
Toward Dynamic Epistemic Verification of
Zero-Knowledge Protocols⋆

Gabriele Costa†, Cosimo Perini Brogi∗,†

IMT School for Advanced Studies Lucca, Italy

Abstract
We outline a novel approach for formally verifying zero-knowledge protocols building on Dynamic
Epistemic Logic (DEL) as an abstract semantics for a low-level protocol specification language called
SPEC. One of the main benefits is that our methodology abstracts the logical structure of the interactions
from the mathematical subtleties related to cryptographic primitives. Furthermore, we leverage the DEL
action structures to verify the knowledge dynamics generated by the protocol runs. We illustrate our
methodology by applying it to a new protocol called BKP, and we prove that it meets the participants’
goals.
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1. Introduction

Zero Knowledge Proofs (ZKP) play a key role in security-critical applications, such as blockchain
technology [1] and e-voting platforms. Their goal is to protect privacy and improve security in
digital interactions, by allowing one party to prove the authenticity or possession of information
without revealing it. They are often crucial for preserving data confidentiality and building
trust between interacting parties.

The formal verification of the epistemic properties of ZKP is thus essential and challenging
at the same time: the definition of a general framework for their design and verification is still
an open problem. Very often, only a combination of methods provides robust mathematical
proofs that security desiderata are met by specific ZKP.1

In this paper, we suggest, by a working example, how epistemic logics can help in formally
verifying ZKP of a security protocol, challenging some known limitations (according to [6]) of
those systems for characterising knowledge in a cryptographic setting.
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We present an original protocol specification language (SPEC) designed to offer a lucid
and exact framework for delineating protocol actions. We then use the semantics of dynamic
epistemic logic (DEL), based on action models [7], to interpret statements in SPEC. Next, we
show how this DEL-based abstract semantics can correctly model the information flow and
knowledge evolution of honest interactive agents in a single run of an original protocol (BKP)
we implemented via SPEC statements.

More precisely, we prove that by applying to the epistemic model for the initial configuration
of BKP the actionmodel interpretations of (respectively) the honest prover and the honest verifier
SPEC-formalisations, we obtain new epistemic models that validate, for each participant, the
protocol security desiderata (namely, zero-knowledge, proof-of-knowledge, and no-repudiation,
for the honest prover; proof-of-knowledge for the honest verifier) rendered as formulas in the
language of epistemic logic.

The results on BKP show that our approach of modelling a low-level specification language,
as our SPEC, via a semantics based on mathematical structures for dynamic epistemic reasoning
allows us to faithfully represent the evolution of the protocol from the perspectives of both
the participants (prover and verifier), and asses the main security features expected from the
protocol by each of the interacting agents.
The paper is structured as follows: in Section 2 we present our broken key protocol (BKP)

as a working example of zero-knowledge protocol; in Section 3 we introduce the syntax and
operational semantics for the Simple Protocol Epistemic Calculus (SPEC), our protocol specifi-
cation language; Section 4 recalls the basics of dynamic epistemic logic (DEL) which we apply
to define an abstract interpretation for statements in SPEC (Definition 6); in Section 5 we show
how to model the BKP evolution using that DEL-based abstract semantics and prove that, after a
single run of the protocol, the prover’s and verifier’s goals are satisfied; in Section 6 we discuss
related work.

2. Broken Key Protocol

In this section, we introduce the broken key protocol (BKP) that will also serve as a working
example along the rest of the paper. The execution of a single session of BKP is depicted in
Figure 1.

Prover Verifier

∗
enc(𝑘1, 𝑚) enc(𝑘2, 𝑚) h(𝑚)

𝑚

𝑚 := fresh()
check(enc(𝑘1, 𝑚), enc(𝑘2, 𝑚))

Figure 1: Message sequence chart for BKP.

The protocol involves a verifier 𝑉, who owns two secret encryption keys 𝑘1 and 𝑘2, a prover
𝑃, who wants to inform 𝑉 that one between her keys is compromised without revealing which
one. To achieve their goals, 𝑉 and 𝑃 run the following protocol steps:
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1. 𝑃 initiates the session by pinging 𝑉 (with a constant message ∗).
2. 𝑉 generates a fresh, random message 𝑚, encrypts it with both 𝑘1 and 𝑘2 (enc(𝑘1, 𝑚) and

enc(𝑘2, 𝑚), respectively), and computes the hash of 𝑚 (ℎ(𝑚)). Then, she sends the three
values enc(𝑘1, 𝑚), enc(𝑘2, 𝑚) and ℎ(𝑚) to 𝑃.

3. 𝑃 controls the received values by checking that:
a. enc(𝑘1, 𝑚) and enc(𝑘2, 𝑚) are ciphertexts for the same message (e.g., through a secure

multiparty computation equality test [8]), and;

b. enc(𝑘1, 𝑚) ≠ enc(𝑘2, 𝑚), i.e., two different keys have been used for encrypting 𝑚.
If this is the case, 𝑃 continues by decrypting one of the two ciphertexts (depending on
which between 𝑘1 and 𝑘2 is compromised) and sends 𝑚 back to 𝑉.

3. Protocol language

We present the syntax and operational semantics of our protocol specification language, named
Simple Protocol Epistemic Calculus (SPEC).
We start by providing the syntax of protocol statements inspired by the Simple Protocol

Specification language (SPS) of [9].

Definition 1. A protocol statement 𝑆 is a term generated through the following grammar.

𝑆 ::= 𝑥 ∶= 𝑒 ∣⇾𝐴∶ 𝑒 ∣⇽𝐵∶ 𝑥 ∣ [𝑔]𝑆 ∣ 𝑆; 𝑆′

Briefly, a statement can be an assignment (𝑥 ∶= 𝑒), a sending (⇾𝐴∶ 𝑒), a reception (⇽𝐵∶ 𝑥), a
conditional ([𝑔]𝑆) or a sequence (𝑆; 𝑆′). We use 𝑥, 𝑦 , ⋯ to denote variables. Expressions 𝑒, 𝑒′, ⋯
behave as usual and also include uninterpreted function symbols, e.g., enc(…), and constants,
e.g., ∗ and ■. The same holds for boolean guards 𝑔, 𝑔′ in conditional statements. 𝐴, 𝐵 are agent
labels used in the communication mechanism detailed in Section 3.1 and Appendix B. Finally, we
feel free to use parentheses for grouping terms and we introduce the following abbreviations.

skip ≜ _ ∶= ∗2 fail ≜ [𝑥 ≠ 𝑥]skip3 ⇽𝐵∶ 𝑒 ≜ ⇽𝐵∶ 𝑥; [𝑥 ≠ 𝑒]fail

⇾𝐴∶ 𝑒1, … , 𝑒𝑛 ≜ ⇾𝐴∶ 𝑒1; …;⇾𝐴∶ 𝑒𝑛 ⇽𝐵∶ 𝑥1, … , 𝑥𝑛 ≜ ⇽𝐵∶ 𝑥1; …;⇽𝐵∶ 𝑥𝑛
Example 1. Consider the BKP protocol described in Section 2. The following statements implement
the honest prover 𝑆𝑃 and verifier 𝑆𝑉.

𝑆𝑃 ≜ ⇾𝑉∶ ∗;⇽𝑉∶ 𝑥, 𝑦 , 𝑧; [comp(𝑥, 𝑦)][𝑧 = h(trydec(𝑘, 𝑥, 𝑦))]⇾𝑉∶ trydec(𝑘, 𝑥, 𝑦)

𝑆𝑉 ≜ ⇽𝑃∶ ∗; 𝑚 ∶= fresh();⇾𝑃∶ enc(𝑘1, 𝑚), enc(𝑘2, 𝑚), h(𝑚);⇽𝑃∶ 𝑥; [𝑥 = 𝑚]skip
The two statements rely on a few cryptographic functions: h, enc and fresh are quite traditional,

and they represent hashing, encryption and generation of a fresh value, respectively; comp is used
by the prover to check whether 𝑥 and 𝑦 encrypt the same message with different keys. trydec
attempts to decrypt both 𝑥 and 𝑦 using key 𝑘 and returns the cleartext if at least one of the two
operations is possible.
2Where _ is a reserved variable name that cannot appear in any other statement.
3For some variable 𝑥.
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In the rest of this paper, with no loss of generality, we also assume protocol statements to be
well typed. Correct typing is guaranteed statically and dynamically through a utility function
Type(𝑒) that assigns the proper type to any expression 𝑒. Types can be either base or function.
For instance, we assume basic types to include Key and Msg (for keys and simple messages,
respectively), while function types include Hash(Msg) and Enc(Key,Msg). Moreover, we assume
that value binding, which occurs in both assignment and receipt statements, always ensures
type correctness, e.g., in 𝑥 ∶= 𝑒 we have Type(𝑥) = Type(𝑒).

3.1. Operational semantics

In this section, we define the operational semantics of SPEC.We first introduce some preliminary
definitions.

Definition 2. An agent state 𝜎 is a finite, partial mapping from variable names to values. We
use 𝜀 to denote the empty state and 𝜎[𝑣/𝑥] for the state 𝜎 where 𝑥 is (re-)assigned to value 𝑣.
Consequently, the resolution of a variable 𝑥 in a state 𝜎 is defined as

𝜎(𝑥) = {
∅ if 𝜎 is 𝜀
𝑣 if 𝜎 is 𝜎 ′[𝑣/𝑥]
𝜎 ′(𝑥) if 𝜎 is 𝜎 ′[𝑣/𝑦]

where ∅ stands for the undefined value.

We call the pair ⟨𝜎 , 𝑆⟩ an agent configuration.

For explaining the operational semantics rules, we assume that a support function for evalu-
ating expressions and guards (see Definition 1) is defined. We use J𝑒K𝜎 = 𝑣 to denote that, under
state 𝜎, expression 𝑒 evaluates to value 𝑣. Similarly, J𝑔K𝜎 = 1/0 indicates whether, under state 𝜎,
the guard 𝑔 is satisfied (1) or not (0).
The structural operational semantics of an agent configuration ⟨𝜎 , 𝑆⟩ is then defined by the

rules of Figure 2.

⟨𝜎 , 𝑆⟩ ⟶ ⟨𝜎 ′, 𝑆″⟩
(Seq 1)

⟨𝜎 , 𝑆; 𝑆′⟩ ⟶ ⟨𝜎 ′, 𝑆″; 𝑆′⟩
⟨𝜎 , 𝑆⟩ ⟶ ⟨𝜎 ′, ⋅⟩

(Seq 2)
⟨𝜎 , 𝑆; 𝑆′⟩ ⟶ ⟨𝜎 ′, 𝑆′⟩

J𝑔K𝜎 = 1
(Cond 1)

⟨𝜎 , [𝑔]𝑆⟩ ⟶ ⟨𝜎, 𝑆⟩
J𝑔K𝜎 = 0

(Cond 2)
⟨𝜎 , [𝑔]𝑆⟩ ⟶A

J𝑒K𝜎 = 𝑣
(Asgn)

⟨𝜎 , 𝑥 ∶= 𝑒⟩ ⟶ ⟨𝜎[𝑣/𝑥], ⋅⟩

J𝑒K𝜎 = 𝑣
(Send)

⟨𝜎 ,⇾𝐴∶ 𝑒⟩ ⟶ ⟨𝜎, ⋅⟩ ↑𝐴,𝑣

⟨𝜎 , 𝑆⟩ ⟶ ⟨𝜎 ′, 𝑆″⟩ ↑𝐴,𝑣 (Send-P)
⟨𝜎 , 𝑆; 𝑆′⟩ ⟶ ⟨𝜎 ′, 𝑆″; 𝑆′⟩ ↑𝐴,𝑣

(Recv)
⟨𝜎 ,⇽𝐵∶ 𝑥⟩ ⟶ ⟨𝜎, ⋅⟩ ↓𝐵,𝑥

⟨𝜎 , 𝑆⟩ ⟶ ⟨𝜎 ′, 𝑆″⟩ ↓𝐵,𝑥 (Recv-P)
⟨𝜎 , 𝑆; 𝑆′⟩ ⟶ ⟨𝜎 ′, 𝑆″; 𝑆′⟩ ↓𝐵,𝑥

Figure 2: Operational semantics of protocol agents.

Briefly, sequences are evaluated by reducing the first statement (Seq 1) until, eventually, it
gets to a terminal configuration (denoted by ⋅), and then the second statement is executed (Seq
2). Conditional statements behave as the guarded statement 𝑆 when the guard is satisfied (Cond
1) or, otherwise, they lead to a faulty configurationA (Cond 2). An assignment updates the
current state 𝜎 by binding the variable 𝑥 to the value 𝑣 obtained from the evaluation of 𝑒 (Asgn).
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Both sending to 𝐴 (Send) and receiving from 𝐵 (Recv) lead to special, blocking configurations
labelled with ↑𝐴,𝑣 and ↓𝐵,𝑥, respectively. Moreover, according to rules (Send-P) and (Recv-P),
blocking configurations propagate through the sequences of statements.
Protocol agents compose to form a choreography, i.e., the actual execution of a protocol

where agents communicate over a network. We provide an SOS for protocol choreographies in
Appendix B.

4. Abstract semantics

In this section, we address the task of formalizing through dynamic epistemic logic the epistemic
properties of SPEC protocols.

Dynamic Epistemic Logic (DEL) is a branch of modal logic that deals with knowledge change
over time. Following [7], here we recall the syntax and semantics of DEL. The following
definition describes information flow w.r.t. a dynamic scenario.

Definition 3 (Action model). Let Atm be a set of propositional atoms. Let ℒ denote the set of
formulas built on top of Atm w.r.t. a given grammar. Let Ag be a finite set of agents. An action
model 𝔄 is a quadruple ⟨𝒜 , ≈, pre, post⟩, where

• 𝒜 is a finite set of action labels {𝛼1, ⋯ , 𝛼𝑛};4

• ≈ is a function associating to each agent 𝑖 ∈ Ag an accessibility relation ≈𝑖⊆ 𝒜 × 𝒜 modelling
indistinguishability of two actions for the agent 𝑖;

• the precondition function pre ∶ 𝒜 ⟶ ℒ assigns to each action 𝛼 a formula 𝜑 ∈ ℒ such that 𝜑
is true in a state iff 𝛼 can be executed on that state;

• the postcondition function post ∶ 𝒜 ⟶ Subℒ assigns to each action 𝛼 ∈ 𝒜 a substitution from
Atm to formulas in the language ℒ, i.e. a function behaving as the identity map except for a
finite number of atoms; we write 𝑎 ↦ 𝜑 for the substitution that maps the atom 𝑎 to 𝜑, leaving
all the other propositional atoms unchanged; the identity substitution that leaves all the atoms
unchanged is denoted by idsub.

Any action model operates on a relational structure that models a static epistemic situation;
by performing an action, the structure of the original model changes, and consequently, the truth
values of epistemic assertions do. Moreover, the postcondition function implements a notion
of factual change, the fact that performing an action changes the truth value of propositional
atoms (as well as epistemic statements) by modifying the basic facts of the world.

For static epistemic logic (EL), we need to extend a classical propositional language with an
indexed modal operator as in the following

𝜑 ∈ ℒEL ::= ⊤ ∣ 𝑎 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜓 ∣ 𝐾𝑖𝜑

where 𝑎 belongs to a given set of propositional atoms and 𝑖 belongs to a given finite set of agents.
The epistemic formula 𝐾𝑖𝜑 formalizes the fact that agent 𝑖 knows that 𝜑 holds.5

4From now on, we use (indexed) initial Greek letters 𝛼, 𝛽, 𝛾 , 𝛿 to denote action labels, while terminal Greek letters
𝜑, 𝜓 , 𝜃, ⋯ denote generic formulas of a formal language for (dynamic) epistemic logic.

5Classical connectives are defined as usual in terms of ¬ and ∧ (see e.g. [10]).

5



Gabriele Costa et al. CEUR Workshop Proceedings 1–16

The relational semantics for ℒEL is standard, and we report its definition below.

Definition 4. An epistemic model ℳ is a triple ⟨𝑊 , {𝑅𝑙}, ev⟩ made of a non-empty set 𝑊 “of
possible worlds”, a set of binary “accessibility” relations 𝑅𝑙 ⊆ 𝑊 × 𝑊 indexed over the given finite
set of agents Ag,6 an evaluation function ev ∶ 𝑊 × Atm ⟶ {0, 1} associating to each 𝑥 ∈ 𝑊 and
each 𝑎 ∈ Atm a truth-value ev(𝑥, 𝑎) ∈ {0, 1}.
The forcing relation ⊩ holding between a modelℳ ≜ ⟨𝑊 , {𝑅𝑖}, 𝑣⟩, a world 𝑥 ∈ 𝑊 and a formula

𝜑 ofℒEL is inductively defined on the structure of 𝜑 as follows.
𝑥 ⊩ℳ 𝑎 iff ev(𝑥, 𝑎) = 1;
𝑥 ⊩ℳ ⊤ for any 𝑥,ℳ;
𝑥 ⊩ℳ 𝜑 ∧ 𝜓 iff 𝑥 ⊩ℳ 𝜑 and 𝑥 ⊩ℳ 𝜓;
𝑥 ⊩ℳ 𝐾𝑖𝜑 iff for all 𝑦 ∈ 𝑊, if 𝑥𝑅𝑖𝑦, then 𝑦 ⊩ℳ 𝜑.

In words, when 𝑥 ⊩ℳ 𝜑, we say that 𝜑 is forced by 𝑥 in ℳ. When every world in ℳ forces a
formula 𝜑, we writeℳ ⊨ 𝜑.

For dynamic epistemic settings, the syntax of ℒEL needs to be extended to ℒDEL by a
dynamic modal operator [𝔄, 𝛼]𝜑, where 𝔄 is an action model, and 𝛼 is an action in 𝔄: the
formula formalises the fact that, after the action 𝛼 in 𝔄 is performed, 𝜑 (belonging to the
extended language ℒDEL) holds.

To give a precise semantics to action performing, we need to formalize the update of a static
relational model via an action model. The resulting structure is called model update.

Definition 5 (Model update). Letℳ ≜ ⟨𝑊 , {𝑅𝑖}, ev⟩ be an epistemicmodel and𝔄 ≜ ⟨𝒜, ≈, pre, post⟩
be an action model. The model for ℳ updated by 𝔄 is denoted by 𝔄 ∘ℳ and consists of the triple
⟨𝑊 ′, 𝑅′, ev′⟩, where

• 𝑊 ′ ≜ {⟨𝑥, 𝛼⟩ ∶ 𝑥 ⊩ℳ pre(𝛼)};
• 𝑅′ ≜ 𝜆𝑙 ∈ Ag.{⟨⟨𝑥1, 𝛼1⟩, ⟨𝑥2, 𝛼2⟩⟩ ∶ 𝑥𝑅𝑙𝑦 & 𝛼1 ≈𝑙 𝛼2}
• ev′(⟨𝑥, 𝛼⟩, 𝑎) = 1 iff 𝑥 ⊩ℳ post(𝛼)(𝑎).

This allows us to define the meaning of all DEL formulas: it suffices to extend Definition 4 by
the following forcing clause:

𝑥 ⊩ℳ [𝔄, 𝛼]𝜑 iff 𝑥 ⊩ℳ pre(𝛼) implies that ⟨𝑥, 𝛼⟩ ⊩𝔄∘ℳ 𝜑,

where 𝔄 ∘ℳ is the update model ofℳ with 𝔄 of Definition 5.

Example 2. Consider again the BKP protocol. Below, we give the security goals of the protocol in
ℒEL.

⋅ Zero knowledge: 𝜑ZK ≜ ¬𝐾𝑉(has𝑃(𝑘1)) ∧ ¬𝐾𝑉(has𝑃(𝑘2))

⋅ Proof of knowledge: 𝜑PoK ≜ 𝐾𝑉(has𝑃(𝑘1) ∨ has𝑃(𝑘2))

⋅ No repudiation: 𝜑NR ≜ 𝐾𝑉(𝐾𝑃(𝐾𝑉(has𝑃(𝑘1) ∨ has𝑃(𝑘2)))))

In words, 𝜑ZK states that 𝑉 should not know whether 𝑃 owns 𝑘1 or 𝑘2, 𝜑PoK states that 𝑉 must
know that 𝑃 owns one between 𝑘1 and 𝑘2, and 𝜑NR states that 𝑉 and 𝑃 reciprocally acknowledge
that 𝑃 owns one of the two keys.
6We write 𝑥𝑅𝑙𝑦 to mean that 𝑦 is accessible to 𝑥 for 𝑙. Further general conventions are collected in Appendix A.
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4.1. Modeling BKP in DEL

This section shows how to interpret SPEC-statements as action models. The actions are applied
to epistemic models that formalize the system made of agent states 𝜎 and the knowledge of
each agent, modeled through an accessibility relation.
Intuitively, both an agent state 𝜎𝑖 and an accessibility relation 𝑅𝑖 represent information

accessible to agent 𝑖. Nevertheless, the information encoded by 𝜎𝑖 is local to agent 𝑖, as it
contains 𝑖’s computational data, and information about any other agent 𝑗 is not part of 𝜎𝑖.
Instead, the accessibility relation 𝑅𝑖 models a more general (though potentially uncertain)
information possessed by 𝑖, which concerns the status of the whole system of interactive agents.
To describe this proper form of knowledge (and uncertainty), agent states do not suffice since,
by definition, the information encoded in each state is private. Thus, we start by fixing the set
Atm of propositional atoms for BKP, defined as

𝑎 ∈ Atm ::= 𝑒1 = 𝑒2 ∣ has𝑖(𝑒) ∣ const𝑖(𝑒)

where 𝑖 ∈ Ag = {𝑃, 𝑉 }, 𝑒1, 𝑒2 are expressions, and = denotes identity of values. Formulas for BKP
are built according to the grammar forℒDEL on top of this set of atoms.
The atom has𝑖(𝑒) expresses the fact that 𝑒 is stored in the state of agent 𝑖. Instead, const𝑖(𝑒)

denotes that 𝑖 can build expression 𝑒. Trivially, has𝑖(𝑒) subsumes const𝑖(𝑒); that is encoded by

the rule has𝑖(𝑒) (has)
const𝑖(𝑒)

stating that any local information of 𝑖 is per se constructible by 𝑖.

Then, for every uninterpreted function f(…) appearing in SPEC expressions, we require
proper inference rules to define their constructibility. For instance, the rules for the functions
used in our working example are the following.

(∗)
const𝑖(∗)

(fresh)
const𝑖(fresh())

const𝑖(𝑚) (h)
const𝑖(h(𝑚))

has𝑖(𝑚) has𝑖(𝑘) (enc)
const𝑖(enc(𝑘, 𝑚))

has𝑖(enc(𝑘, 𝑚)) has𝑖(𝑘) (trydec)1const𝑖(trydec(𝑘, enc(𝑘, 𝑚), 𝑦))
has𝑖(enc(𝑘, 𝑚)) has𝑖(𝑘) (trydec)2const𝑖(trydec(𝑘, 𝑥, enc(𝑘, 𝑚)))

They state that agent 𝑖 can construct the constant ∗ and fresh() values. Moreover, if 𝑖 has a
message 𝑚, it can compute its hash h(𝑚) and encrypt it with a key 𝑘 it also has. Finally, 𝑖 can
decrypt a ciphertext enc(𝑘, 𝑚) when she has the proper key.7

For what concerns uninterpreted functions appearing in guards, we assume that an inter-
pretation Lf(…)M𝑖 of f(…) is defined in terms of a finite set of literals, i.e., positive or negative
atoms, of our language. Intuitively, Lf(…)M𝑖 = {ℓ1, … , ℓ𝑛} represents the fact that the litearals
ℓ1, … , ℓ𝑛 must be satisfied for f(…) to be true. For instance, we have that

Lcomp(enc(𝑘1, 𝑚1), enc(𝑘2, 𝑚2))M𝑖 ≜ {const𝑖(enc(𝑘1, 𝑚1)), const𝑖(enc(𝑘2, 𝑚2)), 𝑘1 ≠ 𝑘2, 𝑚1 = 𝑚2}.

Next, we need to interpret our protocol statements in terms of action models.

Definition 6. We define an interpreting function ⟨⟨⋅⟩⟩ from protocol statements 𝑆 (and agent 𝑖) to
action models ⟨⟨𝑆⟩⟩𝑖 by induction on the structure of 𝑆 as follows.8

7It is worth noticing that these rules are not the only candidates. For instance, one may want to model encryption
recursively, e.g., to deal with terms such as enc(𝑘, enc(𝑘′, 𝑚)). However, nested encryption has no role in the BKP
protocol, and thus we omit it.

8In these and the following graphics, we adopt some standard visual conventions, detailed in Appendix A.
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(𝑥 ∶= 𝑒). The action model ⟨⟨𝑥 ∶= 𝑒⟩⟩𝑖 for the assignment 𝑥 ∶= 𝑒 by agent 𝑖 is given by
⟨𝒜 , ≈, pre, post⟩ where
• 𝒜 ≜ {𝛼1, 𝛼2}

• ≈≜ 𝜆𝑙 ∈ Ag. { {⟨𝛼1, 𝛼1⟩, ⟨𝛼2, 𝛼2⟩} when 𝑙 = 𝑖
{⟨𝛼1, 𝛼2⟩, ⟨𝛼2, 𝛼2⟩} otherwise

• pre(𝛼1) ≜ const𝑖(𝑒) and pre(𝛼2) ≜ ⊤
• post(𝛼1) ≜ has𝑖(𝑒) ↦ ⊤ and post(𝛼2) ≜ idsub.

𝛼1 𝛼2

i

Ag − 𝑖

Ag

In words, assigning a value to a variable is a private action for the agent performing it: all the
other agents involved in the protocol are unaware of the event.

(⇾𝑖∶ 𝑒). The action model ⟨⟨⇾𝑖∶ 𝑒⟩⟩𝑗 for agent 𝑗 sending 𝑒 to agent 𝑖 is given by ⟨𝒜 , ≈, pre, post⟩
where
• 𝒜 ≜ {𝛼}
• ≈≜ 𝜆𝑙 ∈ Ag.{⟨𝛼, 𝛼⟩}
• pre(𝛼) ≜ const𝑗(𝑒)
• post(𝛼) ≜ has𝑖(𝑒) ↦ ⊤ 𝛼

Ag

In words, sending an expression is a public action that can be performed whenever the sender
is able to construct the value of that expression; after the event, that value is stored in the local
information of the receiver.

(⇽𝑖∶ 𝑥). The action model ⟨⟨⇽𝑖∶ 𝑥⟩⟩𝑗 for agent 𝑗 receiving values on variable 𝑥 from agent 𝑖 is
given by ⟨𝒜 , ≈, pre, post⟩ where
• 𝒜 ≜ {𝛼ℎ ∶ const𝑖(𝑒ℎ) & Type(𝑒ℎ) = Type(𝑥)}

• ≈≜ 𝜆𝑙 ∈ Ag. { {⟨𝛼ℎ, 𝛼𝑚⟩ ∶ 𝛼ℎ ∈ 𝒜&𝛼𝑚 ∈ 𝒜} when 𝑙 = 𝑗
{⟨𝛼ℎ, 𝛼ℎ⟩ ∶ 𝛼ℎ ∈ 𝒜} otherwise

• pre ≜ 𝜆𝛼ℎ ∈ 𝒜.const𝑖(𝑒ℎ)

• post ≜ 𝜆𝛼ℎ ∈ 𝒜.has𝑗(𝑒ℎ) ↦ ⊤ 𝛼1 𝛼2 ⋯ 𝛼𝑛

Ag Ag
Ag

𝑗 𝑗 𝑗

𝑗

𝑗 𝑗

𝑗

Thus, we can informally interpret the receiving statement from the agent 𝑖 as an equivalence
class of sending statements from the same agent.

([𝑔]𝑆). The action model ⟨⟨[𝑔]𝑆⟩⟩𝑖, for a guarded statement with ⟨⟨𝑆⟩⟩𝑖 = ⟨𝒜 𝑆, ≈𝑆, pre𝑆, post𝑆⟩, is
given by ⟨𝒜 , ≈, pre, post⟩ where
• 𝒜 ≜ 𝒜 𝑆 ∪ {𝛼}, where 𝛼 does not occur in 𝒜 𝑆

• ≈ ≜ 𝜆𝑖 ∈ Ag. ≈𝑆
𝑖 ∪ {⟨𝛼, 𝛼⟩}

• pre ≜ 𝜆𝛽 ∈ 𝒜. { ⋀L𝑔M𝑖 ∧ pre𝑆(𝛽) when 𝛽 ≠ 𝛼
¬⋀L𝑔M𝑖 otherwise

• post ≜ 𝜆𝛽 ∈ 𝒜. {
post𝑆(𝛽) when 𝛽 ≠ 𝛼
A ↦ ⊤ otherwise

⟨⟨𝑆⟩⟩𝑖

𝛼

Ag

where the expressionA ↦ ⊤ denotes the substitution mapping, for each 𝑙 ∈ Ag, has𝑙(■) to ⊤.
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In words, we model the fact that in SPEC guards are external: in [𝑔]𝑆 whenever the guard 𝑔
evaluates to true by agent 𝑖, we proceed with the action formalized by 𝑆; when the same guard 𝑔
evaluates to false, we have a public announcement of protocol failure.

(𝑆; 𝑆′). The action model ⟨⟨𝑆; 𝑆′⟩⟩𝑖 is given by ⟨𝒜 , ≈, pre, post⟩, obtained by the composition of the
action model ⟨⟨𝑆⟩⟩𝑖 = ⟨𝒜𝒮, ≈𝑆, pre𝑆, post𝑆⟩ with the action model ⟨⟨𝑆′⟩⟩𝑖 = ⟨𝒜𝒮 ′

, ≈𝑆′ , pre𝑆
′
, post𝑆

′
⟩,

as detailed in e.g. [11, Def. 6.7]:
• 𝒜 ≜ 𝒜 𝑆 × 𝒜 𝑆′

• ≈≜ 𝜆𝑙 ∈ Ag.{⟨⟨𝛼, 𝛼′⟩, ⟨𝛽, 𝛽′⟩⟩ ∶ 𝛼 ≈𝑆
𝑙 𝛽& 𝛼′ ≈𝑆′

𝑙 𝛽′}
• pre ≜ 𝜆⟨𝛼, 𝛼′⟩ ∈ 𝒜 .pre𝑆(𝛼) ∧ [⟨⟨𝑆⟩⟩𝑖, 𝛼]pre𝑆

′
(𝛼′)

• post ≜ 𝜆⟨𝛼, 𝛼′⟩ ∈ 𝒜 .post𝑆(𝛼) ⋅ post𝑆
′
(𝛼′), where 𝑓 ⋅ 𝑔 is an abbreviation for 𝜆𝑥.𝑔(𝑓 (𝑥)).

Graphically, we have ⋯ 𝛽 𝛽′𝛼 𝛼′ ⋯

𝑙

𝑙

𝑙

Finally, we model the agent states by an epistemic structure. Assuming that the given protocol
involves 𝑛 agents, the whole system state corresponds to an epistemic model with possible
worlds as 𝑛-tuples of lists assigning values to variables (defined on the basis of the current 𝜎𝑖 for
each 𝑖 ∈ Ag). The epistemic uncertainty of an individual agent 𝑖 regarding the actual state of
the system is represented by an accessibility relation 𝑅𝑖 among such worlds. The evaluation
function ev for worlds and propositional atoms is given by the information thus encoded in
each 𝑛-tuple and according to the semantics of const𝑖(𝑒) defined in Section 4.1.
Graphically, to distinguish the local information of, say, agent 𝑖 from agent 𝑗, we use colors:

when agent 𝑖 assigns a value to a variable of hers, we write it inside the node’s area with a color
conventionally assigned to 𝑖; similarly for 𝑗. Epistemic possibility and uncertainty for agent 𝑖
are represented by (bi-)directed arrows, labeled by 𝑖.9 The figures in the next section will make
these graphical conventions more concrete.

5. Assessing knowledge in BKP

We can finally prove that each agent implementation complies with the respective goal. First,
we fix the epistemic scenario as described by the initial assumptions of the protocol: 𝑉 has two
keys (𝑘1 and 𝑘2), and 𝑃 has at most one10 of them. We call this model ℐBKP and we depict it in
Figure 3 (we assigned blue to 𝑃 and red to 𝑉).

Performing 𝑆𝑃. We compute the update of ℐBKP with ⟨⟨𝑆𝑃⟩⟩𝑖, where 𝑆𝑃 is the SPEC-statement
of Example 1 for the honest prover in BKP. 𝑆𝑃 starts by sending ∗: this does not change the
epistemic model, apart from adding ∗ to the local information of 𝑉, which we skip for brevity.
Then, 𝑃 receives 𝑥. Since the actual message sent by 𝑉 is unknown, 𝑃 must assume that any

constructible (and type-compatible) message might be received. This results in an unfolding of

9As for the ≈ symbol of Definition 6, we omit the 𝑅 symbol to enhance picture readability.
10We neglect the case when 𝑃 knows both the keys since it is irrelevant for our scenario.
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Figure 3: Initial epistemic configuration, modelled via ℐBKP. Initially, although 𝑉 has both 𝑘1 and 𝑘2,
three configurations are possible, i.e., 𝑃 has no key (left node), 𝑃 has 𝑘1 (middle node) or 𝑃 has 𝑘2 (right
node). In terms of knowledge, 𝑃 can distinguish between these three states (self-loops), but 𝑉 cannot.

the epistemic model where, in each world, 𝑃’s local information is extended with the possible
message from 𝑉: from 𝑃’s perspective, all the states obtained by extending the same initial
state with 𝑉’s message are epistemically indistinguishable. Next, 𝑃 receives another message on
variable 𝑦. This event is analogous to the previous one and leads to a similar effect: 𝑃 cannot
distinguish what message 𝑉 will send. The third receiving, stored in 𝑧, behaves in the same way.
Because of our typing discipline, the resulting model is then made of 3 × 4 × 4 × 2 = 96 worlds.
Each is distinct from all the others only because of the local information of 𝑃.11
The first guard [comp(𝑥, 𝑦)] allows us to select from the 96 nodes of the epistemic model

those containing the local information of 𝑃 triggering the guard. The subsequent guard
[𝑧 = h(trydec(𝑘, 𝑥, 𝑦))] further narrows down the possibilities. After calculating (based on
Definitions 6 and 5) the appropriate accessibility relations for 𝑃 and 𝑉, we obtain the final model
ℱ 𝑃
BKP, as depicted in Figure 4.

Figure 4: The model ℱ 𝑃
BKP generated from 𝑆𝑃.

Notice that 𝑉’s epistemic uncertainty is narrowed by eliminating the worlds where 𝑃’s key
variable is unassigned but unaltered for the remaining worlds: there are bi-directed 𝑉-arrows
connecting the worlds where 𝑘 has value 𝑘1 with worlds where 𝑘 has value 𝑘2. The bi-directed
𝑃-arrows connect worlds in which 𝑃 does not need to differentiate between scenarios where
𝑉 has swapped the order of sent ciphertexts. Likewise, these arrows eliminate distinctions
between worlds where cryptographic functions have been applied to one message (𝑚1) versus

11Those epistemic possibilities are summarized in the three-part table given in Appendix C and omitted here for
brevity.
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another (𝑚2). By an easy inspection of ℱ 𝑃
BKP, we see that each component of 𝑃’s goal (see

Example 2) is valid. In symbols, ℱ 𝑃
BKP ⊨ 𝜑ZK, ℱ 𝑃

BKP ⊨ 𝜑PoK, and ℱ 𝑃
BKP ⊨ 𝜑NR.

Performing 𝑆𝑉. We now compute the update of ℐBKP with ⟨⟨𝑆𝑉⟩⟩𝑖, where 𝑆𝑉 is the SPEC-
statement of Example 1 for the honest verifier in BKP. The first statement applied to ℐBKP
consists of receiving ∗ from 𝑃; as before, we skip this event, which only adds ∗ to 𝑉’s local
information. After generating a new message, 𝑉 assigns its value to a variable named 𝑚. Given
that value assignment is a private action, the resulting model is essentially a replica of ℐBKP.
The nodes are 𝑃-accessible from their counterparts in the model derived fromℐBKP by removing
𝑃-loops and incorporating the value of 𝑚 into 𝑉’s local information. After that, 𝑉 sequentially
sends three messages to 𝑃: enc(𝑘1, 𝑚), enc(𝑘2, 𝑚), and h(𝑚). These actions consist of three
public announcements. Since each of those values is constructible in any of its worlds, the
structure of the previous model is preserved, though the values enc(𝑘1, 𝑚), enc(𝑘2, 𝑚) and h(𝑚)
join 𝑃’s local information for any world.
At this point, 𝑉 receives a message from 𝑃, whose value is assigned to 𝑥. Since 𝑉 does not

know the actual value she will receive, she must consider the epistemic possibility where 𝑃
sends 𝑚 and the one where 𝑃 sends another value 𝑚2. This situation unfolds the previous model,
whose worlds differ for the local information available to 𝑉; still, 𝑃’s epistemic possibilities are
preserved.
Finally, 𝑉 checks whether the value stored in 𝑥 is equal to the value of 𝑚: if that is the case,

BKP terminates, leading to the final model ℱ 𝑉
BKF depicted in Figure 5.

Figure 5: The model ℱ 𝑉
BKP generated from 𝑆𝑉.

Again, one can check that ℱ 𝑉
BKF ⊨ 𝜑PoK, i.e., the honest verifier achieves a PoK.

6. Concluding remarks

We outlined the application of dynamic epistemic logic (DEL) to verify zero-knowledge proofs
(ZKP) formally. We consider it a first step towards a comprehensive verification framework of
ZKP. The approach’s potential is demonstrated through a practical example, illustrating how
DEL semantics can capture the perspectives of protocol participants on the protocol’s evolution.

Formal verification of security protocols is a vast research field, where several methodologies
co-exist. Model checking [12] is often adopted for spotting vulnerabilities (expressed in some
temporal logic such as LTL [13]) by visiting a finite state model representing all the possible runs
of a protocol [14].12 In those contexts, adversarial networks are represented via the Dolev-Yao

12Among several existing model checkers for protocol verification we mention ProVerif [15] and SATMC [16].
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(DY) attacker model [17]
A DY-based implementation of zero-knowledge in the Tamarin prover is introduced in [18],

where the author is able to formally prove some security properties of the Direct Anonymous
Attestation (DAA) protocol. She also discusses some difficulties (and their possible solutions) in
automating rigorous formal verification of ZKP in Tamarin [19].
The paper [20] extends the DY model to compare information leakage between protocol

implementations. Our method differs from that approach since we are focused on reasoning
about agents’ knowledge and security goals.
In [21], the authors present a symbolic semantics for a language including a ZKP operator

aimed at sharing a proof tree without revealing the prover’s identity. Their language is well
suited for scenarios where anonymous proofs are published among a set of participants but
does not include message-sending/receiving primitives. Therefore, they cannot model protocols
such as our BKP.
The seminal papers [22, 6] approached first ZKP via epistemic logic. They identify some

criticalities that emerge when modeling cryptographic primitives and suggest overcoming them
by combining epistemic and temporal operators.

Differently, [23, 24, 25] assessed the security of some cryptographic protocols using dynamic
epistemic logic. We borrowed some notations from those papers, but none of the previous
proposals consider ZKP, focusing only on security aspects of cryptographic operations.
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A. Notational and graphical conventions

In this appendix, we recap the principal conventions adopted in the paper to facilitate under-
standing and maintain consistency in our presentation.13

Mathematical notations. From the logical viewpoint, we will use different formal languages
that interact at various levels. To distinguish these abstraction layers, we adopt some general
conventions: operators of the epistemic language we use in our abstract semantics are denoted
by standard symbols in logical practice;14 operators of the higher-order/set-theoretic language
we use to define the relational semantics of the epistemic language are denoted by standard
set-theoretic symbols extended by logical symbols that are kept distinct from those used in the
epistemic language;15 operators of the meta-language, i.e. used to reason about the epistemic
system (language or semantics), are preferably written in plain English.16

Whenever we formally define the basic syntax of a language, we recur to (an easier-to-read
version of) the Backus-Naur form convention [26].

Moreover, variants of the identity symbol = are omnipresent in the following pages: plain =
between expressions of our protocol language denotes identity between values within the type
of both the expressions; we reserve the symbol ∶= for value assignment to a variable of the
protocol language; ≜ denotes definitional equality.

Functions are preferably defined by 𝜆-abstraction: e.g., 𝜆𝑥.𝑥+1 denotes the successor function.
Nevertheless, we occasionally recur to the standard notation to enhance readability. Whenever
needed, we also recur to standard conventions to denote the domain and target of a given
function: e.g., 𝑓 ∶ Atm ⟶ ℒ expresses the fact that the function 𝑓 maps elements of Atm
into elements of ℒ.17 Function definition by cases is expressed by the standard notation
distinguishing values for each case considered.

13Further conventions, abbreviations, and notation overload are promptly and appropriately signaled in the main
body of the paper as soon as they are introduced.

14E.g., conjunction is denoted by the symbol ‘∧’.
15E.g., the expression {𝛼 ∈ 𝒜 ×ℬ ∶ 𝐶1(𝛼) & 𝐶2(𝛼)} denotes the set of pairs 𝛼 of elements in 𝒜 andℬ satisfying a
given condition 𝐶1 and a given condition 𝐶2.

16However, we may write, e.g., 𝑙 ∈ Ag to express that the item with label 𝑙 denotes an agent of our protocol.
17Notice the difference between the long arrow symbol ⟶ used for functions, from the arrow symbol ⇾ we use for
sending statements in our protocol language.
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Graphical conventions. We use squares to denote actions in action models, reserving more
rounded nodes for the worlds of static epistemic models. Whenever 𝛼 ≈𝑙 𝛽 in the action model,
we draw an arrow with label 𝑙 from the square labeled by 𝛼 to the square labeled by 𝛽; whenever
𝛼 ≈𝑙 𝛽 and 𝛽 ≈𝑙 𝛼 we draw a bi-directed arrow between 𝛼 and 𝛽; an arrow labeled by Ag
denotes a collection of labeled arrow, namely one for each agent in our given set; when we
remove the 𝑖-labelled arrows from that collection, we obtain the collection represented by the
(Ag − 𝑖)-labeled arrow. Similar conventions are applied to arrows between worlds rendered in
Section 5.

B. Choreographies

A protocol choreography in SPEC is defined as ‖
𝑀
⟨𝜎𝑖, 𝑆𝑖⟩ where 𝑖 ∈ {1, … , 𝑛}. 𝑀 is a function

mapping each agent label appearing in each protocol agent to another agent in the choreography.
In symbols, 𝑀(𝑖, 𝐴) = 𝑗 denotes that agent 𝑖 will send to (and receive from) agent 𝑗 when using
label 𝐴.
For the sake of presentation, we use ⟨𝜎1, 𝑆1⟩𝐴‖𝐵⟨𝜎2, 𝑆2⟩ for ⟨𝜎1, 𝑆1⟩‖𝑀⟨𝜎2, 𝑆2⟩ where (𝑖) 𝐴 and

𝐵 are the only labels appearing in 𝑆2 and 𝑆1 (respectively), and (𝑖𝑖) 𝑀(1, 𝐵) = 2 and 𝑀(2, 𝐴) = 1.
We can now introduce the operational semantics of protocol choreographies, given in Figure 6.

Briefly, choreographies allow internal reduction of their protocol agents (Step) and synchronous

⟨𝜎𝑖, 𝑆𝑖⟩ ⟶ ⟨𝜎 ′
𝑖 , 𝑆′𝑖 ⟩ (Step)

⟨𝜎1, 𝑆1⟩‖𝑀… ‖𝑀⟨𝜎𝑖, 𝑆𝑖⟩‖𝑀… ‖𝑀⟨𝜎𝑛, 𝑆𝑛⟩ ⇝ ⟨𝜎1, 𝑆1⟩‖𝑀… ‖𝑀⟨𝜎 ′
𝑖 , 𝑆′𝑖 ⟩‖𝑀… ‖𝑀⟨𝜎𝑛, 𝑆𝑛⟩

𝑀(𝑖, 𝐴) = 𝑗 𝑀(𝑗, 𝐵) = 𝑖
(Sync)

… ‖𝑀⟨𝜎𝑖, 𝑆𝑖⟩ ↑𝐴,𝑣 ‖𝑀… ‖𝑀⟨𝜎𝑗, 𝑆𝑗⟩ ↓𝐵,𝑥 ‖𝑀… ⇝ … ‖𝑀⟨𝜎𝑖, 𝑆𝑖⟩‖𝑀… ‖𝑀⟨𝜎𝑗[𝑣/𝑥], 𝑆𝑗⟩‖𝑀…

Figure 6: Operational semantics of choreographies

communications between agents (Sync) when the agent labels mapping permits it.
We say that a choreography ‖

𝑀
⟨𝜎𝑖, 𝑆𝑖⟩ is successful when ∀𝑖.𝑆𝑖 = ⋅ and we call stuck a chore-

ography that (𝑖) is not successful and (𝑖𝑖) does not allow further reductions (denoted by ⇝̸).
Furthermore, we use⇝⋆ for the transitive closure of ⇝ and, given two choreographies 𝐶 and
𝐶′, we say that 𝐶 ⇝⋆ 𝐶′ is a run of 𝐶 if 𝐶′⇝̸.
Then, a successful run of 𝐶 is a run 𝐶 ⇝⋆ 𝐶′ such that 𝐶′ is successful. For instance, by

defining the choreography 𝐶 ≜ ⟨𝜀[k1/𝑘], 𝑆𝑃⟩𝑃‖𝑉⟨𝜀[k1/𝑘1][k2/𝑘2], 𝑆𝑉⟩, where k1 and k2 denote
actual cryptographic keys, we have

𝐶 ⇝⋆ ⟨𝜀[𝑘−1𝑥 /𝑘][enc(𝑘𝑥, 𝑚)/𝑥][enc(𝑘𝑦, 𝑚)/𝑦][h(𝑚)/𝑧][𝑚/𝑚′], ⋅⟩𝑃‖𝑉⟨𝜀[𝑘𝑥/𝑘1][𝑘𝑦/𝑘2][𝑚/𝑥], ⋅⟩.

C. Detailed example

Here, we provide full details on the intermediate model omitted in Section 5 when modeling 𝑆𝑃.
We render the model through the three-part table in Figure 7 (denoting that the variable 𝑘 is
either 𝑘1, 𝑘2, or unassigned ∅) where:
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• rows represent the possible values of 𝑥 (namely: enc(𝑘1, 𝑚1), enc(𝑘1, 𝑚2), enc(𝑘2, 𝑚1),
enc(𝑘2, 𝑚2));

• columns represent the possible values of 𝑦 ((namely: enc(𝑘1, 𝑚1), enc(𝑘1, 𝑚2), enc(𝑘2, 𝑚1),
enc(𝑘2, 𝑚2)));

• each cell is diagonally split to represent the two possible values of 𝑧 (namely: h(𝑚1),
h(𝑚2)).

∅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

enc(𝑘1, 𝑚1) enc(𝑘1, 𝑚2) enc(𝑘2, 𝑚1) enc(𝑘2, 𝑚2)

enc(𝑘1, 𝑚1)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘1, 𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘2, 𝑚1)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘2, 𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

𝑘1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

enc(𝑘1, 𝑚1) enc(𝑘1, 𝑚2) enc(𝑘2, 𝑚1) enc(𝑘2, 𝑚2)

enc(𝑘1, 𝑚1)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘1, 𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘2, 𝑚1)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘2, 𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

𝑘2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

enc(𝑘1, 𝑚1) enc(𝑘1, 𝑚2) enc(𝑘2, 𝑚1) enc(𝑘2, 𝑚2)

enc(𝑘1, 𝑚1)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘1, 𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘2, 𝑚1)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

enc(𝑘2, 𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)
aaaaaa
h(𝑚1)

h(𝑚2)

Figure 7: Modelling the epistemic evolution of ℐBKP when 𝑃 sequentially receives from 𝑉 messages in 𝑥,
𝑦, and 𝑧.

Then, the first guard [comp(𝑥, 𝑦)] allows us to select from the 96 nodes of the epistemic model
those containing the local information of 𝑃 triggering the guard, represented by the blue
cells in the table.18 The subsequent guard [𝑧 = h(trydec(𝑘, 𝑥, 𝑦))] further narrows down the
possibilities, enabling us to identify, among the blue cells, the sub-cells highlighted with red
text that satisfy the guard and allow 𝑃 to send trydec(𝑘, 𝑥, 𝑦) to 𝑉.

18Recall from Section 4.1 that comp(⋅) is true when keys are different and the message is the same.
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