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Abstract 
Evaluating defensive solutions against adversarial evasion attacks means quantifying the defense’s 
capability to detect or tolerate attacks. Ideally, a defense should be tested against all the possible 
attacks: however, this is not achievable, and it is necessary to identify a representative attack set for 
the evaluation. Unfortunately, how to select such an attack set is an open question. Arguably, the 
selected attacks should apply diverse effects on the original image, in terms of dimension and 
distribution of the perturbation. We propose to quantify the perturbation through Image Quality 
metrics in addition to L-norms, such that adversarial attacks can be grouped (and only one 
representative of the group can be selected to test the defense) if they i) similarly perturb the attacked 
image, and ii) have similar success rate and detectability rate. Disappointingly, the analysis reveals 
that attacks with similar image perturbation cannot be related. Substantial evidence discourages 
grouping attacks and suggests that any reduction of the attack set impacts the validity of the defense 
evaluation. 
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1. Introduction 

Deep Neural Networks (DNNs) that perform image classification are vulnerable to 
adversarial samples, which are deliberately crafted by perturbing legitimate input (e.g., images, 
texts, tabular data) to mislead the target model [1, 7]. In this paper, we focus on evasion attacks 
only, aimed at producing altered samples to fail the classification outcome of a trained classifier. 
The two main approaches to defending against adversarial samples are i) increase the 
robustness of the image classifier [7], or ii) detect adversarial samples before they are fed to the 
target classifier [36, 23, 24]. In both cases, a proper evaluation of the defense requires 
quantifying its ability to protect against adversarial attacks. 

Ideally, the attack set used for the evaluation should include all the possible attacks against 
the target classifier, and the defense should be evaluated against each of these attacks. This is 
unfeasible because of both computational effort and the potential occurrence of unknown 
attacks. On top of this, without a rigorous methodology for the evaluation, many of the attacks 
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and defenses in the literature have been evaluated with custom approaches that are difficult to 
compare [1, 2, 3, 4, 5], such that in some cases it may lead to lack of clarity in the efficacy of 
newly proposed solutions.  

The overarching challenge in evaluating defenses lies in the choice of the attack set to be 
considered: the attack set should deliver a realistic representation of the attack space that allows 
defining precise boundaries of the defense and, consequently, details the defense’s coverage 
against different attacks. The state of the art agrees that i) there is no individual attack that 
sufficiently covers the entire attack space, and ii) there is no evidence that a defense able to 
tolerate certain attacks (i.e., a defined portion of the attack space) will also be able to tolerate 
others [6]. Unavoidably, the typical approach to select a representative attack set is to include 
multiple attacks, selected based on i) attack configuration parameters, ii) success rate, and iii) 
values of the L0, L1, L2, and L∞ norms (simply termed L-norms in the rest of the paper) [5, 36, 
23]. Unfortunately, this approach is still exposed to known pitfalls. Sharing the attack 
generation parameters guarantees the reproducibility of the experiments but provides limited 
information about the perturbation. Instead, L-norms quantify the difference between the 
original image and the attacked counterpart: they are considered a viable proxy to measure the 
perturbation crafted by the attack and to craft attacks that are not perceived by the human eye. 
However, the L-norms alone may not suffice in quantifying the diversity of attacks, i.e., a 
defense may detect attacks of type A and fail to detect attacks of type B, even if both attacks 
have similar L-norms values. Moreover, the success and detection rates are usually linked with 
the L-norms, but this relation is weak and varies from attack to attack.  

To summarize, different attacks may have similar effects on the target classifier, and similar 
values of L-norms, but the defense may decide differently. The same applies to attacks that 
produce different image perturbations. Additionally, grouping attacks based on their 
mathematical formulation is not effective: small differences in the formulation may have a 
relevant impact on the perturbation applied to images and on the success rate. 

Position statement and approach. We believe that the number of attacks to be used when 
testing a defense can be reduced only by finding similarities in the perturbation introduced in 
the adversarial images, together with evidence that such similarities will have similar effects on 
the classifier and the defense. This paper investigates whether quantifying the perturbation 
through distance metrics in addition to L-norms allows partitioning adversarial attacks into 
classes, which could then be used to craft representative attack sets. In other words, we 
investigate whether measuring perturbations using distance metrics allows for the 
identification of characteristics of the attacks that permit to discriminate between attack 
families.  

We identify alternative distance metrics to extrapolate different information from the 
adversarial image. In particular, the Image Quality Assessment (IQA) domain particularly fits 
our necessities: IQA aims at quantitatively evaluating the quality of images modified by a 
variety of distortions (e.g., processing, compression, etc.) to exploit the Human Visual System 
(HVS) model for low-level perception [8, 9]. Unlike the L-norms, image quality metrics account 
for the position of the pixels inside the image rather than operating on a single-dimension 
vector. We combine L-norms and image quality metrics to quantify perturbations, a novel 
approach in this context. We group attacks, where attacks belong to the same group if they 
have similar values of distance metrics. More precisely, we collocate attacks in the same group 
if we can show that attacks generate similar perturbations of the target image (measured with 



the distance metrics), and consequently have a similar success rate against the target classifier 
and are detected or mitigated with a similar efficacy by one or more defenses. 

We identify groups through an experimental evaluation. First, we generate 222 attack sets 
from 12 different attacks targeting two state-of-the-art models, namely ConvNet12 [33] and 
ResNet50 [52]. Then, we apply each of the attacks to the first 100 images of the CIFAR-10 [25] 
dataset, generating, for each model, a total of 22 200 adversarial images. For each adversarial 
image, we compute the selected distance metrics. Then, we perform three separate analyses on 
the images of both models: i) clustering analysis to group the 12 attacks into the same cluster(s) 
if they have similar distance metric values; ii) regression analysis to predict the success rate of 
an attack using distance metrics as input features; iii) binary classification analysis to predict 
the detection of an attack using as input features the distance metrics, using 2 detectors from 
the state of the art. 

The results indicate that employing distance metrics to quantify perturbations exhibits some 
discriminatory capabilities, as it effectively clusters a small number of the selected attacks with 
highly similar mathematical formulations. However, these results, while insightful, do not 
demonstrate a high level of generalizability. Some attacks with shared mathematical 
formulations are correctly grouped, while others with similar formulations are not consistently 
recognized as a distinct group. Our experiments reveal that numerous attacks remain 
ungrouped, lacking observable signatures or defining characteristics in their perturbations. 
Consequently, we argue that reducing the number of attacks for testing a defense compromises 
the validity of the results. 

2. Background 

2.1. Adversarial Evasion Attacks Exercised in Our Study 

Adversarial attacks consist of deliberately manipulating the input to a DNN to cause wrong 
predictions [27]. In this paper, we focus on evasion attacks against image classifiers, because i) 
they have large applications in the real world [30], and ii) image classification is the typical 
application domain for such attacks [28, 29]. Evasion attacks can be broadly classified based on 
the knowledge of the attacker about the target classifier: white box attacks imply some 
knowledge of the classifier architecture, while black box attacks approximate such information. 
Evasion attacks can be grouped into finer categories, based on the specific implementation 
details needed to run the attack: i) gradient-based, ii) score-based, and iii) decision-based. 
Gradient-based attack methods exploit the gradient of the loss of the target classifier during the 
input processing. The score-based attacks solely on the output score of the target classifier. 
Decision-based attacks are the most indicated for a black box setting as they need only 
prediction labels [31]. We select white box and black box attacks from the three categories, to 
create a heterogeneous set of 12 attacks.  

Gradient-Based Attacks. One of the most effective gradient-based attacks is Carlini and 
Wagner (CW2, [37]). It is formulated as the following optimization problem: 

𝑥𝑥′ =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥{||𝑥𝑥 − 𝑥𝑥0||2 + 𝑐𝑐𝑐𝑐(𝑥𝑥)}               (1) 

The first term enforces perturbation on the original image, the second term is the loss 
function of the model, and g(x) is g(x)=𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑥𝑥)𝑦𝑦0 −  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖≠𝑦𝑦0𝑓𝑓(𝑥𝑥)𝑖𝑖 , 0} where 𝑦𝑦0 is the 



ground truth label of the input 𝑥𝑥0, is the score computed on the input x for the 𝑦𝑦0 label, and 
𝑓𝑓(𝑥𝑥)𝑖𝑖 is the score returned predicting x with label i.  

Instead, Elastic Net (ELA, [38, 39]) formulates the generation of adversarial attacks as an 
elastic-net regularized optimization problem: 

𝑥𝑥′ =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥 ��|𝑥𝑥 − 𝑥𝑥0|�2
2 + 𝛽𝛽�|𝑥𝑥 − 𝑥𝑥0|�1 + 𝑐𝑐𝑐𝑐(𝑥𝑥)�     (2) 

where g(x) is the same as the CW2 attack. 
Projected Gradient Descent (PGD, [41]) solves the optimization problem using the projected 

gradient descent. Practically, it finds adversarial images by adding or subtracting a small error 
to each dimension of the input based on the gradient sign. Fast Gradient Sign Method (FGM, 
[40]) can be viewed as a one-step PGD attack, while the Basic Iterative Method (BIM, [42]) is 
the iterative form of the attack. Deep Fool (DEEP, [43]), performs an iterative linearization of 
the classifier to calculate the closest decision boundary for a genuine image x. Jacobian-based 
Saliency Map (JSMA, [44]), generates an adversarial saliency map, which helps identify the 
input features to be included in the perturbation. Newton Fool Attack (NEW, [45]) operates by 
executing a gradient descent, which reduces the likelihood of the initial class. 

Score-Based Attacks. We select the Zeroth Order Optimization-Based Attack (ZOO, [46]). The 
attack is a black box, and it uses a finite difference method to estimate the gradient sign of the 
loss function w.r.t the input image. The gradient estimation is used to run the CW2 attack and 
craft the final adversarial image.  

Decision-Based Attack. We select from this category the Boundary Attack (BOUND, [47]) 
based on the random walk on the decision boundary of the input image. The method starts with 
a sample categorized in the target class and searches for a minimum amount of perturbation to 
keep the image adversarial. Also, we select the HopSkipJump Attack (HOP, [48]), which can be 
formulated as solving a zeroth order optimization problem [49]. 

2.2. Distance Metrics Selected in Our Study 

Modifying the template — including but not limited to adjusting margins, typeface sizes, 
line spacing, paragraph and list definitions — is not allowed. At the state of the art, the 
amount of perturbation introduced by an attacker is quantified using the pixel Lp norms, for 
any  

p>0: |v|p = � ∑  |𝑣𝑣𝑖𝑖|𝑝𝑝 𝑁𝑁
𝑖𝑖=1 �

1
𝑝𝑝                           (3) 

where v = ||x–x'|| is the perturbation introduced in an image x to obtain its adversarial 
counterpart x', and vi=||xi–xi'|| is the difference pixel by pixel of the two images. Each L-norm 
has a different mathematical meaning and, therefore, captures different characteristics of the 
perturbation [50]. L0 distance measures the number of coordinates i such that xi ≠ xi'. The L0 

distance is equal to the number of pixels that have been altered in an image. L1 distance, also 
known as Manhattan Distance, is the sum of the absolute difference between pixels of two 
images. L2 distance, also known as Euclidean distance, is the squared root of the sum of the 
squared absolute difference between pixels of two images. The L2 distance can remain small 
when there are many small changes to many pixels. L∞ distance is the largest absolute difference 
between pixels of two images. It measures the maximum change to any of the coordinates: ||x – 
x'||∞ = max(|xi–xi'|, …, |xn–xn'|). For images, we can think there is a maximum budget, and each 



pixel is allowed to be changed up to this limit, with no limit on the number of pixels that are 
modified.  

We also use distance metrics from the image quality domain. L-norms work very well to 
quantify the wideness and intensity of the perturbation but may not be sufficient to capture the 
finer characteristics of the perturbation. We select the following metrics. 

Mean Squared Error (MSE) calculates the cumulative squared error between the original 
image and the distorted image:  

MSE = 1
𝑀𝑀𝑀𝑀

 � � [𝐸𝐸(𝑥𝑥,𝑦𝑦)]2𝑁𝑁−1
𝑥𝑥=0

𝑀𝑀−1

𝑦𝑦=0
              (4) 

where x and y provide the pixel position, M and N are the image width and height, and E(x, 
y) = Io(x, y) – Ip(x, y) is the difference pixel by pixel of the original image Io and the perturbed 
image Ip [8]. Although it does not correlate well with the perceived image quality [12, 13], we 
select the MSE because it is used as the basis for many of the HVS-based metrics.  

Block Sensitive - Peak Signal-to-Noise Ratio (PSNR-B, [13]) can be seen as an advanced version 
of the Peak Signal-to-Noise Ratio (PSNR [8]) that includes a blocking effect factor (BEF) 
specifically used for measuring the quality of images that present blocking artifacts. As reported 
in [14], BEF is calculated by considering horizontal and vertical neighboring pixel pairs that do 
not lie across block boundaries. The blocking effect factor specifically measures the amount of 
blocking artifacts of the image. The mean square error including the blocking effects MSE-B for 
a reference image x and test image y is defined as MSE-B(x, y)=MSE(x, y)+BEFTot(y), where 
BEFTot(y) is the BEF computed over all block sizes. At last, PSNR-B is obtained as PNSR-B(x, 
y)=10 log10 (2552 /MSE-B(x, y)).  

Universal Quality Image Index (UQI, [15]) calculates the amount of transformation of relevant 
data from the reference image into the perturbed image. UQI is defined as:  

UQI = 
4𝜎𝜎𝑥𝑥𝑥𝑥′ 𝑥̅𝑥𝑥̅𝑥′

(𝜎𝜎𝑥𝑥2 + 𝜎𝜎
𝑥𝑥′
2 )[(𝑥̅𝑥)2 + (𝑥̅𝑥′)2 ]

                        (5) 

where 𝑥̅𝑥 and 𝑥̅𝑥′ are respectively the mean values of the original and perturbed images, 𝜎𝜎𝑥𝑥2  and 
𝜎𝜎𝑥𝑥′
2  are the variances and 𝜎𝜎𝑥𝑥𝑥𝑥′  is the covariance. The range of this metric is -1 to 1, where 1 

indicates that the reference and perturbed images are similar [8]. 
Erreur Relative Globale Adimensionnelle Synthèse (ERGAS, [16]) measures the global 

radiometric distortion between two images; it calculates the average error of each band of the 
perturbed image for the reference one. As reported in [17], high values of ERGAS indicate low 
quality of the perturbed image, while lower values indicate good quality. The ERGAS is given 
as:  

ERGAS = 100 ℎ
𝑤𝑤
�1
𝑛𝑛
∑ ( 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝑘𝑘)2

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)2
 )𝑛𝑛

𝑘𝑘=1          (6) 

where h and w are the height and width of the image, the RMSE(Bk) is the Root Mean Squared 
Error for k-band computed between the original and altered image, and mean(k)2 denotes the 
mean k-band of the original image. Relative Average Spectral Error (RASE, [21]) determines the 
difference in spectral information between each band of the merged image and the original 
image. Given M the mean radiance of the N spectral bands Bi of the original image, and the root 
mean square error RMSE, RASE is computed as: 



RASE = 1
𝑀𝑀
�1
𝑁𝑁

 ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2(𝐵𝐵𝑖𝑖)𝑁𝑁
𝑖𝑖=1                         (7) 

Spectral Angle Mapper (SAM, [22]) computes the spectral angle between the pixel vector of 
the reference image and of the perturbed image. It is performed on a pixel-by-pixel basis. A 
value of SAM equal to zero denotes the absence of spectral distortion. In the following 
expression, x is the original image, and x' is the perturbed image: 

SAM = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 〈𝑥𝑥, 𝑥𝑥′〉
||𝑥𝑥||2∙||𝑥𝑥′||2

�                             (8) 

Spatial Correlation Coefficient (SCC, [19]) represents the correlation between two visual 
signals of images in a cortical visual space. The SCC is expressed as: 

SCC = 
∑∑(𝑥𝑥𝑖𝑖− 𝜇𝜇𝑥𝑥)2� x'

𝑖𝑖− 𝜇𝜇 x'�
2

�∑(𝑥𝑥𝑖𝑖− 𝜇𝜇𝑥𝑥)2 ∑� x'𝑖𝑖− 𝜇𝜇 x'�
2 

                                  (9) 

where x' is the modified image, x is the original image, 𝜇𝜇𝑥𝑥 is the mean of the original image, and 
𝜇𝜇𝑥𝑥′  is the mean of the modified image. The value of SCC ranges from -1 to 1 [20].  

Visual Information Fidelity (VIF, [18]) quantifies the Shannon information present in a 
processed image. As summarized in [8], VIF uses a natural scene model based on a Gaussian 
scale mixture model in the wavelet domain. The visual distortion is modeled as a stationary, 
zero-mean, additive white Gaussian noise process in the wavelet domain e = c + n, and f = d + 
n, where e, n, and f are the random coefficient vectors for the same wavelet subband in the 
perceived original and perceived distorted image. We model c, a collection of M neighboring 
wavelet coefficients from a local patch in a subband, as c = √zu, where u is a zero-mean Gaussian 
vector and √z is an independent scalar random variable. Random vectors c and d are from the 
same location in the same subband for the original and distorted image, and n denotes the 
independent white Gaussian noise with the covariance matrix Cn = σ2

n. The VIF is defined as:  

VIF = 𝐼𝐼(𝐶𝐶;𝐹𝐹 |𝑧𝑧)
𝐼𝐼(𝐶𝐶;𝐸𝐸 |𝑧𝑧)

 = ∑ 𝐼𝐼(𝑐𝑐𝑖𝑖; 𝑓𝑓𝑖𝑖 |𝑧𝑧𝑖𝑖)𝑖𝑖=1
∑ 𝐼𝐼(𝑐𝑐𝑖𝑖; 𝑒𝑒𝑖𝑖 |𝑒𝑒𝑖𝑖)𝑖𝑖=1 

                               (10) 

where i is the index of local coefficient patches, including all subbands. 

2.3. Detector Exercised in our Study 

We select two state-of-the-art attack detectors as adversarial defenses, namely MagNet [23] 
and Feature Squeezing [24]. MagNet [23] exercises an autoencoder trained on the normal 
images to reconstruct an input image before it is fed to the classifier. Once the image is 
reconstructed, the detector computes the reconstruction error between the input x and a 
reformed input x', and applies a threshold learned during the training to target a specific false 
positive rate (FPR). If the image is normal, the reconstruction error lies below the target 
threshold; otherwise, the input 𝑥𝑥 is marked as an adversarial attack. Feature Squeezing 
(Squeezer, [24]) compares the prediction of the classifier on the inputs with the predictions 
obtained using pre-processed inputs. The Squeezer detector computes a score that is the 
maximum distance among these predictions and then applies a threshold that is learned in an 
unsupervised fashion to target a specific FPR on the training set. 



3. Installing the Libertinus fonts 

We set up an experimental campaign to group adversarial attacks. Our experimental 
methodology is in Section 3.1, and details on attacks, image classifiers, and detectors are in 
Section 3.2. We execute the experiments on a Dell Precision 5820 Tower with an Intel I9- 9920X, 
GPU NVIDIA Quadro RTX6000 with 24GB VRAM, 128GB RAM, Ubuntu 18.04 with kernel 5.4.0, 
and runtime CUDA 11.0. 

3.1. Methodology 

We first generate adversarial images targeting two state-of-the-art models. We apply the 12 
attacks in Section 2.1 with multiple configurations on the first 100 images of the CIFAR-10 
dataset [25]. Out of the existing benchmark datasets for image classification, we choose CIFAR-
10 [25] because it is composed of RGB images that have a reasonable size to make experiments 
feasible. We detail the selected image classifiers and the attack configurations in Section 3.2. 
Then, we compute distance metrics (both L-norms and image quality metrics) between each of 
the adversarial and original (clean) images. We feed the adversarial images to both detectors 
MagNet [23] and Feature Squeezing [24], logging their answer: 0 if the attack was not detected, 
1 otherwise. These actions allow building a tabular dataset as in Table 1, which contains the 
following data for each adversarial image: i) the values of the 12 distance metrics, ii) the success 
outcome (i.e., does the attack trigger a misclassification?), iii) binary flags that indicate if either 
MagNet [23] or Feature Squeezing [24] can detect that the image was counterfeited, and iv) the 
attack configuration (not in the paper for brevity). This data will allow conducting the following 
three analyses detailed below 

Distance metric clusters. We analyze the values of distance metrics to investigate if grouping 
adversarial images according to the perturbation they apply is meaningful. Intuitively, distance 
metrics quantify different perturbation aspects: we want to investigate if they capture 
differences between the way attack images are constructed. For this purpose, we run several 
clustering algorithms and check if images created using (the same or) different attacks are 
grouped. 

Correlation between distance metrics and the success rate of the target classifier. We investigate 
if distance metrics are informative enough to predict the success of an attack against the target 
classifier. This allows discovering if distance metrics relate to the success of a given attack. 

Table 1 
Six sample rows from the tabular dataset obtained with our experiments. 
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JSMA 0.43 3.0 0.18 3072 0.00 1.00 604 0.01 0.96 0.99 87 43.6 1 0 1 
PGD 2.25 116.5 0.05 3072 0.02 0.99 4842 0.07 0.77 0.97 698 27.7 1 1 1 
HSP 0.21 8.3 0.02 3014 0.00 0.99 1042 0.01 0.96 0.99 149 21.9 1 0 0 
FGM 1.66 91.9 0.03 3072 0.01 0.99 2648 0.05 0.80 0.98 382 30.5 1 0 0 
PGD 4.08 205.2 0.10 3072 0.05 0.96 1336 0.17 0.53 0.90 192 22.6 1 1 1 
UNI 1.44 55.8 0.16 3069 0.01 0.99 3246 0.04 0.94 0.99 468 32.0 0 0 0 

 
 



Correlation between distance metrics and the detector outputs. We also want to understand if 
distance metrics are informative enough to predict if the attack will be detected by MagNet [23] 
or Feature Squeezing [24] detectors.  

3.2. Target Target Attacks, Image Classifier, and Detectors  

We selected two trained state-of-the-art classifiers, namely ConvNet12 from [33] and 
ResNet50 [52]. The ConvNet12 model is composed of 6 convolutional layers, 1 dense layer, 3 
pooling layers, and 3 dropout layers with 2 923 050 trainable parameters, and an accuracy of 
0.85 on the CIFAR-10 test set. The ResNet50 architecture is the one provided by Keras and is 
composed of 4 convolutional layers with 26 162 698 trainable parameters.  

We configure MagNet [23] and Feature Squeezing [24] to defend our models. We train 
MagNet using 5 000 normal images from the CIFAR-10 training set, with a False Positive Rate 
(FPR) of ≈ 0.02. We set the threshold for Feature Squeezing manually to have the same FPR on 
the test set. 

We craft attacks using the ART Toolbox [35]. In Table 2 in the appendix A, we report the 
number of configurations applied for each attack and the configuration values.  

4. Results and Discussion 

4.1. Distance Metrics Cluster  

We run the clustering algorithms K-Means, DBSCAN, and variants of the Expectation-
Maximization and Self-Organizing Maps that suit clustering analyses and are available in the 
WEKA toolkit [51]. However, we found that K-Means with k = {2, 3, 5, 6, 8, 9, 12} provided us 
with enough information to search for groups of attacks based on the values of the collected 
distance metrics. We start with k=2 without observing distinct groups of attacks. Then we 
increase the number of possible group k to investigate if we can observe a well-defined 
partitioning. In distance metric cluster analysis and Table 3 in the appendix, we report the 
detailed analysis when k = 12 for both the ConvNet12 and the ResNet50 models.  In the analysis, 
we observed some distinct groupings of adversarial attacks based on their similarities. Notably, 
attacks like BIM, PGD, and FGM clustered together, which was expected as BIM and PGD can 
be considered iterative versions of FGM. BOUND HOP ELA are grouped by the two analyses 
with no clear explanation based on mathematical formulation, indicating a unique relationship 
discerned solely through distance metrics. JSMA and NEW form isolated clusters suggesting 
that they are different from any other attacks.  

4.2. Correlation between Distance Metrics and Behavior of the Classifier 

We look for a correlation between the success rate of the attack and the values of the selected 
metrics, to the extent that we can predict the success rate with minimal error. We measure our 
prediction capability by computing the cosine distance CD between the actual and the predicted 
success rate of the adversarial images on the target classifier. More specifically, we train an 
XGBoost regressor with the distance metrics of the adversarial images and the attack outcome 
to predict the success of each adversarial image. Given the distance metrics computed from an 
adversarial image as input, the trained regressor outputs a good estimation of the success 
probability, i.e., the CD is generally low. We repeat the study by training the regressor multiple 



times using adversarial images generated from the same attack and testing on adversarial 
images generated using the other attacks. This shows the mutual predictability of the success 
rate between attacks, which we can use to understand if two attacks are similar. According to 
the distance metric cluster analysis in Section 4.1, both models grouped BIM and FGM. 
However, unlike the cluster analysis, PGD was excluded from this grouping, indicating a 
weaker similarity compared to the other two attacks. We report in correlation between distance 
metrics and the behavior of the target classifier and Table 4 in the appendix the detailed 
discussion and the related data, respectively.      

4.3. Correlation between Distance Metrics and the Detector Outputs 

We quantify the correlation between the detectability of an adversarial image and the value 
of the distance metrics. In this case, we train an XGBoost classifier by using distance metrics as 
input features, to predict the binary output (detected/undetected) of a detector, either Squeezer 
or MagNet. Similarly to the previous experiment, the attacks in the columns of Table 5.a and 
Table 5.b are used for training, and the attacks in the rows are used for testing. Each cell of the 
table reports the mean Matthew Correlation Coefficient (MCC) obtained by XGBoost when 
predicting the outputs of MagNet and Squeezer detectors. Notably, BOUND and HOP exhibited 
strong mutual predictability, with MCC scores indicating their ability to predict each other's 
detectability. Additionally, CW attacks showed some predictive capability for BOUND and 
HOP. However, PGD, UNI, and ZOO attacks showed no mutual predictability with any other 
attacks. 

On the ResNet50 model, PGD, UNI, and ZOO attacks displayed poor predictability with other 
attacks, with MCC scores near zero. Conversely, BIM, BOUND, DEEP, ELA, FGM, HOP, JSMA, 
and NEW attacks showed some degree of predictability with each other, suggesting 
relationships between these attacks. Notably, HOP and BOUND exhibited the strongest mutual 
predictability, consistent with previous findings. Furthermore, while BIM, FGM, and DEEP 
attacks demonstrated predictive capability for each other on ResNet50, this relationship was 
not observed in the ConvNet12 results. 

4.4. Concluding Discussion 

We aggregate together the results of each of the three analyses for both models, respectively, 
in Figure 1.a and 1.b. The x-axis refers to the clustering analysis in Section 4.1 for clusters k=2, 
the y-axis to the CD scores in Section 4.2, and the z-axis to the MCC scores in Section 4.3.  

From the ConvNet12 analysis in Figure 1.a, two groups can be identified easily. BOUND, 
HOP, and ELA are very close (BOUND and HOP are almost overlapping), while PGD is a bit far 
from BIM and FGM: since PGD has success rate 1, its scores in the analysis in Section 4.2 are 
not meaningful and are represented as 0 in the plot. Interestingly, CW2 is overall close to 
BOUND, HOP, and ELA, even if not so evidently as those three attacks. Other attacks are far 
from anyone else such as NEW or JSMA. DEEP, UNI and ZOO. Note that they are visually close 
in Figure 1.a, but according to the clustering analysis, they belong to neither group when k=2, 
and the other two analyses report contradicting results. This may suggest that those three 
attacks could represent a new group. However, the results of the other analyses do not confirm 
this result. 



From the ResNet50 results in Figure 1.b, we can identify one group composed of BOUND, 
HOP, and NEW. BOUND and HOP are very close to each other, validating the outcome of the 
ConvNet12 analysis. Differently, ELA is not included in the group as the detection axis has 
opposite scores (BOUND and HOP have a score near -0.5 while ELA is 0.5). In Figure 1.b, ZOO 
and JSMA are very close suggesting a possible group, but this is just due to the view angle of 
the plot: the two attacks show different scores on each of the 3 dimensions. Differently, JSMA 
and ZOO are closer to each other but with different scores from the detectability analysis: JSMA 
is likely part of a cluster, while UNI does not belong to any of them. DEEP is the farthest from 
all the others, forming a group by itself. According to the results of detectability and 
classification analyses, BIM and FGM are likely to be in the same group. However, they are very 
far from each other as it results from the clustering analysis. This contrasts with what we 
observed in Figure 1.a, in which they are grouped strongly. 

We proposed an experimental methodology to identify the most suitable attack set when 
testing defenses against evasion attacks. The overall idea is to apply distance metrics to group 
attacks that introduce a similar perturbation on the image and have a similar effect on the target 
classifier. While the analysis performed on the two models shows some discriminative power, 
it does not provide enough evidence to drive guidelines that can reduce the number or types of 
attacks to be used when testing a defense. Results on ConvNet12 and ResNet50 agree in 
grouping BOUND and HOP attacks, which, share the same approach to craft attacks, according 
to the mathematical formulation. In weaker form, BIM and FGM are also grouped, with 
experiments on ConvNet12 giving a solid grouping and experiments in ResNet50 partially 
confirming the result. This is somehow expected as BIM is the iterative form of the FGM attack. 
However, this result alone applies only to those specific attacks, and no relevant relations are 
found in all the other cases.  

In conclusion, our preliminary assessment suggests that measuring the adversarial 
perturbations does not provide a sensitive proxy to select diverse attack classes, meaning that 
different attack methods, with distinct mathematical formulations, do not introduce 
distinguishable (measurable) perturbations in the image. However, the methodology should be 

              
a) Aggregated results on ConvNet12.                               b) Aggregated results on ResNet50. 

Figure 1: The results of the 3 analyses aggregated: more similar attacks are spatially closer 
in the images. 

 



further enriched to provide additional verification of these results. This can be achieved by 
applying a broader range of models and attack methods, as well as identifying different metrics. 
However, the preliminary results we obtained are quite worrying. When evaluating a defense, 
it is risky to reduce the diversity of attacks, because the exhaustiveness of the evaluation can 
be unexpectedly compromised by essentially any reduction attempt. 
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A. Appendix 

Attack configuration parameters. In Table 2 we report the configuration parameters used to craft 
the attacks in the experimental campaign. How these values are combined, and all configuration 
details can be found at [52] along with the code used for the generation. All the images 
generated and the code to reproduce our experiments are at [52]. 

Distance metrics cluster analysis. First, we observe in Table 3.a that cluster 5 and cluster 8 
group all the attacks except, again, BIM and PGD. On the contrary, some clusters indicate small 
groups of attacks. Cluster 2 and 11 strengthen the BIM, FGM, and PGD grouping. We also 
identify a group of attacks composed of HOP, BOUND, and ELA, in clusters 3, 5, and 8. Another 
cluster group is composed of ZOO and DEEP, which mostly fall in clusters 5, 8, 9, and 12. 
Interestingly, the ZOO attack does not share its mathematical formulation with DEEP but 
generates a perturbation that distance metrics quantify very similar to the perturbation created 
by DEEP. Lastly, we observe that the JSMA attack is different from any other attack since it is 

 

Table 2  
Generated attack, generation parameters, success rate, and attack detectability. 
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BIM ε = {0.001-0.1}, ε-step = {0.001-0.1} 0.88 1951 17 0.630 0.65 
BOUND ε={0.001-0.1}, δ={0.001-0.1}, max_iter={500-5000} 0.98 3325 26 0.212 0.065 

CW2 confidence = {1-50}, max_iter = {10-1000} 0.99 1435 10 0.725 0.776 
DEEP ε = {0-10}, max_iter = {10-300} 0.97 1239 15 0.031 0.038 
ELA confidence = {0-50}, max_iter = {10-90} 1.00 3315 19 0.100 0.023 
FGM ε = {0.001-0.01} 0.70 596 32 0.057 0.040 

HOP 
max_iter = {50-300}, max_eval = {10-20000}, init_eval = {20, 200}, 

init_size = {20-200} 
0.99 2209 26 0.230 0.120 

JSMA Θ = {0.01-5}, γ = {0.2-1} 0.96 3359 19 0.211 0.305 
NEW max_iter = {10-300}, η = {0.01-10} 1.00 1615 26 0.082 0.183 
PGD max_iter = {10-300}, ε = {0.01-10} 1.00 1615 39 0.99 1.0 
UNI ε = {0.1-20}, δ = {0.1-10} 0.44 1200 10 0.128 0.083 
ZOO confidence = {1-10}, max_iter = {100-200} 0.90 762 40 0.056 0.033 
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the only attack that gets assigned to clusters 4 and 7. The analysis shows similar results 
concerning the ResNet50 model (Table 3.b). The BIM, FGM, and PGD group seems confirmed 
since the three attacks are the only ones with high scores in clusters 4 and 5. This is somehow 
expected as the Basic Iterative Method (BIM) and Projected Gradient Descent Attack (PGD) can 
be considered iterative versions of FGM [31]. As observed in ConvNet12 results, JSMA is 
isolated in clusters 1, 2, and 12 suggesting no similarities for the other attacks. Differently, 
cluster 9 evidences a big group of attacks. However, BOUND and HOP show a score 
(respectively, 1 and 0.998) that is significantly higher than the others, suggesting a stronger 

Table 3 
Groups of attacks are identified based on the distance metrics. The most evident groups are in 
dark colors. 

a) Results with k=12 clusters, using the ConvNet12 model 

K=12 
cl

us
te

r1
 

cl
us

te
r2

 

cl
us

te
r3

 

cl
us

te
r4

 

cl
us

te
r5

 

cl
us

te
r6

 

cl
us

te
r7

 

cl
us

te
r8

 

cl
us

te
r9

 

cl
us

te
r1

0 

cl
us

te
r1

1 

cl
us

te
r1

2 

BIM 0.000 0.383 0.029 0.000 0.056 0.000 0.000 0.142 0.091 0.000 0.297 0.001 
BOUND 0.000 0.000 0.415 0.000 0.225 0.000 0.000 0.355 0.004 0.000 0.000 0.001 

CW2 0.007 0.003 0.039 0.020 0.227 0.000 0.003 0.518 0.035 0.000 0.006 0.141 
DEEP 0.000 0.020 0.061 0.010 0.157 0.000 0.000 0.280 0.155 0.000 0.002 0.314 
ELA 0.000 0.000 0.304 0.000 0.212 0.000 0.000 0.472 0.000 0.012 0.000 0.000 
FGM 0.000 0.172 0.076 0.000 0.145 0.000 0.000 0.361 0.128 0.000 0.118 0.000 
HOP 0.000 0.000 0.376 0.000 0.227 0.000 0.000 0.390 0.006 0.000 0.000 0.000 
JSMA 0.006 0.000 0.001 0.359 0.001 0.016 0.433 0.017 0.001 0.004 0.000 0.161 
NEW 0.000 0.000 0.047 0.000 0.259 0.000 0.000 0.694 0.000 0.000 0.000 0.000 
PGD 0.000 0.380 0.000 0.000 0.017 0.263 0.000 0.000 0.080 0.000 0.259 0.000 
UNI 0.000 0.037 0.000 0.000 0.004 0.000 0.000 0.000 0.343 0.000 0.012 0.604 
ZOO 0.000 0.025 0.006 0.000 0.291 0.000 0.000 0.267 0.247 0.044 0.002 0.119 

b) Results with k=12 clusters, using the ResNet50 model 
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BIM 0.000 0.000 0.000 0.450 0.288 0.000 0.000 0.000 0.259 0.000 0.003 0.000 

BOUND 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.998 0.000 0.000 0.000 

DEEP 0.038 0.028 0.041 0.000 0.047 0.000 0.459 0.011 0.202 0.100 0.001 0.073 

ELA 0.006 0.025 0.032 0.002 0.075 0.000 0.011 0.012 0.768 0.019 0.033 0.016 

FGM 0.000 0.000 0.000 0.202 0.200 0.000 0000 0.000 0.589 0.000 0.009 0.000 

HOP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

JSMA 0.237 0.208 0.030 0.000 0.004 0.000 0.059 0.010 0.099 0.108 0.004 0.240 

NEW 0.005 0.065 0.039 0.005 0.092 0.000 0.007 0.001 0.747 0.022 0.011 0.005 

PGD 0.000 0.000 0.000 0.383 0.314 0.000 0.061 0.000 0.040 0.202 0.000 0.000 

UNI 0.006 0.016 0.323 0.112 0.015 0.000 0.000 0.444 0.000 0.032 0.000 0.052 

ZOO 0.000 0.000 0.000 0.007 0.022 0.576 0.000 0.000 0.391 0.000 0.004 0.000 

 



similarity. Further, ELA and NEW provide scores that are high (respectively, 0.768 and 0.747) 
but separated from the rest of the scores. This trend agrees partially with the analysis on 
ConvNet12 that groups together BOUND, HOP, and ELA, while NEW is excluded. The 
similarity between HOP and BOUND with the ELA and NEW cannot be explained or confirmed 
by checking their mathematical formulation, and it is a relation observable solely thanks to the 
distance metrics. Differently from the ConvNet12 case, DEEP and ZOO are not similar and form 
isolated groups (clusters 7 and 8 of Table 3.b). Lastly, UNI is different from any other attack 
according to the analysis of both models. 

Correlation between distance metrics and the behavior of the target classifier. We show the 
results of, respectively, the ConvNet12 and the ResNet50 models in Table 4.b and Table 4.b. The 
columns report the attacks used to train the regressors, while the rows enlist the attacks used 
to test the regressors. Each cell i,j of the tables reports the CD when predicting the success rate 

Table 4 
Cosine distance is measured when predicting the success rate using the distance metrics. The 
lower the cosine distance, the higher the correlation. 

a) Results obtained on the ConvNet12 model. 

 Trained using distance metrics from the adversarial images of attacks: 

Tested on: BIM BOUND CW2 DEEP ELA FGM HOP JSMA NEW PGD UNI ZOO 

BIM  0.029 0.030 0.024 0.026 0.002 0.026 0.020 0.026 0.026 0.029 0.024 
BOUND 0.108  0.000 0.002 0.000 0.131 0.000 0.001 0.000 0.000 0.000 0.002 

CW2 0.035 0.000  0.001 0.000 0.038 0.000 0.002 0.000 0.000 0.001 0.001 
DEEP 0.038 0.001 0.001  0.001 0.039 0.001 0.002 0.001 0.001 0.004 0.002 
ELA 0.071 0.000 0.000 0.001  0.084 0.000 0.001 0.000 0.000 0.000 0.001 
FGM 0.002 0.060 0.064 0.056 0.059  0.059 0.050 0.059 0.059 0.061 0.063 
HOP 0.103 0.000 0.000 0.001 0.000 0.125  0.001 0.000 0.000 0.000 0.002 
JSMA 0.009 0.003 0.002 0.003 0.002 0.009 0.002  0.002 0.002 0.003 0.003 
NEW 0.034 0.000 0.000 0.001 0.000 0.047 0.000 0.002  0.000 0.000 0.001 
PGD 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.000  0.001 0.001 
UNI 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.014 0.011 0.011  0.011 
ZOO 0.033 0.002 0.002 0.002 0.002 0.036 0.002 0.003 0.002 0.002 0.004  

b) Results obtained on the ResNet50 model. 
 Trained using distance metrics from the adversarial images of attacks: 

Tested on: BIM BOUND DEEP ELA FGM HOP JSMA NEW PGD UNI ZOO 

BIM  0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.01 
BOUND 0.08  0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.03 
DEEP 0.02 0.00  0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 
ELA 0.10 0.00 0.00  0.12 0.00 0.00 0.00 0.00 0.00 0.02 
FGM 0.00 0.04 0.04 0.04  0.04 0.04 0.04 0.04 0.03 0.02 
HOP 0.07 0.00 0.00 0.00 0.10  0.00 0.00 0.00 0.00 0.03 
JSMA 0.01 0.00 0.00 0.00 0.01 0.00  0.00 0.00 0.00 0.01 
NEW 0.06 0.00 0.00 0.00 0.05 0.00 0.00  0.00 0.00 0.01 
PGD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 
UNI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 
ZOO 0.15 0.06 0.07 0.06 0.14 0.06 0.06 0.06 0.06 0.06  

 



of the attack in the i-th row using as a training set the attack in the j-th column. The CD is low 
(i.e., there is mutual predictability) in most cases: therefore, it is more interesting to observe the 
combinations for which the CD is high. Considering ConvNet12 and Table 4.a, it is the case of 
FGM against all attacks but BIM and PGD; also, BIM shows low CD only when paired with 
FGM. UNI shows good predictability when used to train the regressor, but rather poor 
predictability if it is used as a test set: therefore, we cannot get actionable information about 
this attack. Similar results can be observed in the ResNet50 analysis (Table 4.b). BIM can predict 
with CD=0 the success rate of FGM, PGD, and UNI, with a very low CD in detecting JSMA (see 
the 1st column in Table 4.b). We obtain similar results using FGM as training, showing a CD=0 
in predicting BIM, PGD, and UNI. Using both UNI and PGD, the CD is 0 except for BIM and 
FGM. This seems to define a group composed of BIM and FGM, excluding UNI and PGD.  

Correlation between distance metrics and the detector outputs. In Table 5.a, we observe that 
BOUND and HOP show mutual predictability. BOUND can predict the detectability of HOP 
with MCC=0.698, whereas, using HOP to predict the detectability of BOUND, we obtain 
MCC=0.642. CW attacks seem grouped with BOUND and HOP: if used as the training set, it can 
predict the detectability of HOP and BOUND attacks with an MCC of roughly 0.42. The results 
are similar if using HOP to predict CW2 (MCC = 0.365) but are lower using BOUND attacks 
(MCC = 0.234). Using HOP, BOUND, and CW2 as training sets shows some capabilities in 
detecting the BIM attack, however, the MCC scores are very low (below 0.3). The PGD attacks 
are not considered because it has a detection rate of 1.0 and as such cannot be efficiently used 
to train a classifier. Training with JSMA shows MCC of 0.360, 0.350, and 0.381 when tested with 
BOUND, CW2, and HOP respectively. Despite there being no mutual predictability between 
JSMA and these attacks (using CW2, BOUND, and HOP in the training, and JSMA as a test 
shows a low MCC), training on JSMA offers some capability to predict the others. The UNI, 
ZOO, NEW, and DEEP attacks are the ones with the lowest average MCC if used as training.  

We repeat the analysis on the ResNet50 model, considering all the attacks except for CW2 
which is computationally too complex to generate with our hardware. We show the results in 
Table 5.b. PGD, UNI, and ZOO do not have mutual predictability with any other attacks.  Each 
of them shows an MCC score near 0 in predicting the detectability of each other, with a few 
exceptions showing a low MCC score. PGD, UNI, and ZOO are predicted poorly by other 
attacks. BIM, BOUND, DEEP, ELA, FGM, HOP, JSMA, and NEW attacks appear somehow 
related: attacks can be predicted by or can predict others. These results can be easily seen by 
looking at the rows of Table 5.b: except for PGD, UNI, and ZOO, there is no attack with the 
majority of MCC score to zero. The only exception is the BOUND attack (in the 2nd column) that 
shows MCC greater than 0 only in predicting BIM, HOP, and NEW. Also, the MCC score 
obtained using NEW when training suggests that NEW can be related to BIM, DEEP, ELA, FGM, 
HOP, and JSMA. The strongest similarity between attacks is observed for HOP and BOUND, 
with HOP being the only attack that shows MCC substantially greater than 0 in detecting 
BOUND. This result is consistent with the BOUND and HOP group evidenced by the ConvNet12 
results. Differently from ConvNet12 results, BIM can predict FGM and DEEP with, respectively, 
MCC=0.60 and MCC=0.48. We obtain analogous results using FGM or DEEP in the training. 
FGM achieves MCC=0.50 in predicting BIM and MCC=0.62 in predicting DEEP. Similarly DEEP 
can predict BIM and FGM with MCC=0.39 and MCC=0.47.  

 
 



 

Table 5 
Matthew Coefficient Correlator to predict detection of Magnet and Squeezer using the 
distance metric as input features. 

a) Results obtained using the ConvNet12 model. 

 Trained using distance metrics from the adversarial images of attacks: 

Tested on: BIM BOUND CW2 DEEP ELA FGM HOP JSMA NEW PGD UNI ZOO 

BIM  0.288 0.205 0.166 0.093 0.004 0.223 0.189 0.009 0.000 0.046 0.043 
BOUND 0.220  0.416 0.147 0.162 0.036 0.642 0.360 0.016 0.000 0.047 0.030 

CW2 0.206 0.234  0.026 0.071 0.048 0.365 0.360 0.127 0.000 0.047 0.041 
DEEP 0.054 0.043 0.083  0.028 0.167 0.075 0.032 0.011 0.000 0.185 0.104 
ELA 0.228 0.262 0.226 0.163  0.030 0.241 0.176 0.180 0.000 0.000 0.000 
FGM 0.116 0.071 0.073 0.056 0.036  0.052 0.071 0.043 0.000 0.034 0.031 
HOP 0.188 0.698 0.417 0.135 0.209 0.017  0.381 0.031 0.000 0.052 0.028 
JSMA 0.112 0.143 0.113 0.046 0.097 0.039 0.101  0.038 0.000 0.020 0.037 
NEW 0.131 0.149 0.182 0.124 0.044 0.020 0.109 0.088  0.000 0.000 0.000 
PGD 0.003 0.018 0.000 0.000 0.000 0.001 0.023 0.025 0.000  0.002 0.001 
UNI 0.018 0.074 0.000 0.033 0.000 0.009 0.059 0.172 0.053 0.000  0.044 
ZOO 0.161 0.117 0.057 0.020 0.043 0.011 0.067 0.096 0.109 0.000 0.053  

 

b) Results obtained using the ResNet50 model. 

 Trained using distance metrics from the adversarial images of attacks: 

Tested on: BIM BOUND DEEP ELA FGM HOP JSMA NEW PGD UNI ZOO 

BIM  0.23 0.39 0.32 0.50 0.38 0.23 0.41 0.02 0.01 0.10 
BOUND 0.11  0.01 0.03 0.11 0.41 0.17 0.09 0.00 0.00 0.00 
DEEP 0.48 0.00  0.46 0.62 0.25 0.29 0.54 0.11 0.15 0.08 
ELA 0.34 0.03 0.38  0.26 0.23 0.28 0.40 0.01 0.02 0.11 
FGM 0.60 0.08 0.47 0.30  0.34 0.18 0.51 0.08 0.00 0.19 
HOP 0.19 0.23 0.03 0.17 0.10  0.18 0.17 0.01 0.00 0.00 
JSMA 0.22 0.08 0.26 0.26 0.22 0.03  0.23 0.02 0.01 0.01 
NEW 0.29 0.40 0.37 0.43 0.31 0.14 0.13  0.01 0.00 0.09 
PGD 0.01 0.11 0.00 0.05 0.04 0.00 0.00 0.04  0.00 0.00 
UNI 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02  0.00 
ZOO 0.13 0.00 0.03 0.14 0.12 0.03 0.03 0.11 0.01 0.01  
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