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Abstract
In the wake of terrorist attacks in Europe, the European Union has increasingly prioritized collaborative
efforts to bolster the protection, resilience, and cybersecurity of critical infrastructures and essential
services. Nevertheless, a significant gap persists in accurately quantifying the resilience of these systems,
particularly regarding the integration of Artificial Intelligence, which remains underdeveloped. This
article endeavors to bridge this gap by developing a robust data-driven framework for Resilience Key
Performance Indicators. This study focuses on identifying effective data-driven methodologies to assess
the response of cyber-physical critical infrastructures to cyber attacks. A case study is also deployed
to replicate cyber attack scenarios on cyber-physical assets and provide a meticulous evaluation of the
resilience performance of an energy cyber-physical framework, comprising a Smart PV Station, Data
Infrastructure, and Digital Twin for essential services. Notably, the anomaly detection algorithm success-
fully identifies anomalous behavior induced by simulated cyber attacks, thereby averting the system
from reacting to falsely imposed conditions. Furthermore, the assessment inspects the functionality
and features of the framework, thus enriching our comprehension and quantification of cyber-physical
infrastructure resilience through Resilience Key Performance Indicators.
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1. Introduction

Immediately after 9/11 and the attacks inMadrid and London of 2004 and 2005, theMember States
of the European Union have shown an increasing political will in establishing a joint framework
aimed at enhancing the protection, resilience and cybersecurity of critical infrastructures, entities
and operators of essential services. It can be affirmed, in fact, that despite the initial difficulties in

ITASEC24: Italian Conference on Cybersecurity, April 8-12, 2024, Salerno, Italy
∗Corresponding author.
†
The authors contributed equally in Conceptualization, background review, methodology, implementation, and
writing draft.
Envelope-Open ali.a.ardebili@unisalento.it (A. A. ARDEBILI); cristian.martella@unisalento.it (C. MARTELLA);
angelo.martella@unisalento.it (A. MARTELLA); alessandro.lazari@unisalento.it (A. LAZARI);
antonella.longo@unisalento.it (A. LONGO); antonio.ficarella@unisalento.it (A. FICARELLA)
Orcid 0000-0002-3557-9986 (A. A. ARDEBILI); 0000-0001-9751-9367 (C. MARTELLA); 0000-0002-1082-7293
(A. MARTELLA)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ali.a.ardebili@unisalento.it
mailto:cristian.martella@unisalento.it
mailto:angelo.martella@unisalento.it
mailto:alessandro.lazari@unisalento.it
mailto:antonella.longo@unisalento.it
mailto:antonio.ficarella@unisalento.it
https://orcid.org/0000-0002-3557-9986
https://orcid.org/0000-0001-9751-9367
https://orcid.org/0000-0002-1082-7293
https://creativecommons.org/licenses/by/4.0


overcoming the metabolization of key principles and the fulfilment of minimum harmonization
thresholds, the EU and its Member States have adopted overtime a very comprehensive, effective
and up-to-date framework that nowadays stands as reference also for neighboring countries
and allied of the EU.
In the era of rapid technological advancement, the integration of cutting-edge technologies

like Digital Twins (DTs), big data analysis, and the Internet of Things (IoT) with Critical
Infrastructures (CIs) has transformed the critical entities into smart cyber-physical complex
systems. However, traditional risk assessment methods are proving inefficient for the evaluation
of future AI-integrated CIs. There exists a significant gap in the quantification of resilience for
these complex systems due to the lack of standardization, particularly concerning AI integration,
which is not yet industrialized in CIs operations and control systems. As wemove closer to an era
where data-driven cyber resilience indicators are imperative, this article aims to fill this gap by
developing a robust Resilience Key Performance Indicator (R-KPI) implementation framework.
This involves employing highly cited methods to quantify resilience of a smart PV panel which
is developed in Data Lab, University of Salento (see Section 4.1), draw multiple resilience curves
and associated R-KPIs, comparing the results to discern the most comprehensive understanding
of system behavior under varied disturbances. The disturbance in current study is a cyber
attack scenario which is detailed in Section 4.3. The central question addressed in this study
is the best data-driven practice for presenting the behavior of Cyber-Physical (CP) CIs in
response to a cyber attack, utilizing a case study methodology involving the repetition of a
cyber attack scenario on CP assets. The article’s main contribution lies in providing a framework
to employ approved R-KPIs for evaluating the cyber resilience of smart infrastructures, opening
research lines for data-driven anomaly detection and early warning systems. Furthermore,
the article bridges existing gaps by offering a universal framework for employing R-KPIs in
smart infrastructures, enhancing the understanding of cyber resilience and enabling improved
resilience quantification for AI-integrated CIs.
The remainder of the article is structured as follows: Methodology, Case Study, Results and

Discussion, Conclusion and Future Work. Next Section 2 will delve into the state of the art of
resilience quantification in CP CIs.

2. Background Review

Resilience engineering is pivotal for safeguarding the uninterrupted operation of CIs, ensuring
the delivery of vital services [1, 2]. The trend of digitalization is molding an ecosystem that
seamlessly integrates the physical and digital realms, imbuing systems with inherent intelligence
through the utilization of cutting-edge technologies [3]. The resilience of smart CIs, particularly
CP power systems, is a key concern [4]. Inter-dependencies between cyber, physical, and social
elements in water, transportation, and cyber infrastructures must be considered to enhance
resilience [5]. A multi-disciplinary approach is crucial for addressing the challenges faced by
future cities in developing secure and resilient Cyber-Physical Systems (CPSs) [6]. However,
quantifying resilience remains a crucial challenge, marked by an absence of an efficiently
addressed standard approach in the existing literature in knowledge and practice [7, 8].
Existing technologies do not address the disparate time and spatial scales across the many



system domains [9, 10]. New methods for managing system resilience, including computing,
sensing, machine learning, artificial intelligence, and advanced analytics, are needed to ensure
CPSs can withstand adverse events. The Society of Risk Analysis Workshop in December 2021,
attended by over fifty scientists and engineers, aimed to identify key technologies and techniques
for designing resilience in infrastructures. Four promising themes for research include resilient
topologies of sensors and hardware [11, 12, 13], state-of-the-art modeling and the DT [14, 15, 16],
machine learning and AI [17, 18, 19], and energy networks and the System of Systems [20].
Cyber-attacks and system complexity pose challenges to risk assessment and management.
Resilience, utilizing flexible response, distributed decision making, modularity, and redundancy,
helps absorb and recover from adverse events when technical objectives, schedule, or cost
are insufficient. Resilience is crucial for CPSs, as it allows for quick and effective recovery
from threats. While mitigating risks is important, adverse events will still occur, and a system
hardened to avoid risks is not inherently robust enough to recover. International standardization
bodies and agencies have developed several cybersecurity standards, including ISO 27000 [21],
NIST SP 800-82 [22], NIST SP 800-53 [23], andNIST SP 800-72 [24]. The Department of Homeland
Security has also published standards for Common Cybersecurity Vulnerabilities in Industrial
Control Systems (ICSs). Some standards have been published to address specific CPSs for smart
grids IEC 62351 [25], and specific CPS functions like interoperability and communication. These
standards provide best practices for cybersecurity or technical guidelines for its implementation
in specific sectors.
As anticipated in the introduction, the EU has adopted overtime a series of directives and

regulations that contributed to the establishment of a very comprehensive and advanced frame-
work aimed at enhancing the cyber/physical security and resilience of critical entities and
essential services. With the launch of the European Programme for Critical Infrastructure Pro-
tection (EPCIP) in 2006, the EU has created the condition for the establishment of an EU-wide
forum in which risk assessment methodologies, mitigation activities, incident response, crisis
management and cooperation mechanism could be discussed, analysed and improved. The
so-called NIS 2 and CER directives, promulgated on the 16th of December 2022, and currently
being adopted by the Member States, are the last mile of a 20 years journey that has now a
strong focus on resilience. Past legislation, in fact, initially focused on the protection from
all-hazards and included initial activities aimed at introducing prevention, preparedness and
response. In the current context, given the obligations respectively introduced by the NIS and
CER directives, embracing resilience at strategic and tactical levels is of utmost importance.
This is also confirmed by the 2016 NATO’s baseline requirements for resilience that include the
following priorities: 1) assured continuity of government and critical government services; 2)
resilient energy supplies; 3) ability to deal effectively with uncontrolled movement of people;
4) resilient food and water resources; 5) ability to deal with mass casualties; 6) resilient civil
communications systems; 7) resilient civil transportation systems.

With ”resilient energy supplies” ranking second in the order of highest priorities, it goes per
se that research has to dig deep in this lifeline sector, to ensure that all measures are taken to
prevent, absorb and recover from attacks aimed at disrupting the continuity of vital systems
in the ”energy supply chain”. Since it is time consuming and expensive to commit the human
resources in continuously monitoring infrastructures and the systems and networks they rely
upon, it is fundamental to study and introduce tools and mechanisms that can be automatically



triggered to prevent or mitigate a potential attack or anomaly. Such mechanisms should be
characterised by a high degree of learning up to the point in which they can deal with the
anomaly or attack in a completely autonomous way.
In the Italian context, the importance of the energy sector is further reaffirmed by the

”Perimetro Nazionale di Sicurezza Cibernetica” which is an additional measure that has ”national
security” as final goal and introduces further obligations for the operators of essential services,
including some safeguard mechanism on the procurement of digital devices, equipment and
tools.

One promising approach provides to implement resilience by design throughout the lifecycle
of systems development. Currently, resilience efforts are primarily focused on single-domain
networks like energy, water, and freight [20, 26, 27, 28, 29]. However, initiatives have been
developed to assess multi-domain resilience using qualitative expert judgment. The Argonne
National Lab developed an infrastructure survey tool to collect information on protection and
resilience from 16 CI domains [30]. DTs of individual buildings can integrate data from all
domains, allowing for examination of correlations and causal relationships. Data must be
gathered from individual domains, a data warehouse constructed, and key resilience indicators
developed. System operators must identify correlations and causal relationships using ML and
causal inference techniques. Addressing this challenge requires a focus on R-KPIs in metric
development[31].

The smart grid, as a complex CPS, faces significant security challenges, and a comprehensive
understanding of attack threats and defense strategies is essential [32]. A full group of physical
impact scenarios on an infrastructure can be calculated [33]. A resilience metric is desirable
for smart grids [34]. The detection of security threats in CPSs is becoming increasingly crit-
ical due to the increasing interconnection of CIs with public networks. Further research is
needed to advance academic research and develop preventative solutions for safe and secure
implementation of these systems. Typical cyber-attacks targeted to CPSs include Input Fuzzing,
Man-in-the-Middle, distributed Denial of Service, False Data Injection, and more [35]. Resilience
can be ensured by implementing a process for anomaly detection or early warning. Anomaly
detection, also known as outlier detection, is a real-time monitoring process that aims to identify
patterns in a data set that do not align with normal behavior, typically referring to infrequent
events [36]. Tightly linked to anomaly detection is the concept of early warning system. Even
such a system implements a real-time monitoring process that is capable of detecting adverse
trends and making reliable predictions. An early warning process collects, analyzes, inter-
prets, and communicates data, enabling early decision-making to protect public health and
the environment [37]. So, anomaly detection can be considered as part of the early warning
process. Both thread/anomaly detection and early warning are commonly used in various fields,
including cyber-attack threats. While threat detection and prevention in enterprise networks is
mature, CPS currently lacks equivalent capabilities [35]. For the aim of this paper, we implement
a specific cyber-attack scenario in which we simulate the anomaly detection to increase the
system resilience. As future work, we aim to develop an early warning system based on a
comprehensive anomaly detection algorithm for the resilience enhancement of CIs.
In [38], a CPS resilience assessment framework is proposed, which consists of three phases

called (1) System Description (SD), (2) Disruption Scenario (DS), and (3) Resilience Strategy (RS),
each corresponding to the typical steps of the resilience cycle. Both the hazard and the resilience



strategy contribute to determining the damage to the system. The damage scenario and the
CPS model are used to assess resilience, but not all three phases are necessary. In the SD phase,
data and knowledge about the system structure and processes are gathered to build the model
for the CPS. A Measure of Performance (MoP) is defined according to the resilience objectives
of the CPS, which is computed over time to represent the evolution of the CPS’s structure and
processes. In the DS phase, data and knowledge about possible hazards that may disrupt the
CPS and the resulting damages are gathered or created. Deductive methods estimate the damage
caused by a known hazard, while deductive methods identify hazards that may cause a given
damage. Finally, RS provides to gather data and knowledge about available resilience strategies,
either reactive or proactive, which aim to mitigate or prevent damages, with reactive strategies
restoring system performance and minimizing losses after damage has occurred. Resilience
can be assessed based on the analysis of system attributes and performance during normal
operating conditions. Critical components and processes can be identified, and resilience can
be preemptively assessed. A disruption scenario can be added for an accurate assessment of
system behavior during disrupted conditions. The resulting damage can be mitigated with the
implementation of resilience strategies. However, in some real-world scenarios, systems may
not be restored by the aid of resilience strategies and may collapse or recover as the disruption
elapses. The CPS model and the damage scenario created through these phases are used for the
resilience assessment, with defined resilience metrics provided as input and a resilience report
with quantified metrics obtained as output. In [38], for each phase of the proposed framework
a list of the most common disruption scenarios and the corresponding resilience strategies is
provided.

The first step for resilience evaluation is resilience quantification, which employs a scenario-
based approach, with methods tailored to the nature of the studied risk [39, 40, 41]. While much
literature concentrates on analytical frameworks for disaster resilience [42, 43, 44, 45], the surge
in studies evaluating the resilience of CIs under CP attacks is evident [46, 47, 48, 5]. In this
article, we explore the resilience of a smart PV power station under a cyber attack scenario.
Various metrics have been proposed for Engineering Resilience Quantification, yet in the

CI domain, prioritizing service continuity and maintaining a minimum service level is crucial
for societal well-being during risks, including extreme events and CP attacks [49, 50, 51, 52].
Therefore, this article focuses on indicators linked to system recovery time [51, 53, 54] and
functionality loss.

3. Methodology

The primary aim of resilience-enhancing metrics is to elevate the three core capacities of
resilience, namely absorption, adaptation, and restoration. To evaluate the behaviour of the
system after a disturbance, three Resilience KPIs are selected. The recovery time (Figure 1) is
the most important indicator of the resilience of CI. Particularly in sectors like energy, due
to its direct impact on the overall operational resilience recovery time is the most important
Resilience KPI. Recovery time is the period during which a system experiences a decline in
functionality or performance, measured from the occurrence of the disturbance until the system
returns to a state of stable performance. As Figure 1 shows, the new performance level after



Figure 1: Recovery time Figure 2: Min. performance Figure 3: Functionality loss

stabilization can be a) Lower than the prior disturbance level of performance, b) Equal to the
former level, or c) Higher than the prior disturbance.

The determination of the minimum performance level (Figure 2) in CI is contingent upon the
inherent design features of the system and the severity of the encountered disturbance. Moni-
toring this minimum performance level holds crucial significance as it ensures the preservation
of essential services vital for the system’s proper functioning. The minimum performance level
is intricately defined by the indispensable thresholds associated with the societal needs for that
particular service.
Resilience curves are applied across the CI literature shows two kind of curve: typical

representation with a semi-linear degradation and semi-linear recovery phase, or non-idealized
system behavior(Figure 3). The research employs a resilience assessment framework adapted
from [51], which is an Integral-based metric that incorporate both time and performance. This
framework evaluates the impact of disturbances on infrastructure by estimating the degradation
in service quality (𝑄(𝑡)). The process involves assessing the degradation from the disturbance
(𝑡0) until full recovery (𝑡1), representing the recovery phase.

Regarding Loss of Functionality (LF ), it quantifies service quality degradation during the
recovery period, irrespective of the system’s behavior. The calculation is expressed as:

𝐿𝐹 = ∫
𝑡1

𝑡0
[100 − 𝑄(𝑡)] 𝑑𝑡

For better demonstrate the usefulness of the three aforementioned Resilience KPIs as means
to evaluate the behaviour of the system in a realistic cyber-attack scenario, a case study is
proposed in the following section. This case study is intended to use these KPIs for the efficacy
assessment of the anomaly detection algorithm in bolstering the system’s resilience.

4. Case Study

The case study aims to assess the proposed energy CP framework, which includes three main
building blocks: Physical Asset, Data Infrastructure, and DT. The Physical Asset is constituted
by a Smart PV Station (SPVS), that is portable power-generating infrastructure featuring a
PV panel with sensors and actuators for orientation. The Data Infrastructure focuses on data
streaming and persistence, deployed using a fog node on a Raspberry PI 4B. The DT is a
virtual world interactive model of the SPVS, containing four fundamental services: Dynamic
Environment, Operation, Ideal State, and Demand. These services are deployed on a workstation,



representing the cloud backend of the framework, but with limited processing and storage
capabilities. The case study serves as an experiment to evaluate the framework’s functionality
and features.For the sake of clarity, the case study corresponds to a simplified scenario, eliciting
additional complex, interconnected and dependent events and factors that come into play and
significantly impact in a real-world context. Finally, a more comprehensive and exhaustive
evaluation test is planned to be accomplished for assessing the proposed R-KPIs also on larger
scale implementations, such as smart grids and smart cities scenarios.

4.1. Physical Asset

The models discussed in this case study are applied in the PV power generation system called
SPVS. Such a system is part of the real testbed implemented in [55, 56] and which is detailed in
the present section. The list of components that are presented in Table 1 was used for assembling
the CP infrastructure (Figure 4b) and for evaluating our experimental setup. The logical model
of the SPVS is shown in Figure 4a, where the physical components and the connections between
them are represented. In particular, it includes two types of physical connections: power
delivery and data delivery. The former is used to highlight the electric circuit to power the
SPVS components, whilst the latter maps the data streams between the components.

A 20W monocrystalline solar module, is chosen for the implementation of the portable SPVS
testbed. The module uses high-efficiency monocrystalline solar cells, costing over 18%, and is
suitable for 12V systems.

The SPVS uses sensors and actuators to monitor and interact with its environment. It assesses
air quality and collects data on the PV panel’s live power production, battery power, and system
operations. The station can track specific orientations using onboard actuators, including servo
motors that control the panel’s pitch and yaw angles (as shown in Figure 4c).
The SPVS physical asset’s brain uses ESP32 microcontroller units due to their good perfor-

mance, low cost, and compact size. The boards also features an antenna module for wireless
communication on the 2.4GHz band.
The device is powered by the energy generated by the PV panel and stored in a battery. To

this end, a Maximum Power Point Tracker (MPPT) monitors the PV panel’s output to regulate
voltage and current to keep the system at maximum power at all times. However, the MPPT’s

(a) The logical model of the smart PV system. (b) Assembled
view.

(c) Degrees of freedom
of the SPVS.

Figure 4: SPVS physical asset implementation.



Table 1
List of Sensors, Actuators, and Other Components

Category Component Specification

Sensors
Air quality Bosch BME280
Power INA3221

Actuators Servo Motors 2x (0°-180°)

Other Components

MCU 2x ESP32
Voltage converter 2x
MPPT
Battery LiFePo4 12V 6Ah
PV panel 20W monocrystalline

output is too high to power the logical components, which require 5 volts. Thus, separate
power sources are used for low power (sensors and control devices) and high power (servo
motors). In particular, two step-down voltage converters are installed between the battery and
downstream modules, ensuring constant 5 volts output and avoiding power decreases during
power-intensive operations.

4.2. System Architecture and Software Components

The Data Streaming service facilitates interaction between the SPVS and its DT virtual services
using MQTT protocol. A MQTT message broker is instantiated to process message queues
between publishers and subscribers. Client services must include MQTT client implementations
to secure and publish sensor data payloads, ensuring timely data reception. Inbound messages
are deserialized to transform payloads into JSON objects ready for data processing. The service
manages the communication between the physical SPVS and its DT services, and forwards data
messages to the Data Persistence service.
The Data Persistence service consists of two microservices that maintain historical data

records between the SPVS and Energy DT’s services, including sensor readings and action
commands. MongoDB was chosen for the case study due to its document-based structure, which
allows high-performance IoT data querying and fast insert queries [57]. MongoDB outperforms
relational DBMSs like MySQL in terms of resource utilization and latency [58, 59]. It supports
efficient local data storage on edge devices, reducing the need for data transmission to remote
servers or cloud infrastructures. In this case study, a Python script implements the interface
microservice for the DBMS. In particular, the script acts as a middleman, providing subscriptions
for MQTT topics and preparing data for storage through MongoDB microservice interaction.
The Anomaly Detection Service (ADS) is responsible for detecting anomalous behaviours

of the SPVS to enhance system efficiency and ensure service continuity. It predicts optimal
production parameters for real-time variables like temperature, solar irradiation, and energy
consumption using mathematical models [60] or machine learning models. The ADS compares
estimated current, voltage, and power values to the provided measured set of related parameters,
and if the difference exceeds predetermined tolerance levels, an anomaly is recognized. For
developing the present case study, the aforementioned ADS was adopted to identify induced
electrical production anomalies and then to mitigate the corresponding effects, as detailed in
Section 5.



4.3. Attack Scenario

For the purpose of this research, the assumption is that in the current geopolitical scenario,
there could be a number of state and non-state actors willing to create minor disturbances or
severe disruptions to energy infrastructures as part of a single or more complex and coordinated
attack aiming at making interconnected infrastructures and their supply chains cripple. For this
reason, the attack scenarios considered for this research and the tests that have been performed
on the PV system, is that the attacker would use a ”man-in-the-middle” technique. Such a
technique is used to interfere with the correct functioning of the generation infrastructure
by modifying (tampering with) the part of the setup that allows the synchronization of the
clock which controls the correct orientation of the PV, by tracking the most efficient irradiation
position throughout the daily lifecycle. Furthermore, in this context, it is assumed that if an
attacker would intervene on the synchronization of the system’s clock by providing a wrong
value, the system would work outside of the established and more performing ranges, up to the
point in which the system would position the PV in ”sleep mode” in all of the cases in which
the wrong value falls before dawn or after dusk. In these cases, the energy production can be
significantly reduced with all the corresponding consequences on the missing generation and
its inevitable impacts on the expected demand from both the transmission and distribution
infrastructures.

4.4. Test Condition

January 24, 2023 was the date selected for the tests1 because during that day the weather
remained mostly clear with occasional partial cloud cover. Overall, the weather conditions
were relatively stable(see Figure 5), with no significant variations in temperature (see Figure 6)
or visibility. The day featured mostly clear skies, transitioning to partly cloudy in the early
afternoon(see Figure 7), and the wind speed remained moderate throughout the observed period.
These conditions were favorable for conducting tests and collecting data as part of the system
implementation. More specifically, the detailed environmental data related to the weather
conditions of the selected day have been collected fromWeather Spark2. In the present scenario,
stable conditions were chosen to reduce the complexity and minimize the sources of disturbance
attributable to third-party factors. The goal of this work is to provide a first evaluation of the
proposed R-KPIs in a simplistic scenario, highlighting the contribution of rogue alterations of
the physical asset parameters. The effects of further external disturbance factors and the way
they can impact on the system behaviour and on the proposed R-KPIs is out of the scope of this
paper and can be better analyzed in future works.

5. Results and Discussion

The collected data on the day of the test is depicted in Figure 8. The simulation of a CP attack
initiates at 10:10 in the morning. Disturbances caused by the CP attacks are illustrated in

1The portable smart PV power station testbed is situated within the Ecotekne complex, located in Lecce, Italy. The
geographical coordinates are 40°19’59.2”N latitude and 18°06’51.3”E longitude.

2https://weatherspark.com/

https://weatherspark.com/


Figure 5: Solar Elevation. Figure 6: Temperature.
Figure 7: Cloud Cover.

Figure 9. The red line in the figure represents the power consumption induced by the CP
attack, forcing the PV panel to return to the rest position. This return to the rest position has a
significant impact on power generation, as indicated by the green line.

Figure 8: Collected data on the day of the test. Power is measured in Watts (W), Voltage is measured
in Volts (V), and Current is measured in Amperes (A).

Despite the system being forced into the rest position, the DT’s ideal state service attempts
to adjust the orientation of the PV panel to follow the sun’s trajectory based on time and
position. However, the continuous disruption from the CP attack disturbs the system’s normal
functioning. Around 12 o’clock, the anomaly detection algorithm identifies the anomalous
behavior caused by the cyber attack, preventing the system from responding to false imposed
conditions.
The second attack simulation occurs at 12:05, and with the anomaly detection trained from

the previous behavior and attack features, the system identifies the attack quickly, resulting
in minimal functionality loss. After the second attack, the system rapidly returns to the
ideal position. In the last attack at 12:35, the functionality loss is negligible, showcasing an
improvement in resilience and service continuity. Metrics such as functionality loss, minimum



Figure 9: Resilience curve and the disturbance from cyber-physical attacks

Figure 10: Resilience curve and the Resilience KPIs (shown by letters from a-j).

performance level, and recovery time demonstrate improvement in response to this attack
scenario.
Figure 10 illustrates the R-KPIs for the system during the mentioned attack scenario, as

introduced in Sections 3 and 4.3, respectively. The R-KPI values presented in Table 23 are
derived from the scenario outlined in Figure 10. These findings highlight the efficacy of the
anomaly detection algorithm in bolstering the system’s resilience.

Initial Attack Analysis An examination of the Key Performance Indicators (KPIs) reveals a
significant loss of functionality during the first attack. This aligns with the high impact rating

3calculated by https://www.sketchandcalc.com/



Table 2
R-KPIs for the simulated attack scenario

First Attack Second Attack Third Attack
Functionality Loss (FL) 1.8168 0.0657 0.0069
Disturbance Starts 10:10 12:05 12:45
Disturbance Ends 11:55 12:35 13:05
Recovery Time (RT) 01:45 00:30 00:20
Min Performance (Pmin) 1.36 1.29 1.19

assigned within the risk assessment matrix. The scenario poses a greater threat compared to nat-
ural disasters, based on a quantity of relevant literature on intentional disruptions versus natural
events in literature. Consequently, employing an anomaly detection system is recommended
to effectively identify and respond to such attacks. Post-Attack Performance and Recovery:
The system’s performance exhibits a precipitous decline following the initial attack, reaching a
critically low point of 1.36. A comprehensive investigation into this minimum performance
level is crucial in the critical infrastructures of the society with real users of the service. This
analysis should determine the energy infrastructure’s capacity to meet the essential service
needs of users during an attack. Furthermore, assessing the recovery time is equally critical in
real-world critical infrastructure scenarios. This evaluation entails determining the timeframe
for which energy users reliant on this source can sustain operations with the minimum energy
level to deliver essential services.

Impact of Anomaly Detection The implementation of an anomaly detection system demon-
strably improves performance across all Key Performance Indicators (KPIs) during the second
and third attacks. This significant improvement suggests a sharp reduction in risk impact when
employing such an algorithm. While the attack probability might remain constant, the risk
scenario’s position within the risk-probability matrix shifts towards a zone characterized by low
impact and high probability. Consequently, these risks can be classified as moderate, implying
the system’s ability to absorb and recover from such disturbances. Nevertheless, further efforts
to mitigate the likelihood of occurrence are needed. A comprehensive study is recommended in
such a scenario to identify potential modifications within the cyber-physical infrastructures
that could enhance overall security and diminish the probability of this specific attack scenario.

6. Conclusion and Future Work

This research has allowed the team to fine tune the understanding of the dynamics behind a
possible attack to a PV generation infrastructure. Thanks to the use of a testbed, the research
has provided vary solid premises and insights that will allow the extension to real cases and full
scale infrastructures. Even tough further analyses are required, the team is motivated to look
for partners in the domain of electricity distribution, transmission and generation to allow the
execution of a full scale test in a more complex data management infrastructure such as a data
space, fostering the cabling of early warning and response policies in DTs of smart grids and CIs.
In this regard, the long term goal is to understand the self-healing capabilities of systems and



networks enabling the continuous and undisturbed delivery of essential services, leveraging
novel data-driven approaches to digital services that use real-time field data.
The case study presented is validated using a small scale portable testbed that includes a

single PV panel, as discussed in section 4.1. Although the current setup provided valuable
insights as discussed in this paper, it is limited and poses significant challenges with respect to
large scale scenarios. Future studies will also address the scalability of the proposed approach
to full-scale infrastructures, also involving key role players in the power distribution sector.
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