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Abstract
Over recent years there has been a growing focus on cyber-enabled crimes within criminal investigations.
The rising trend of Ransomware-as-a-Service (RaaS) highlights a pattern where criminal groups explicitly
demand cryptocurrency payments from their victims and then distribute these funds to their affiliates.
This strategy leverages key-blockchain characteristics such as anonymity, decentralization, transparency,
and immutability of transactions to evade regulatory oversight and hinder digital investigation efforts,
while simultaneously building trust among affiliates. This paper proposes an approach to query the
blockchain to support criminal investigations using temporal logic. It features an oracle that allows
investigators to perform detailed queries and analyze specific properties of transactions or addresses
within the blockchain. The implementation is achieved via a Python engine, which includes a query
language, an interpreter, and a client interface. The practical application and effectiveness of our approach
are illustrated through a real-world case study, highlighting its utility.
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1. Introduction

The era of cryptocurrencies started in 2008 when Satoshi Nakamoto first launched the Bitcoin.1

Since then, the attention toward cryptocurrency and distributed ledger technologies has grown
exponentially. One of the main reasons is their decentralized structure which leads to several
benefits that include economic efficiency, transparency, anonymity, absence of a central power,
and financial inclusion [1]. The flip side is that these features are also extremely appealing
for criminal businesses as they facilitate operations like money laundering, tax evasion, illicit
payments, regulation avoidance, and various types of frauds [2]. For instance, cryptocurrencies
are the default currency for ransomware attacks. These phenomena have prompted increased
attention from law enforcement agencies and governments. As a consequence, they started
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international initiatives for enhancing the control and regulations over the blockchain and, thus,
for countering the blockchain-related cybercrimes [3].

Furthermore, cryptocurrencies not only pose challenges for law enforcement but also offer
unprecedented opportunities for investigative efforts. The decentralized and transparent nature
of blockchain technology enables forensic analysts to trace the flow of funds and unravel complex
financial networks employed by cybercriminals [4]. Investigators can follow the money trail,
identify key nodes, and uncover patterns indicative of criminal activity. For instance, we
might consider the case of Ransomware-as-a-Service (RaaS) [5]. As of 2023, more than 72% of
businesses on a global scale experienced the deleterious effects of ransomware attacks2. In this
context, analyzing transactional data on the blockchain can reveal insights into the distribution
of ransom payments, the modus operandi of ransomware operators, and potential strategies
employed to evade detection [2, 6].

However, this requires advanced network analysis techniques. Therefore, it becomes essential
to develop novel techniques and tools to analyze underlying properties and identify recurring
patterns within the distributed ledger. In this paper, we propose an approach to query the
blockchain in support of criminal investigations leveraging temporal logic.

1.1. Structure Summary

The rest of the paper is organized as follows. In Section 2, we provide the information needed to
foster the need for this research effort from a criminological point of view. Section 3 discusses
the related works, with a particular focus on the hot topic related to tracking movements
of Bitcoins resulting from illicit activities. Section 4 delves into the technical aspects of our
approach, elucidating its methodology, implementation, data sources, and analytical capabilities.
Section 5 applies the approach to a real-world case study. Finally, Section 6 concludes the paper,
drawing the main remarks and future directions.

2. Background and Motivation

Criminal investigations in the context of blockchain technology, particularly concerning cryp-
tocurrencies like Bitcoin, pose unique challenges for law enforcement agencies worldwide.
Taking as example RaaS, investigations are hindered by the difficulty in identifying perpetra-
tors: indeed, despite the considerable growth of these crimes, the cases in which investigative
activities have been successfully concluded are limited.

The main investigative approach to date consists in tracking the path of payments made
by victims through cryptocurrencies [7]: identifying the origin of such transactions, however,
is often infeasible because of the anonymity granted to their authors by the blockchain. In
this regard, Yousaf [7] advances the idea of exploiting the organizational characteristics of
RaaS groups to trace their transactions. In fact, surveys and recent criminological studies [8]
have shown that these organizations have two types of members: “core” members run the
organization, while “affiliate” members support it in criminal activities. The “affiliate” members

2Annual share of organizations affected by ransomware attacks worldwide from 2018 to 2023, Statista, 2023,
https://www.statista.com/statistics/204457/businesses-ransomware-attack-rate/
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of the organization are scattered in different countries and usually do not know each other or
the “core” members.

Analyses of the few arrests made by the authorities, such as the captures of Mikhail Vasiliev3

in 2022 and Ruslan Astamirov in 2023 4 belonging to the Lockbit group, confirm these orga-
nizational characteristics. This evidence suggests that RaaS groups probably need to divide
ransom payments to “affiliate” members in a systematic manner without making the cryptocur-
rency route traceable. The very high frequency of criminal activities also underlines that the
redistribution may be operated by automated methods on the blockchain. Consequently, we
hypothesize that these specific requirements lead RaaS perpetrators to construct cryptocurrency
paths that exhibit particular regularities and transactional structures. Based on the argument
presented earlier, this paper introduces the following research question:

RQ. Can we query the blockchain and extract data in an aimed way, using fine-grained
and customizable rules?

Following this research question, our study progresses in the direction of building an approach
based on formal language to detect regularities and potential patterns in the blockchain, intending
to help law enforcement officials trace illicit transactions and identify their authors.

3. Related Work

The necessity to identify and track illicit money flows transiting through the blockchain has
sparked significant research interest in recent years. With the rise of cryptocurrencies and their
decentralized nature, traditional methods of monitoring financial transactions have proven
inadequate, necessitating innovative approaches. To achieve this goal, researchers have explored
a diverse range of methodologies, leveraging advanced technologies such as Machine Learning
(ML) and Deep Learning (DL). These techniques offer promising avenues for detecting and
preventing malicious activities within the blockchain ecosystem. In Table 1, we compile and
organize the most recent and notable works that present techniques aimed at addressing
malicious phenomena in the blockchain.

Notably, all the works in the literature span from 2018 to 2023. An high concentration of paper
can be found in 2023. This confirms the recent interest of the research community. Beyond
recency, we specifically selected papers that focus on identifying and tracing patterns associated
with such activities. This ensures that our study aligns with the current research landscape and
addresses its key objectives.

The first column of the table details the focus of the papers. Particularly, the most common
problem that the state-of-the-art faces is tracking Bitcoin related to ransomware attacks [11,
13, 14, 18]. Other works [9, 12, 15] offer a broader scope depending on the type of classes (viz.
specific illegal activities) contained in the dataset used in the proposed analyses. Additionally,

3Man Charged for Participation in LockBit Global Ransomware Campaign, Office of Public Affairs, 2023, https:
//www.justice.gov/opa/pr/man-charged-participation-lockbit-global-ransomware-campaign

4Russian National Arrested and Charged with Conspiring to Commit LockBit Ransomware Attacks
Against U.S. and Foreign Businesses, Office of Public Affairs, 2023, https://www.justice.gov/opa/pr/
russian-national-arrested-and-charged-conspiring-commit-lockbit-ransomware-attacks-against-us
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Table 1
Related studies focusing on the detection of money flows in the blockchain related to illegal activities.
Papers are arranged chronologically by publication year. The final row provides an overview of the
present work. The meaning of acronyms is provided at the bottom of the table.

Paper Year Focus Methodology Query

Harlev et al. [9] 2018 Illicit activities ML 7
Bartoletti et al. [10] 2018 Ponzi schemes ML 7
Huang et al. [11] 2018 Ransomware E2E An 7
Sun Yin et al. [12] 2019 Illicit activities ML 7
Akcora et al. [13] 2019 Ransomware TDA+ML 7
Kappos et al. [14] 2022 Ransomware Cl+He 7
Nerurkar [15] 2023 Illicit activities DL 7
Yu et al. [16] 2023 Money laudering DL 7
Pocher et al. [17] 2023 Money laudering DL 7
Ampel et al. [18] 2023 Ransomware DL 7

This work 2024 Pattern detection FL 3

Focus—Main focus of the proposed methodology; Query—Whether the methodology
allows querying the blockchain in real-time or not; Acronyms: Machine Learning (ML),
Deep Learning (DL), Formal Language (FL), E2E An (End-to-end Analysis), TDA+ML
(Topological Data Analysis with Machine Learning), Cl+He (Clustering and Heuristic
methodology).
3 Present. 7 Absent.

another topic explored in the literature involves money laundering operations in the blockchain,
as examined in [16, 17]. Lastly, Bartoletti et al. [10] focus on the detection of Ponzi scheme.
None of the devised works introduces a method that is general enough to be applicable to
various regularities and patterns on the blockchain. Conversely, the focus is limited to a set or
to one particular scenario.

In the methodology column, we detail the proposed techniques to address the aforementioned
issues. Notably, the majority of the works adopt an AI-based approach, and both ML and DL
models have been explored. Two works [9, 12] cluster the addresses contained in the considered
datasets and employ supervised ML models (e.g., Gradient Boosting, Random Forest, K-Nearest
Neighbors) to classify the clusters based on the particular illicit activity that characterizes them.
Bartoletti et al. [10] apply data mining techniques to detect Bitcoin addresses related to Ponzi
schemes. First, they constructed a dataset by analyzing the blockchain transactions used to
perform the scams. Then, they used this dataset to train various ML algorithms, assessing
their effectiveness. The authors conclude that the best classifiers can identify most of the
Ponzi schemes in the dataset, with a low number of false positives. An ML-based framework
has also been proposed in [13] for detecting malicious addresses associated with ransomware
groups. In their work, the authors introduce the concept of topological data analysis (TDA)
to detect ransomware patterns on the blockchain. The intuition is that it could be possible to
extract hidden data patterns with a systematic analysis of data shapes, such as cycles and flares,
quantified at various resolution scales.

DL models have also been recently used in different papers [15, 16, 17, 18]. In detail, the



majority of them [15, 17, 16] leverage Graph Neural Networks (GNN) for detecting anomalous
activities. Similarly, Ampel et al. [18] design a framework for labeling nodes in ransomware
payment networks. Such a framework is based on a semi-supervised GNN jointly used with
GraphSAGE to handle class imbalance.

Regarding non-AI techniques, Huang et al. [11] discuss the feasibility of tracking ransomware
payments over a two-year span, providing a data-driven approach to understanding the op-
erational mechanisms of ransomware campaigns. Kappos et al. [14] deal with the validation
and expansion of Bitcoin clusters. The authors present a heuristic for identifying peel chain5

transactions on the blockchain.
Although AI-based methodologies offer considerable potential, they also face hurdles. The

most prominent limitation of ML and DL models is that they often require retraining when
new criminal activity patterns emerge. This can create significant scalability and maintenance
challenges. Furthermore, explaining how AI models (especially DL, given its black-box nature)
reach their conclusions remains a major roadblock. This lack of transparency is especially critical
for forensic activities, where clear and explainable results are required for legal proceedings.

Regarding the last column, it is evident that in the current state-of-the-art, there are no
solutions capable of directly querying the blockchain to check whether specific properties are
met. While various techniques such as ML and DL have shown promise in detecting suspicious
activities within the blockchain, they often rely on analyzing transaction patterns, network
structures, or other data attributes rather than directly querying the blockchain for specific
properties. This limitation underscores the challenges in real-time monitoring and enforcement
of compliance measures within decentralized systems.

3.1. Positioning

After presenting the state-of-the-art in the previous section, in the last row of Table 1, we
summarize the positioning of this work. Several studies [9, 12, 10, 11] rely on ML methods
for analysis, whereas others [15, 16, 17, 18] leverage more complex DL techniques. Differently
from the reviewed literature, our work focuses on using a formal language-based approach
for querying the blockchain. The reasons behind our choice to utilize formal language are
presented below:

• The ever-increasing use of black-box AI models in cybersecurity applications calls for
a focus on explainability and transparency, principles that undergird the requirements
of the upcoming AI Act of the European Union. The use of AI needs to be directed by a
human-in-the-loop approach that integrates human stakeholders in the ML/DL pipeline.
Capuano et al. [19] clarify that, in the context of cybersecurity, “explainability can only
occur via human-machine interaction”: indeed, the system should provide “responses
to queries that users are likely to ask”, especially for tasks that require the traceability
of transactions and perpetrators. Most research on explainable AI for cybersecurity6

focuses on post-hoc explanations, which do not allow one to understand the rationale

5The peel chain method involves the laundering of significant volumes of illicitly acquired cryptocurrency through
a series of numerous small transactions.

6It is worth noting that explainability modules are not present in the reviewed literature dealing with AI techniques.



of the detection process in real time [19]. Instead, the querying approach we propose is
intrinsically explainable, as it is not based on black-box AI models.

• Formal language-based querying offers enhanced adaptability to changes in behaviors
within transactions, ensuring the relevance of our approach in dynamic environments.
Specifically, it allows for the identification of any type of pattern expressible through the
language.

• Unlike ML/DL techniques, formal language querying typically consumes fewer com-
putational resources, including processing power and memory. This efficiency makes
our approach more practical and feasible, particularly in environments with limited
computational resources or where real-time processing is essential.

After outlining the advantages of our approach, we employ basic temporal logic rules to
create a formal language designed for querying the blockchain. This process aims to improve
the precision and interpretability of our analysis of blockchain transactions, leading to better
identification and understanding of transaction history.

4. Approach

BlockchainDataAPI
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transaction.json
address.json

Client
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From Node
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QueryTransformer Query
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Figure 1: Overview of the proposed approach and its main components.

This paper proposes an approach that relies on basic temporal logic rules to build a formal
language to query the blockchain. Temporal logic offers a formal framework to express and
evaluate complex temporal properties over time, thus enabling the detection of trends, anomalies,
and emergent behaviors within blockchain transactions. In fact, in the case of malicious activities
on the blockchain, it is necessary to evaluate the characteristics of transactions chains that span
over time via ad-hoc temporal operators. The main contribution of our approach consists in an



oracle that allows to perform queries to check properties for a given transaction or address in
the blockchain.

The oracle is implemented as a Python engine that consists of three main components:

• Query Language – It provides the syntax for the expression of the queries.

• Interpreter – It parses and interprets the queries and links the query language to the
client for the evaluation of the rules.

• Client – It retrieves the actual data from the blockchain, leveraging Blockchain.com7.

While the code is available open source in a repository8 and each component is detailed below,
Figure 1 depicts an overview of the structure and interaction within the three components.
Furthermore, Figure 1 illustrates the flow of information and the exchange of requests/responses
between the different modules when a query is made.

4.1. Query Language

Our approach relies on an expressive query language. Thus, the first step for our approach is
the definition of the query language through the following grammar.

𝜑 ∶∶= 𝜑𝑡 ∣ 𝜑𝑤
𝜑𝑡 ∶∶= 𝑃(𝑎𝑡) ∣ ¬𝜑𝑡 ∣ 𝜑𝑡 ∧ 𝜑𝑡 ∣ 𝜑𝑡 ∨ 𝜑𝑡 ∣ 𝑋𝑤𝜑𝑤 ∣ 𝐹𝑤𝜑𝑤 ∣ 𝐺𝑤𝜑𝑤
𝜑𝑤 ∶∶= 𝑃(𝑎𝑤) ∣ ¬𝜑𝑤 ∣ 𝜑𝑤 ∧ 𝜑𝑤 ∣ 𝜑𝑤 ∨ 𝜑𝑤 ∣ 𝑋𝑡𝜑𝑡 ∣ 𝐹𝑡𝜑𝑡 ∣ 𝐺𝑡𝜑𝑡

Briefly, the grammar includes propositional logical operators as well as linear temporal
operators [20]. A query is a formula 𝜑 that can either be a transaction formula 𝜑𝑡 or a wallet
address (or address in short) formula 𝜑𝑤. Both transaction and address formulas share the same
structure, i.e., a formula can be an atomic predicate on a transaction/address attribute, in symbols
𝑃(𝑎𝑡) and 𝑃(𝑎𝑤), respectively. For instance, an atomic predicate on a wallet’s balance may have
the form: balance > 3 BTC. Then, both 𝜑𝑡 and 𝜑𝑤 can contain negations (¬), conjunctions (∧),
disjunctions (∨), and temporal operators. Temporal formulas require more attention. As a
matter of fact, since the blockchain consists of alternating transactions and wallet addresses,
temporal operators must also be alternating. Thus, we label traditional temporal operators 𝑋
(next), 𝐹 (eventually) end 𝐺 (globally) to define their scope, i.e., either transactions or addresses.
For instance, a transaction formula 𝜑𝑡 may include 𝐺𝑤, while an address formula 𝜑𝑤 may include
𝑋𝑡.

Example 1. Consider the formula 𝜑𝑡 = 𝑋𝑤𝑋𝑡 sent < 10 BTC. It is satisfied by the addresses, being
destinations of an initial transaction (see below), such that their next outgoing transaction is worth
less than 10 BTC.

The semantics of a formula must be evaluated against an entry node of the correct type, i.e.,
a transaction for 𝜑𝑡 and an address for 𝜑𝑤. Intuitively, the evaluation of a formula 𝜑 against
entry node 𝑠 corresponds to exploring the blockchain until 𝜑 holds. The explored fragment of

7https://www.blockchain.com/explorer/api
8https://github.com/IMTAltiStudiLucca/blockchain-ransomware
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the blockchain is then returned. More formally, the semantics of a formula 𝜑 (under node 𝑠), in
symbols 𝑠 ⊢𝑡/𝑤 𝜑, is defined as follows.

𝑠 ⊢𝑡/𝑤 𝑃(𝑎) iff 𝑃(𝑎) holds in 𝑠
𝑠 ⊢𝑡/𝑤 ¬𝜑 iff 𝑠 ⊬𝑡/𝑤 𝜑
𝑠 ⊢𝑡/𝑤 𝜑 ∧ 𝜑′ iff 𝑠 ⊢𝑡/𝑤 𝜑 and 𝑠 ⊢𝑡/𝑤 𝜑′

𝑠 ⊢𝑡/𝑤 𝜑 ∧ 𝜑′ iff 𝑠 ⊢𝑡/𝑤 𝜑 or 𝑠 ⊢𝑡/𝑤 𝜑′

𝑠 ⊢𝑡/𝑤 𝑋𝑡/𝑤𝜑 iff 𝑠 → 𝑠′ and 𝑠′ ⊢𝑤/𝑡 𝜑
𝑠 ⊢𝑡/𝑤 𝐹𝑡/𝑤𝜑 iff ∃𝑠′.𝑠 →∗ 𝑠′ and 𝑠′ ⊢𝑤/𝑡 𝜑
𝑠 ⊢𝑡/𝑤 𝐺𝑡/𝑤𝜑 iff ∀𝑠′.𝑠 →∗ 𝑠′ implies 𝑠′ ⊢𝑤/𝑡 𝜑

From the above operators, we can derive the following instances for transactions and ad-
dresses: XTrans, FTrans, FAddr, GTrans, and GAddr. Generally, unbounded queries are not
practical, hence we introduce an upper limit 𝑛 to achieve a reasonable balance. Furthermore, we
enrich the set of operators with the round parentheses for the prioritization of multiple proper-
ties and with the MaxAddr custom operator. In summary, we define the following operators:

• XTrans: Specifies that a condition must hold true at the next transaction.
• FTrans 𝑛: Specifies that a condition must eventually become true in a future transaction
within 𝑛 steps.

• FAddr 𝑛: Specifies that a condition must eventually become true in a future address within
𝑛 steps.

• GTrans 𝑛: Specifies that a condition must hold true for all 𝑛 future transactions.
• GAddr 𝑛: Specifies that a condition must hold true for all 𝑛 future addresses.
• MaxAddr: Specifies that a condition must hold true for the address having the maximum
amount of a given attribute.

The entry point for the formula is given by the “query” rule, and the grammar expects queries
in the following format: “From node Check property”, where node can be either a transaction
and/or a wallet address, and property is the condition to be checked. This can be either a
transaction property or an address property. A transaction/address expression represents basic
expressions in the form of algebraic comparisons, like equal, greater than, less than, between
atomics attributes (of a transaction/address).

4.2. Interpreter

The second component of our approach is the interpreter. It provides a link between the query
language and the client. In particular, we defined the query language using Lark9, which is a
Python library for parsing custom languages. Therefore, the language, as previously defined, is
written with the syntax proposed by Lark—based on Extended Backus–Naur form (EBNF)—in a
.lark file. Parsing is carried out via the LALR (short for “look-ahead, left-to-right”) parsing
algorithm. The parsed query is then transformed in an Abstract Syntax Tree (AST), which is
then evaluated through a Transformer class. Such class is implemented in our framework with
the “QueryTransformer” class, which encompasses a set of callbacks that are executed for each

9https://github.com/lark-parser/lark
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branch of the AST. Callbacks implement the logic needed to put in place the queries (e.g., the
actual property checking, the requests to be made to the blockchain interface, etc.).

The interpreter includes sanity checks to ensure that the types of elements passed in a query
are consistent with the types that the query language would expect. Furthermore, the interpreter
follows a linear structure, i.e., it implements a method corresponding to each non-terminal rule
defined in the grammar. For the sake of brevity, we only describe the core of the interpreter
here. The core is implemented in the “_prop_checker” callback, which acts as the main query
evaluation method. Briefly, it parses the operators used in a query and evaluates the properties.
In the case of temporal operators like GTrans, FTrans et similia, the “_prop_checker” method
calls itself recursively to check the property in the subsequent transaction/addresses. These
are retrieved by calling the client, as it will be described later. It follows naturally that the
“_prop_checker” callback handles each representation of transaction/address property in a
different yet appropriate way. The method takes multiple arguments as input, depending on the
query, and a boolean to differentiate between transactions and addresses. The implementation
of the checks for XTrans, GTrans, FAddr, and MaxAddr, are still a work in progress, thus the
default return value set to “False”. For the sake of brevity, the code is here omitted, while it is
still available online.

4.3. Client

The third component of our approach is the (blockchain) client. It relies on the free available plan
from Blockchain.com API service to retrieve the data as JSON outputs directly from the Bitcoin
blockchain. The logic is implemented in the “BlockchainDataAPI” class, which provides basic
methods for the retrieval of block, transaction, and address data. While the code is, again,
available online, we focus our attention on the information that is retrievable from the APIs.
These APIs offer rich information, enabling the application of the approach across various
use cases and allowing for the verification of various transaction and address properties. For
instance, it is possible to retrieve information such as wallet balance, number of inputs and
outputs, lock time, fees, etc., which can be useful for investigative purposes.

5. Demo

In this section, we apply our approach to a real-world case study, that is, the Colonial Pipeline
attack10. First, we give a little context to the case study, especially from a criminalistics
perspective. Then, we formulate a query related to the pipeline case to confirm the operation
and effectiveness of our approach in support of criminal investigations.

On the 7th of May 2021, Colonial Pipeline, a vital supplier of energy to the southeastern United
States, experienced a crippling ransomware attack. The assault, orchestrated by the Russia-
based cybercriminal group DarkSide, compelled Colonial to halt its operations temporarily. In a
swift response to the crisis, Colonial paid a ransom of 75 Bitcoin—equivalent to approximately
$4.4 million—to the attackers. Despite this payment, the pipeline remained offline for six days,
exacerbating concerns over fuel shortages in affected regions. Panic buying ensued as news of the

10https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack
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Query node_transaction

property

id 6a798026d44af27dbacd28ea21462808df8deca51794cec80c1b59e07ef924a2

transaction_prop

transaction_prop

Token('AND', 'and')

transaction_prop

transaction_prop

Token('AND', and)

transaction_prop

transaction_expression

transaction_atom

Token('EQUAL', '=')

Token('NUMBER', '2')

Token('CNAME', 'num_inputs'

transaction_expression

transaction_atom

Token('MORETHAN', '>')

Token('NUMBER', '170')

Token('CNAME', 'total_rec'

transaction_expression

transaction_atom

Token('MORETHAN', '>')

Token('NUMBER', '1620432000')

Token('CNAME', 'time'

Figure 2: AST for the Colonial Pipeline query.

disruption spread, compounding the challenges faced by consumers and authorities alike. After
the investigations into the pipeline case, the techniques of money laundering and cryptocurrency
redistribution by ransomware organizations have significantly evolved. In particular, the Conti
group, starting from 2019, began employing more intricate and effective blockchain money
laundering techniques, which have also been adopted by other major ransomware groups [21].
Furthermore, these sophisticated money laundering techniques often do not require high
technical expertise but can be carried out using tools readily available on the internet and used
with relative ease. For such reasons, combating this criminal phenomenon requires improving
both quantitative and qualitative analysis techniques of transactions on the blockchain [22].

Below, we set a simple query that analyses the first transaction related to the aforementioned
case study. Given relevant information, such as the date of the attack and the ransom demanded,
from the pipeline case, it is possible to formulate the following query.

From Transaction 6a798026d44af27dbacd28ea21462808df8deca51794cec80c1b59e07ef924a2 Check

Transaction.num_inputs = 2 and Transaction.total_rec > 170 and Transaction.time > 1620432000

This query allows us to verify our investigation hypotheses. These include the num-
ber of inputs of the transaction under examination (viz. Transaction.num_inputs), which
must be equal to 2 according to the hypotheses, the total Bitcoin amount requested
(viz. Transaction.total_rec), which is greater than 170 BTC, and the date of the transaction
following the ransomware attack (viz. Transaction.time)—this is known to be after the 8th of
May 2021 0 AM. The execution of the query yields the AST depicted in Figure 2. As a result,
the query is evaluated with a return value “True”, thus confirming that the transaction under
investigation matches the hypothesized patterns.



6. Conclusions

The development of tools to analyze transactions on the blockchain is one of the current
priorities to counter cybercrime. Nowadays, the ability to launder money on the blockchain is
one of the greatest strengths of cybercriminals: this advantage allows them to act with impunity
worldwide. In fact, tracing the origin of illicit money is one of the pillars of investigative
activity and crime fighting. However, this investigative approach is currently infeasible for law
enforcement agencies, and the accuracy of the analyses by cybercrime scholars is also limited.
The principal step in this direction is to develop the ability to filter illicit financial transactions
by recognizing their characteristics among all the transactions in the blockchain.

This paper addressed the challenge of formalizing the process of querying the blockchain. It
answered the research question by advancing a querying approach that represents the foundation
for developing tools that can have a twofold benefit in countering cybercrime: (i) on the one
hand, they could allow law enforcement officials to identify illicit transactions on the blockchain
with a certain probability; (ii) on the other hand, they could improve scholars’ and analysts’
ability to understand money laundering techniques and systems on the blockchain through
more reliable data on the phenomenon. Furthermore, the impact of the proposed approach was
demonstrated by applying it to a real-world case study with promising results.

Arguably, the Python engine still needs to be refined and completed, in particular for the
implementation of the temporal operators, yet it has already proved to work for quite complex
queries. Ultimately, our future work also looks at the development of a novel framework that
can be leveraged for several scopes, such as tracing ransomware payments conducted through
cryptocurrency transactions.
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