. This choice is not accidental. In fact, all three

policies can be related to both safety and security contexts, so that compliance with them represents a

prerequisite for the optimal operation of any system that fits the model presented in Section 3.

5.1. Hyper-reachability

Among the policies our system has to comply with in order to have full functionality, there should be

one prescribing that, for every execution where the reader is able to successfully communicate with

only 𝑚 tags (for 𝑚 < |𝐾|), there exist other executions where it manages to communicate with all the

remaining |𝐾| −𝑚 tags. However, since the tag-to-reader data transmissions can be compromised

by several problems that the system itself cannot solve, this policy is too strong to be enforced in real

cases. We thus propose a weaker version thereof by relaxing the condition on the existence of the

alternative runs. In particular, our policy prescribes that there exists at least one execution where the

reader successfully communicates with at least one nonempty subset of the remaining |𝐾| −𝑚 tags.

Since we are reasoning in terms of pairs of disjoint sets of tags, we are actually defining a class of

hyperproperties for S, each one defined with respect to a two-element partition of 𝐾 .

Definition 1 (Hyper-reachability). Let Π2(𝐾) be the set of all the two-element partitions of 𝐾 . For

𝒫 ∈ Π2(𝐾) with blocks 𝑃,𝑄, the hyper-reachability property for S with respect to 𝒫 is the set HRS[𝒫]

of all 𝑇 ⊆ Σ𝜔
S satisfying:

∀𝜏1.∃𝜏2.

⎛⎜⎜⎝
⎛⎝⋀︁

𝑝∈𝑃
∃𝑖.𝜙𝑝(𝜏1, 𝑖) ∧

⋀︁
𝑞∈𝑄

¬∃𝑖′.𝜙𝑞(𝜏1, 𝑖
′)

⎞⎠→
⋁︁
𝑈⊆𝑄
𝑈 ̸=∅

⋀︁
𝑢∈𝑈

∃𝑗.𝜙𝑢(𝜏2, 𝑗)

⎞⎟⎟⎠
where, for 𝑛 ∈ {1, 2}, 𝑘 ∈ 𝐾 , and 𝑖 ∈ N:

𝜙𝑘(𝜏𝑛, 𝑖) := (𝜏𝑛[𝑖].𝐸tag𝑘 ⊨ reply𝑘𝑜𝑢𝑡 : 1) ∧ (𝜏𝑛[𝑖+ 2].𝐸R ⊨ feedback𝑜𝑢𝑡 ◁ 1).

We say that S satisfies the weak (resp., the strong) hyper-reachability property if 𝑇S ∈
⋃︀

𝒫∈Π2(𝐾)HRS[𝒫]
(resp., 𝑇S ∈

⋂︀
𝒫∈Π2(𝐾)HRS[𝒫]).

Hyper-reachability admits the following formalization in HyperLTL:

∀𝜋1.∃𝜋2.

⎛⎜⎜⎝
⎛⎝⋀︁

𝑝∈𝑃
◇𝜙𝑝(𝜋1) ∧

⋀︁
𝑞∈𝑄

¬◇𝜙𝑞(𝜋1)

⎞⎠→
⋁︁
𝑈⊆𝑄
𝑈 ̸=∅

⋀︁
𝑢∈𝑈

◇𝜙𝑢(𝜋2)

⎞⎟⎟⎠
where, for 𝑛 ∈ {1, 2} and 𝑘 ∈ 𝐾 :

𝜙𝑘(𝜋𝑛) := [𝐸tag𝑘 ⊨ reply𝑘𝑜𝑢𝑡 : 1]𝜋𝑛 ∧##[𝐸R ⊨ feedback𝑜𝑢𝑡 ◁ 1]𝜋𝑛 .

It is well known that the satisfiability problem for the class of HyperLTL formulas with quantifier

prefix ∀∃ is undecidable [30, Thm. 14]. The model checking problem for the same class is instead

expspace-complete [27, 31].

In summary, hyper-reachability ensures that no environmental factor can prevent a given set of tags

from communicating with the reader in any possible system execution. To further clarify this point, let

us take a concrete example. In the RFID context, read reliability is defined as the probability that a

tag is recognized when it is placed within the reader’s interrogation zone. Experimental results have

shown that reliability depends, among other things, on the orientation of the tag’s antenna relative

to the reader’s one [32]. Thus, an improper spatial arrangement of tags, either due to random factors

or malicious tampering, could compromise the success of some transmissions by lowering the read

reliability value for some tags. An RFID system satisfying hyper-reachability must therefore be part

of an infrastructure that is appropriately designed to prevent the above problem from occurring with

respect to the same tags in every possible situation. Hyper-reachability is therefore a policy that must

be enforced at the physical layer.

5.2. Hyper-adaptivity

Very often, the environmental conditions in which the reader queries tags are not static. The spatial

layout of components and the order in which transmissions occur can vary from execution to execution,

potentially resulting in different data acquisitions by the reader and processing outcomes by the

controller. We introduce an adaptivity policy for S stating that, for any system execution in which the

controller outputs a value 𝑣 (assumed to be a real number), there are 𝑚 distinct alternative executions

in each of which the reader successfully makes 𝑛 distinct acquisitions and the controller outputs an

approximated value of the form 𝑣 ± 𝜀, with 𝜀 a tolerance parameter. This is an adaptive policy because

its satisfaction would show that the system can adapt to a dynamic context while still ensuring mutually

consistent results. Clearly, 𝑚, 𝑛, and 𝜀 represent indices of robustness: the larger 𝑚, 𝑛 and the smaller

𝜀, the more robust the system.

Definition 2 (Hyper-adaptivity). For 𝑚,𝑛 ∈ N and 𝜀 ∈ R, the hyper-adaptivity property for S with

respect to 𝑚, 𝑛, and 𝜀 is the set HAS[𝑚,𝑛, 𝜀] of all 𝑇 ⊆ Σ𝜔
S satisfying:

∀𝜏.∃𝑚𝑗=1𝜏𝑗 .
⋀︁
𝑗 ̸=𝑗′

𝜏𝑗 ̸= 𝜏𝑗′∧∀𝑖.

(︃
𝜙(𝜏, 𝑖) →

𝑚⋀︁
𝑗=1

(︃
∃ℎ𝑗 .𝜓𝑗(𝜏𝑗 , ℎ

𝑗)∧∃𝑛𝑙=1𝑖
𝑗
𝑙 < ℎ𝑗 .

⋀︁
𝑙 ̸=𝑙′

𝑖𝑗𝑙 ̸= 𝑖𝑗𝑙′ ∧
𝑛⋀︁

𝑙=1

𝜒𝑗(𝜏𝑗 , 𝑖
𝑗
𝑙)

)︃)︃

where 𝜙(𝜏, 𝑖), 𝜓𝑗(𝜏𝑗 , ℎ
𝑗), and 𝜒𝑗(𝜏𝑗 , 𝑖

𝑗
𝑙) are defined as follows:

𝜙(𝜏, 𝑖) := 𝜏 [𝑖].𝐸C ⊨ p_data𝑜𝑢𝑡 ◁ 𝑣,

𝜓𝑗(𝜏𝑗 , ℎ
𝑗) := 𝜏𝑗 [ℎ

𝑗].𝐸C ⊨ p_data𝑜𝑢𝑡 ◁ 𝑣 ± 𝜀,

𝜒𝑗(𝜏𝑗 , 𝑖
𝑗
𝑙) := 𝜏𝑗 [𝑖

𝑗
𝑙].𝐸R ⊨ feedback𝑜𝑢𝑡 ◁ 1.

A hyperlogic characterization of HAS[𝑚,𝑛, 𝜀] can be provided by the following FO[<,𝐸] formula

(where 𝜙(⟨𝜏, 𝑖⟩), 𝜓𝑗(⟨𝜏𝑗 , ℎ𝑗⟩), and 𝜒𝑗(⟨𝜏𝑗 , 𝑖𝑗𝑙 ⟩) are defined according to the conventions adopted in

Section 4):

∀⟨𝜏, 𝑖⟩.∃𝑚𝑗=1⟨𝜏𝑗 , 𝑖𝑗⟩.∃⟨𝜏𝑗 , ℎ𝑗⟩.∃𝑛𝑙=1⟨𝜏𝑗 , 𝑖
𝑗
𝑙 ⟩.
⋀︁
𝑗 ̸=𝑗′

⟨𝜏𝑗 , 𝑖𝑗⟩ ≠ ⟨𝜏𝑗′ , 𝑖𝑗
′⟩ ∧

𝑛⋀︁
𝑙=1

⟨𝜏𝑗 , 𝑖𝑗𝑙 ⟩ < ⟨𝜏𝑗 , ℎ𝑗𝑙 ⟩

∧
⋀︁
𝑙 ̸=𝑙′

¬𝐸
(︁
⟨𝜏𝑗 , 𝑖𝑗𝑙 ⟩, ⟨𝜏𝑗 , 𝑖

𝑗
𝑙′⟩
)︁
∧

⎛⎝𝜙(⟨𝜏, 𝑖⟩) → 𝑚⋀︁
𝑗=1

(︃
𝜓𝑗(⟨𝜏𝑗 , ℎ𝑗⟩) ∧

𝑛⋀︁
𝑙=1

𝜒𝑗(⟨𝜏𝑗 , 𝑖𝑗𝑙 ⟩)

)︃⎞⎠ .

It can be easily checked that this formula belongs to the Ackermann class with equality, i.e., the fragment

[∃*∀∃*, 𝑎𝑙𝑙]= of first order logic with equality, for which the satisfiability problem has been shown to

be decidable with complexity ntime(2𝑐𝑛/ log𝑛), for 𝑐 some constant [33, Cor. 6.3.30].

Hyper-adaptivity is designed for all those infrastructures where tags transmit data acquired from

some sensing device. Consider an RFID system where each tag has an on-board sensor for temperature

measurement. Suppose that the reader collects temperature data and sends them to the controller, which

returns an arithmetic mean of the received values. In such a scenario, hyper-adaptivity ensures that, for

any system execution where the controller computes a mean 𝑣 at the end of a communication round,

there are sufficient (at least 𝑚) and relevant distinct alternative runs (each with 𝑛 distinct temperature

acquisitions) where the controller obtains the same mean up to a tolerance parameter 𝜀. Suppose, for

instance, that some tags are temporarily disabled due to a jamming attack or a passive interference,

or that after a cloning attack on some tags, the counterfeit tags transmit incorrect data. In both cases,

the mean 𝑣 may be either incorrect or based on too few data acquisitions. Therefore, the sensitivity

analysis with respect to the choices of the indices 𝑚, 𝑛, and 𝜀 is helpful to provide insights about the

impact of such kinds of situations.

5.3. Generalized non-interference

Non-interference provides one of the most important families of information flow security policies.

Developed in the context of multilevel security, it was introduced by Goguen and Meseguer [20] in a

deterministic setting and generalized to nondeterministic systems by McCullough [34] and McLean [13].

Subsequently, non-interference has been widely studied in many different frameworks, such as, e.g., the

semantics of concurrent programs [35], language-based static analysis [36], abstract interpretation [37],

property compositionality in process algebra [38], and reversible computing [39].

Here we show how a generalized notion of non-interference can be adapted to a specific condition of

interest (with respect to both safety and security aspects) for RFID systems. During the execution of an

anti-collision protocol, random bit extractions by tags are events that should under no circumstances

compromise the transmission of data to the reader. We express this policy as a generalized non-

interference hyperproperty [13] parameterized with respect to a single component tag𝑘. Our policy

prescribes that, for any two traces, there exists a third interleaved trace that is globally equivalent to

the first with respect to random extractions by tag𝑘 and to the second with respect to the successful

detection of tag𝑘 by the reader. This condition guarantees that, at every possible instant of time,

successful detection is independent of random extraction.

Definition 3 (Generalized non-interference). For 𝑘 ∈ 𝐾 , the generalized non-interference property for

S with respect to 𝑘 is the set GNIS[𝑘] of all 𝑇 ⊆ Σ𝜔
S satisfying:

∀𝜏1.∀𝜏2.∃𝜏3.∀𝑖.(𝜙(𝜏1, 𝑖) ↔ 𝜙(𝜏3, 𝑖) ∧ 𝜓(𝜏2, 𝑖) ↔ 𝜓(𝜏3, 𝑖))

where, for 𝑛 ∈ {1, 2, 3} and 𝑖 ∈ N, 𝜙(𝜏𝑛, 𝑖) := 𝜏𝑛[𝑖].𝐸tag𝑘 ⊨ r_bit𝑜𝑢𝑡 : 1 and

𝜓(𝜏𝑛, 𝑖) := 𝜏𝑛[𝑖].𝐸tag𝑘 ⊨ reply𝑘𝑜𝑢𝑡 : 1 ∧ 𝜏𝑛[𝑖+ 2].𝐸R ⊨ feedback𝑜𝑢𝑡 ◁ 1.

We say that S satisfies the strong generalized non-interference property if 𝑇S ∈
⋂︀

𝑘∈𝐾 GNIS[𝑘].

GNIS[𝑘] can be expressed in HyperLTL:

∀𝜋1.∀𝜋2.∃𝜋3.2(𝜙(𝜋1) ↔ 𝜙(𝜋3) ∧ 𝜓(𝜋2) ↔ 𝜓(𝜋3))

where, for 𝑛 ∈ {1, 2, 3}, 𝜙(𝜋𝑛) := [𝐸tag𝑘 ⊨ r_bit𝑜𝑢𝑡 : 1]𝜋𝑛 and:

𝜓(𝜋𝑛) := [𝐸tag𝑘 ⊨ reply𝑘𝑜𝑢𝑡 : 1]𝜋𝑛 ∧##[𝐸R ⊨ feedback𝑜𝑢𝑡 ◁ 1]𝜋𝑛 .

Decidability results are the same as in the hyper-reachability case.

Notice that GNIS[𝑘] describes a safety condition as its satisfaction is a prerequisite for the correct

execution of collision arbitration. However, it can also be used to formalize a security property to

verify whether the system mitigates attacks intended to alter the random extraction and invalidate

the protocol. While this is just an instance of generalized non-interference, an analogous template

can formalize several security aspects of RFID systems [7], including confidentiality and integrity [40],

authentication [41], and even trust [42] for decentralized systems [43, 44, 45].

6. Conclusions and future work

In this paper, we initiated a taxonomy of hyperproperties allowing to address both safety and secu-

rity issues in RFID-based infrastructures. As future work, we plan to extend our classification with

information flow policies relevant for the IoT context, also in view of applications to the analysis and

verification of systems and protocols based on wireless sensor networks and mobile ad-hoc networks.

We then intend to proceed to the algorithmic verification of the hyperproperties obtained in existing

model checkers
1
. Finally, it would be interesting to investigate counterexamples in case of policy

violations [47].

Acknowledgments

This work has been funded by the European Union - NextGenerationEU within the framework of PNRR

Mission 4 - Component 2 - Investment 1.1 under the Italian Ministry of University and Research (MUR)

programme "PRIN 2022" - grant number 2022598LMZ - AsCoT-SCE - CUP: H53D23003430006.

References

[1] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards,

Radio Frequency Identification and near-Field Communication, 3rd ed., Wiley, Hoboken, 2010.

1

For instance, MCHyper [46], available at https://finkbeiner.groups.cispa.de/tools/mchyper/.

https://finkbeiner.groups.cispa.de/tools/mchyper/

[2] N. Prabhu, Design and Construction of an RFID-enabled Infrastructure. The Next Avatar of the

Internet, CRC Press, Boca Raton, 2013.

[3] A. Juels, RFID security and privacy: a research survey, IEEE Journal on Selected Areas in

Communications 24 (2006) 381–394. doi:10.1109/JSAC.2005.861395.

[4] A. Khattab, Z. Jeddi, E. Amini, M. Bayoumi, RFID Security. A Lightweight Paradigm, Springer,

Cham, 2016. doi:10.1007/978-3-319-47545-5.

[5] D. Bagay, Information security of RFID tags, Procedia Computer Science 169 (2020) 183–186.

doi:https://doi.org/10.1016/j.procs.2020.02.133.

[6] M. R. Clarkson, F. B. Schneider, Hyperproperties, Journal of Computer Security 18 (2010) 1157–1210.

doi:10.3233/JCS-2009-0393.

[7] T. v. Deursen, S. Radomirović, Security of RFID Protocols – A Case Study, Electronic Notes in

Theoretical Computer Science 244 (2009) 41–52. doi:10.1016/j.entcs.2009.07.037.

[8] R. Focardi, F. L. Luccio, Secure Recharge of Disposable RFID Tickets, in: G. Barthe, A. Datta, S. Etalle

(Eds.), Formal Aspects of Security and Trust. FAST 2011, volume 7140 of Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2011, pp. 85–99. doi:10.1007/978-3-642-29420-4_6.

[9] G. Barthe, C. Fournet, B. Grégoire, P.-Y. Strub, N. Swamy, S. Zanella-Béguelin, Probabilistic

relational verification for cryptographic implementations, in: Proceedings of the 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, ACM, New

York, NY, USA, 2014, p. 193–205. doi:10.1145/2535838.2535847.

[10] D. L. Li, A. Tiu, Combining ProVerif and Automated Theorem Provers for Security Protocol

Verification, in: P. Fontaine (Ed.), Automated Deduction – CADE 27. CADE 2019, volume

11716 of Lecture Notes in Computer Science, Springer, Cham, 2019, pp. 354–365. doi:10.1007/
978-3-030-29436-6_21.

[11] Q. L. Meunier, A. R. Taleb, VerifMSI: Practical Verification of Hardware and Software Masking

Schemes Implementations, Cryptology ePrint Archive, Paper 2023/732, 2023. URL: https://eprint.

iacr.org/2023/732.

[12] P. Popovski, Tree-Based Anti-Collision Protocols for RFID Tags, in: M. Bolić, D. Simplot-Ryl,

I. Stojmenović (Eds.), RFID Systems: Research Trends and Challenges, Wiley, Hoboken, 2010, pp.

203–228. doi:10.1002/9780470665251.ch8.

[13] J. McLean, A general theory of composition for a class of "possibilistic" properties, IEEE Transac-

tions on Software Engineering 22 (1996) 53–67. doi:10.1109/32.481534.

[14] N. Coenen, B. Finkbeiner, C. Hahn, J. Hofmann, The Hierarchy of Hyperlogics, in: Proc. of the

34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’19), Article No.: 39,

IEEE, 2019, pp. 1–13. doi:10.1109/LICS.2019.8785713.

[15] K. Ali, A.-E. M. Taha, H. S. Hassanein, Medium Access Control in RFID, in: Y. Zhang, L. T. Yang,

J. Chen (Eds.), RFID and Sensor Networks. Architectures, Protocols, Security and Integrations,

CRC Press, Boca Raton, 2010, pp. 3–30.

[16] J. F. Hayes, An Adaptive Technique for Local Distribution, IEEE Transactions on Communications

26 (1978) 1178–1186. doi:10.1109/TCOM.1978.1094204.

[17] B. Tsybakov, V. Mikhailov, Free Synchronous Packet Access in a Broadcast Channel with Feedback,

Problemy Peredachi Informatsii 14 (1978) 32–59. URL: https://www.mathnet.ru/eng/ppi1558.

[18] J. I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Transactions on Information

Theory 25 (1979) 505–515. doi:10.1109/TIT.1979.1056093.

[19] L. Lamport, Proving the Correctness of Multiprocess Programs, IEEE Transactions on Software

Engineering SE-3 (1977) 125–143. doi:10.1109/TSE.1977.229904.

[20] J. A. Goguen, J. Meseguer, Security policies and security models, in: Proc. of the 1982 IEEE

Symposium on Security and Privacy, IEEE, 1982, pp. 11–20. doi:10.1109/SP.1982.10014.

[21] R. Focardi, R. Gorrieri, Classification of Security Properties (Part I: Information Flow), in: R. Focardi,

R. Gorrieri (Eds.), Foundations of Security Analysis and Design. FOSAD 2000, volume 2171 of

Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2001, pp. 331–396. doi:10.1007/
3-540-45608-2_6.

[22] A. Pnueli, The temporal logic of programs, in: Proc. of the 18th Annual Symposium on Foundations

http://dx.doi.org/10.1109/JSAC.2005.861395
http://dx.doi.org/10.1007/978-3-319-47545-5
http://dx.doi.org/https://doi.org/10.1016/j.procs.2020.02.133
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1016/j.entcs.2009.07.037
http://dx.doi.org/10.1007/978-3-642-29420-4_6
http://dx.doi.org/10.1145/2535838.2535847
http://dx.doi.org/10.1007/978-3-030-29436-6_21
http://dx.doi.org/10.1007/978-3-030-29436-6_21
https://eprint.iacr.org/2023/732
https://eprint.iacr.org/2023/732
http://dx.doi.org/10.1002/9780470665251.ch8
http://dx.doi.org/10.1109/32.481534
http://dx.doi.org/10.1109/LICS.2019.8785713
http://dx.doi.org/10.1109/TCOM.1978.1094204
https://www.mathnet.ru/eng/ppi1558
http://dx.doi.org/10.1109/TIT.1979.1056093
http://dx.doi.org/10.1109/TSE.1977.229904
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1007/3-540-45608-2_6
http://dx.doi.org/10.1007/3-540-45608-2_6

of Computer Science (SFCS 1977), 1977, pp. 46–57. doi:10.1109/SFCS.1977.32.

[23] J. A. W. Kamp, Tense Logic and the Theory of Linear Order. Ph.D. Thesis, UCLA, 1968.

[24] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of fairness, in: Proc. of the

7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’80,

Association for Computing Machinery, New York, NY, USA, 1980, pp. 163—-173. doi:10.1145/
567446.567462.

[25] I. Hodkinson, Expressive Completeness of Until and Since over Dedekind Complete Linear Time,

in: A. Ponse, M. de Rijke, Y. Venema (Eds.), Modal Logic and Process Algebra. A Bisimulation

Perspective, volume 53 of CSLI Lecture Notes, CSLI Publications, Stanford, 1995.

[26] A. Rabinovich, A Proof of Kamp’s theorem, Logical Methods in Computer Science 10 (2014) 1–16.

doi:10.2168/LMCS-10(1:14)2014.

[27] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, C. Sánchez, Temporal Logics

for Hyperproperties, in: M. Abadi, S. Kremer (Eds.), Principles of Security and Trust. POST 2014,

volume 8414 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2014, pp. 265–284.

doi:10.1007/978-3-642-54792-8_15.

[28] B. Finkbeiner, M. Zimmermann, The First-Order Logic of Hyperproperties, in: H. Vollmer, B. Vallée

(Eds.), Proc. of the 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017),

volume 66 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, Dagstuhl, Germany, 2017, pp. 30:1–30:14. doi:10.4230/LIPIcs.STACS.
2017.30.

[29] E. Bartocci, T. Ferrère, T. A. Henzinger, D. Nickovic, A. O. da Costa, Flavors of Sequential

Information Flow, in: B. Finkbeiner, T. Wies (Eds.), Verification, Model Checking, and Abstract

Interpretation. VMCAI 2022, volume 13182 of Lecture Notes in Computer Science, Springer, Cham,

2022, pp. 1–19. doi:10.1007/978-3-030-94583-1_1.

[30] B. Finkbeiner, C. Hahn, Deciding Hyperproperties, in: J. Desharnais, R. Jagadeesan (Eds.), Proc.

of the 27th International Conference on Concurrency Theory (CONCUR 2016), volume 59 of

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 2016, pp. 13:1–13:14. doi:10.4230/LIPIcs.CONCUR.2016.13.

[31] B. Bonakdarpour, B. Finkbeiner, The Complexity of Monitoring Hyperproperties, in: Proc. of

the 2018 IEEE 31st Computer Security Foundations Symposium (CSF), IEEE, 2018, pp. 162–174.

doi:10.1109/CSF.2018.00019.

[32] A. Rahmati, L. Zhong, M. Hiltunen, R. Jana, Reliability Techniques for RFID-Based Object Track-

ing Applications, in: Proceedings of the 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’07), 2007, pp. 113–118. doi:10.1109/DSN.2007.81.

[33] E. Börger, E. Grädel, Y. Gurevich, The Classical Decision Problem, Springer, Heidelberg, 1997.

[34] D. McCullough, Specifications for Multi-Level Security and a Hook-Up Property, in: Proc. of the

1987 IEEE Symposium on Security and Privacy, IEEE, 1987, pp. 161–161. doi:10.1109/SP.1987.
10009.

[35] G. Boudol, I. Castellani, Noninterference for concurrent programs and thread systems, Theoreti-

cal Computer Science 281 (2002) 109–130. doi:https://doi.org/10.1016/S0304-3975(02)
00010-5.

[36] A. Sabelfeld, A. C. Myers, Language-based information-flow security, IEEE Journal on Selected

Areas in Communications 21 (2003) 5–19. doi:10.1109/JSAC.2002.806121.

[37] R. Giacobazzi, I. Mastroeni, Generalized Abstract Non-interference: Abstract Secure Information-

Flow Analysis for Automata, in: V. Gorodetsky, I. Kotenko, V. Skormin (Eds.), Computer Network

Security. MMM-ACNS 2005, volume 3685 of Lecture Notes in Computer Science, Springer, Berlin,

Heidelberg, 2005, pp. 221–234. doi:10.1007/11560326_17.

[38] S. Tini, Rule formats for compositional non-interference properties, The Journal of Logic and

Algebraic Programming 60-61 (2004) 353–400. doi:10.1016/j.jlap.2004.03.003.

[39] A. Esposito, A. Aldini, M. Bernardo, Branching Bisimulation Semantics Enables Noninterfer-

ence Analysis of Reversible Systems, in: M. Huisman, A. Ravara (Eds.), Formal Techniques for

Distributed Objects, Components, and Systems. FORTE 2023, volume 13910 of Lecture Notes in

http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.2168/LMCS-10(1:14)2014
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.30
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.30
http://dx.doi.org/10.1007/978-3-030-94583-1_1
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.13
http://dx.doi.org/10.1109/CSF.2018.00019
http://dx.doi.org/10.1109/DSN.2007.81
http://dx.doi.org/10.1109/SP.1987.10009
http://dx.doi.org/10.1109/SP.1987.10009
http://dx.doi.org/https://doi.org/10.1016/S0304-3975(02)00010-5
http://dx.doi.org/https://doi.org/10.1016/S0304-3975(02)00010-5
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1007/11560326_17
http://dx.doi.org/10.1016/j.jlap.2004.03.003

Computer Science, Springer, Cham, 2023, pp. 57–74. doi:10.1007/978-3-031-35355-0_5.

[40] H. Mantel, Information Flow and Noninterference, in: H. C. A. van Tilborg, S. Jajodia (Eds.),

Encyclopedia of Cryptography and Security, Springer US, Boston, 2011, pp. 605–607. doi:10.1007/
978-1-4419-5906-5_874.

[41] R. Focardi, R. Gorrieri, F. Martinelli, Message Authentication through Non Interference, in:

T. Rus (Ed.), Algebraic Methodology and Software Technology. AMAST 2000, volume 1816 of

Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2000, pp. 258–272. doi:10.1007/
3-540-45499-3_20.

[42] F. Martinelli, M. Petrocchi, A Uniform Framework for Security and Trust Modeling and Analysis

with Crypto-CCS, Electronic Notes in Theoretical Computer Science 186 (2007) 85–99. doi:10.
1016/j.entcs.2007.03.024.

[43] R. Casadei, A. Aldini, M. Viroli, Combining Trust and Aggregate Computing, in: A. Cerone,

M. Roveri (Eds.), Software Engineering and Formal Methods. SEFM 2017, volume 10729

of Lecture Notes in Computer Science, Springer, Cham, 2018, pp. 507–522. doi:10.1007/
978-3-319-74781-1_34.

[44] A. Aldini, J.-M. Seigneur, C. Ballester Lafuente, X. Titi, J. Guislain, Design and validation of a

trust-based opportunity-enabled risk management system, Information and Computer Security 25

(2017) 2–25. doi:10.1108/ICS-05-2016-0037.

[45] A. Aldini, S. M. B. Maranhão Moreno, J.-M. Seigneur, A Rule-Language Tailored for Financial

Inclusion and KYC/AML Compliance, in: 2023 20th Annual International Conference on Privacy,

Security and Trust (PST), 2023, pp. 1–10. doi:10.1109/PST58708.2023.10320148.

[46] B. Finkbeiner, M. N. Rabe, C. Sánchez, Algorithms for Model Checking HyperLTL and

HyperCTL
*
, in: D. Kroening, C. S. Păsăreanu (Eds.), Computer Aided Verification. CAV

2015, volume 9206 of Lecture Notes in Computer Science, Springer, Cham, 2015, pp. 30–48.

doi:10.1007/978-3-319-21690-4_3.

[47] N. Coenen, R. Dachselt, B. Finkbeiner, H. Frenkel, C. Hahn, T. Horak, N. Metzger, J. Siber, Explaining

Hyperproperty Violations, in: S. Shoham, Y. Vizel (Eds.), Computer Aided Verification. CAV

2022, volume 13371 of Lecture Notes in C0mputer Science, Springer, Cham, 2022, pp. 407–429.

doi:10.1007/978-3-031-13185-1_20.

http://dx.doi.org/10.1007/978-3-031-35355-0_5
http://dx.doi.org/10.1007/978-1-4419-5906-5_874
http://dx.doi.org/10.1007/978-1-4419-5906-5_874
http://dx.doi.org/10.1007/3-540-45499-3_20
http://dx.doi.org/10.1007/3-540-45499-3_20
http://dx.doi.org/10.1016/j.entcs.2007.03.024
http://dx.doi.org/10.1016/j.entcs.2007.03.024
http://dx.doi.org/10.1007/978-3-319-74781-1_34
http://dx.doi.org/10.1007/978-3-319-74781-1_34
http://dx.doi.org/10.1108/ICS-05-2016-0037
http://dx.doi.org/10.1109/PST58708.2023.10320148
http://dx.doi.org/10.1007/978-3-319-21690-4_3
http://dx.doi.org/10.1007/978-3-031-13185-1_20

	1 Introduction
	2 Background
	2.1 RFID systems
	2.2 The symmetry problem

	3 Model description
	3.1 Components and interfaces
	3.2 Events, states and traces
	3.3 The anti-collision protocol

	4 Logical framework
	4.1 Hyperproperties
	4.2 Hyperlogics

	5 Hyperproperties for RFID systems
	5.1 Hyper-reachability
	5.2 Hyper-adaptivity
	5.3 Generalized non-interference

	6 Conclusions and future work

