
Evaluating Trainees in Large Cyber Exercises
Andrea Artioli1,*,†, Mauro Andreolini1,†, Luca Ferretti1,† and Mirco Marchetti1,†

1University of Modena and Reggio Emilia, Modena, Italy

Abstract
Cyber ranges are becoming a widely used alternative to teach trainees security through practice on
realistic systems. They support evaluation and awareness through dashboards that display how many
training objectives have been achieved in a cyber exercise. In our previous paper [1] we have outlined
all the limitations of standard dashboards and proposed a new framework for modeling and assessing
trainee activity through trainee graphs, reference graphs and scoring functions. In particular, we have
introduced a scoring function based on the symmetric difference between a trainee and a reference graph,
which allows to pinpoint quite effectively the inefficiencies of a trainee in an exercise.

In this paper, we show how that model, while working well for small and coherent exercises, poses
several problems when applied to a larger labs made of several, heterogeneous challenges. The accuracy
of the symmetrical difference rapidly drops down as the number of nodes and edges in the reference
graph increases, thus making it impossible to use it in large environments. Furthermore, there might be
edge cases where trainees that do not complete an exercise obtain a higher score than those who do.
This happens because the symmetric difference turns out to be higher if the trainee advances exploring
fewer nodes of the reference graph (which is the case of a skilled attacker).

To address these problems, we aim at reducing the complexity of the graphs fed to the scores. We
improve the older model by representing an exercise as a set of smaller local graphs (each one for a
coherent, intermediate challenge which can be assessed with a specific local score) and a global graph
(representing the interconnection between intermediate challenges, that can be assessed with a specific
global score). The main benefits of introducing global and local graphs using global and local progress
are twofold: (a) having smaller graphs, scores related to precision (symmetric differences) are more
performant; (b) we can assign different scores to different parts of the exercise, which is crucial in
heterogeneous engagements.

We have implemented a Python-based simulator that generates random exercises and compares the
performance of the previous and proposed trainee models under specific scores. Our results empirically
show that, on average, the original model fails to scale to sizes in the order of tens of vertices and or
edges, while the new is able to preserve precise scores locally and better track overall progress.

Keywords
Cyber range, Graph analytics, Training, Cyber exercise, Monitoring

1. Introduction

General consensus states that security is best learned by practice on realistic systems including
workstations and servers, IoT devices and cyber-physical systems. A cyber range is a pre-

ITASEC24: Italian Conference on Cybersecurity, April 08–12, 2024, Salerno, Italy
*Corresponding author.
†
These authors contributed equally.
$ andrea.artioli@unimore.it (A. Artioli); mauro.andreolini@unimore.it (M. Andreolini); luca.ferretti@unimore.it
(L. Ferretti); mirco.marchetti@unimore.it (M. Marchetti)
� 0009-0007-7965-1322 (A. Artioli); 0000-0003-3671-6927 (M. Andreolini); 0000-0001-5824-2297 (L. Ferretti);
0000-0002-7408-6906 (M. Marchetti)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:andrea.artioli@unimore.it
mailto:mauro.andreolini@unimore.it
mailto:luca.ferretti@unimore.it
mailto:mirco.marchetti@unimore.it
https://orcid.org/0009-0007-7965-1322
https://orcid.org/0000-0003-3671-6927
https://orcid.org/0000-0001-5824-2297
https://orcid.org/0000-0002-7408-6906
https://creativecommons.org/licenses/by/4.0

arranged virtual environment that allows trainees to simulate realistic attack and defense
scenarios on an architecture resembling some original system. Cyber ranges typically support
evaluation and awareness through dashboards that display how many training goals have been
fulfilled. This approach does not allow to identify the reasons behind a bad trainee performance.
To overcome this limitation, Andreolini et al. [1] introduce a novel, modular and extensible
framework that captures trainee activity into a trainee graph and compares it with a reference
graph provided by the instructor. Given specific learning objectives, novel scores are proposed
in order to measure trainee proficiency in achieving them. A score is a scalar function over a
set of graphs. Many scoring strategies have been considered to assess trainee speed (shortest
path to a goal) and precision (combined symmetric difference between trainee edges/vertices
and reference graph edges/vertices).

While these scores work well for small and coherent challenge environments (e.g., a single
host executing a Web server), several problems arise when trying to apply this approach to
a larger environment (e.g, heterogeneous multi-host labs located in different subnets). The
accuracy of the symmetrical difference decreases abruptly as the number of nodes and edges in
the reference graph increases. Furthermore, there might be edge cases where trainees that do not
reach the exercise main goal obtain a higher score than those who do. To address these problems,
we aim at reducing the complexity of the graphs fed to the scores. We model an exercise as a set
of smaller local graphs (representing a coherent, intermediate challenge which can be assessed
with a specific local score) and a global graph (representing the interconnection between
intermediate challenges, that can be assessed with a specific global score). The main benefits
of introducing global and local graphs using global and local progress are twofold: (a) having
smaller graphs, scores related to precision (symmetric differences) are more performant; (b) we
can assign different scores to different parts of the exercise, which is crucial in heterogeneous
engagements.

We have implemented a Python-based simulator that generates random exercises and com-
pares the performance of the previous and proposed trainee models under specific scores. Our
results empirically show that, on average, the original model fails to scale to sizes in the order
of tens of vertices and or edges, while the new is able to preserve precise scores locally and
better track overall progress.

The paper is organized as follows. Section 2 briefly recalls the original scoring model intro-
duced in [1], while Section 3 points out the limitations of the old model and introduces the
new one. Section 4 describes our testbed and compares the performance of the old and new
models under different scenarios. Section 5 discusses related work. Finally, Section 6 concludes
the paper and outlines possible future work.

2. Background

2.1. Modeling trainee activities

In this section we briefly recall the original scoring model introduced in [1]. We model trainee
activities through oriented graphs where vertices represent intermediate states that are reached
by a trainee during an exercise, while edges represent the actions performed by a trainee to move
from a particular state to the next one. Unintended actions are modeled as edges towards special

vertices representing errors. The start and end dummy vertices enclose a specific challenge.
Both vertices and edges may be labelled with additional information (timestamps on vertices
and edges to track progress over time, or command options on edges to better discern useful
from useless commands). A reference graph is prepared by an instructor and models the ideal
behavior of a trainee during an exercise. Figure 1 shows an example reference graph with
intermediate steps 𝑆𝑖 (i=1, 2, 3, 4, 5) carried out through actions 𝑎𝑘 (k=1, 2, 3, 4, 5, 6, 7). A trainee

Start

S3

S1

S4
S5 End

S2

a1

a2

a3

a4

a5

a6

a7

Figure 1: An example reference graph

graph tracks the actions performed by a trainee during an exercise. It is built automatically
offline (at the end of an exercise, for a post-mortem performance analysis) or online (during an
engagement, to track live trainee progress on a dashboard). The build process uses a reference
graph and a set of metrics collected on the game network (e.g., command history and Web
browsing history) during the exercise. These metrics allow to built an event timeline and to
match it with the intermediate states of a reference graph. Whenever an event in the timeline
matches an edge (𝑉𝑖, 𝑉𝑗) in the reference graph, the trainee graph is updated as follows: vertex
𝑉𝑗 is added to the trainee graph; vertex 𝑉𝑖 is located in the trainee graph; an edge (𝑉𝑖, 𝑉𝑗) is
added to the trainee graph. Figure 2 shows the incremental update of a trainee graph with
vertex 𝑆2 and edge 𝑒2. Matching of timeline events with trainee actions is done in ordered
fashion on all nodes of the reference graph. If, on the other hand, a timeline event 𝑒 cannot be

Start

S2S1

S3

End

e1 e2

e3 e4

Events
M1

Reference graph

Trainee graph

Match
Update

...

Lab Network

Framework

M2 Mn

Start

S1

e1

S2

e2

Metrics
Event

timeline
e1 e2 en

...

Figure 2: Incremental update of the trainee graph

matched against any edge in the reference graph, the trainee graph is updated as follows: the
current vertex 𝑉𝑖 in the trainee graph is located; the next expected vertex 𝑉𝑗 in the reference
graph is identified (such a vertex always exists, be it “start” if the trainee hasn’t yet followed
the recommended solution, or an intermediate one if the trainee has followed some steps of the
exercise); the label 𝑁𝑗 of the vertex 𝑉𝑗 is identified; a new dummy vertex 𝑉𝑗 is added to the
trainee graph with label 𝑁𝑗_𝑒𝑟𝑟 (if it already exists, omit vertex insertion); an edge (𝑉𝑖, 𝑉𝑗) is

added with label set to 𝑒. Figure 3 shows the insertion of a dummy node in a trainee graph with
event 𝑒.

Start

S2S1

S3

End

e1 e2

e3 e4

Reference graphTrainee graph

Start

S1

e1

S2_err

e

Figure 3: Insertion of a dummy node in the trainee graph

2.2. Scoring functions

A score is a function 𝑓 : 𝐺𝑛 → R that takes as input a set of 𝑛 oriented graphs (including at
least one trainee and a reference graph), and outputs a real number 𝑠 in a specified interval
[𝑎, 𝑏] (e.g., [0, 1]). Different learning objectives call for different scores. We pick the following
scores from [1] that will be used in the rest of the paper.

Score 𝑠0. Let 𝐺𝑢 be a trainee graph and 𝐺𝑟 a reference graph. Let 𝑙𝑢 and 𝑙𝑟 be the length of
the shortest path from the starts vertex to the end vertex in the trainee and reference graph,
respectively. We define 𝑠0 in the following equation:

𝑠0 =

{︃
𝑙𝑟
𝑙𝑢

if the trainee completes the exercise

0 otherwise
(1)

The rationale is as follows. If the trainee completes the exercise, the 𝑙𝑟
𝑙𝑢

fraction rewards shorter
exploitation paths (𝑙𝑢 is lower). An unsolved exercise is not rewarded.
Score 𝑠1. Let 𝐺𝑢 = (𝑉𝑢, 𝐸𝑢) be a trainee graph and 𝐺𝑟 = (𝑉𝑟, 𝐸𝑟) a reference graph. We

consider the symmetric difference of two sets 𝐴, 𝐵: 𝐴△𝐵 = (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴). In other
words, 𝐴△𝐵 contains all members of 𝐴 not in 𝐵 and all members of 𝐵 not in 𝐴. We use two
interesting properties of symmetric difference: (a) if two sets 𝐴 and 𝐵 coincide, 𝐴△𝐵 = ∅; (b)
if two sets 𝐴 and 𝐵 are disjoint, 𝐴△𝐵 = 𝐴 ∪𝐵. We define the efficacy 𝜈 as following:

𝜈 = 1− |𝑉𝑢△𝑉𝑟|
|𝑉𝑢 ∪ 𝑉𝑟|

(2)

If the trainee and reference graph coincide, we have 𝑉𝑢△𝑉𝑟 = ∅, thus 𝜈 = 1; the trainee
has followed exactly the sequence of intermediate states modeled by the reference graph, and
obtains the highest possible score. On the other hand, if the trainee and reference graph are
completely disjoint, we have 𝑉𝑢△𝑉𝑟 = 𝑉𝑢 ∪ 𝑉𝑟, thus 𝜈 = 0; the trainee hasn’t reached one
single intermediate state of those in the reference graph, and obtains the lowest possible score.
Intermediate performance produces scores in the [0, 1] interval. Efficacy measures the ability of
a trainee to follow the paths of a solution described in the reference graph.

Similarly, we define the efficiency 𝜂 as following:

𝜂 = 1− |𝐸𝑢△𝐸𝑟|
|𝐸𝑢 ∪ 𝐸𝑟|

(3)

The same observations hold for 𝜂. A trainee that performs the exact actions modeled in the
reference graph is assigned the highest score, while a trainee that misses every action is assigned
the lowest score. Intermediate performance produces scores in the [0, 1] interval.

Score 𝑠1 is defined as a linear combination of 𝜈 and 𝜂:

𝑠1(𝐺𝑢, 𝐺𝑟) = 𝛼𝜈 + (1− 𝛼)𝜂 (4)

In this paper, we choose 𝛼 = 0.5, but the score may be tuned to weigh more efficacy or efficiency,
according to the specific learning objective. This score rewards trainees who are able to reach
the final goal of an exercise following the path defined by the reference graph. Trainees who
could not reach the goal or make many mistakes are penalized with a low score. This is a good
candidate for teaching exercises, since it tracks trainee actions during the exercise, taking into
account the ability to follow the taught path to reach a goal.

3. A trainee model for large environments

3.1. Limitations of the original trainee model

While the original scoring model introduced in [1] works well for small and coherent en-
gagements that can be evaluated consistently with a single scoring function, it poses several
challenges in larger environments. With “larger environment” here we refer for example to
labs made of multiple hosts with heterogeneous architectures, operating systems, libraries and
applications, where a trainee has to showcase different skills (speed, precision, defense evasion,
stealthiness, discovery of novel exploitation paths) in different contexts (UNIX, Windows, Web
applications, networks, cryptography, reverse engineering). Under these circumstances it is
often impossible to sum up trainee performance with a single scoring function. Furthermore,
larger environments imply a larger number of interconnected hosts and services, resulting in
larger trainee and reference graphs. Unfortunately, the accuracy of the symmetrical difference
drops significantly as the number of vertices and edges in the reference graph increases. Even
worse, in some pathological cases trainees that do not complete an exercise obtain a higher
score than those who do. This happens because the symmetric difference turns out to be higher
if the trainee explores fewer nodes of the reference graph (which is the case of a skilled attacker).
These factors contribute to making the 𝑠1 score useless.

To address these limitations we change the scoring model with the aim to reduce the com-
plexity of the graphs fed to the scoring functions, as shown in the following section.

3.2. The proposed trainee model

Instead of modeling an exercise as a single, potentially large graph we split it as a set of 𝑘
smaller, local graphs 𝐿𝐺𝑖 (𝑖 ∈ [1, 𝑘]) representing a single intermediate step. Figure 4 shows a

possible local reference graph with local start, end and intermediate vertices 𝐿𝑆𝑖,𝑠𝑡𝑎𝑟𝑡, 𝐿𝑆𝑖,𝑒𝑛𝑑

and 𝐿𝑆𝑖,𝑗 respectively (𝑖 ∈ [1, 𝑘], 𝑗 ∈ [0, 7]). Local trainee graphs are built exactly as in the
older model. Each local graph is assigned a scoring function 𝑙𝑠𝑖 : 𝐺

𝑛 → R (𝑖 ∈ [1, 𝑘]) that
assesses trainee performance in that specific intermediate step.

LSi,start

LSi,1

LSi,0

LSi,2

LSi,3

LSi,4

LSi,5

LSi,6

LSi,7 LSi,end

Figure 4: A local reference graph

Similarly, we create a global graph 𝐺𝐺 that models the interconnection between the inter-
mediate steps. Figure 5 shows a possible global graph with global start, end and intermediate
vertices 𝐺𝑆𝑠𝑡𝑎𝑟𝑡, 𝐺𝑆𝑒𝑛𝑑 and 𝐺𝑆𝑗 respectively (𝑗 ∈ [0, 𝑋]). Global trainee graphs are built
exactly as in the older model by observing transition events from an intermediate challenge
to another. The global graph is assigned a scoring function 𝑔𝑠 : 𝐺𝑛 → R that assesses trainee
performance in advancing through the intermediate challenges.

GSstart

GS1

GS0

GS2

GS3 GS4

GS5 GSend

Figure 5: A global reference graph

In principle there is no impediment to assigning multiple scores to a specific graph (e.g., to
simultaneously capture multiple skills such as speed and precision); however, for reasons of
simplicity in this paper we will use only one score per graph. At the end of an exercise, the
instructor has available:

• a set of 𝑘 + 1 graphs (𝐺𝐺, 𝐿𝐺1, 𝐿𝐺2, . . . , 𝐿𝐺𝑘) that track out the overall advancement
of a trainee through the intermediate challenges and in every single challenge;

• a set of 𝑘 + 1 scores (𝑔𝑠, 𝑙𝑠1, 𝑙𝑠2, . . . , 𝑙𝑠𝑘) that quantify the aforementioned advancement
and allow to compare it against the performance of other trainees (or even the same
trainees over several, repeated exercises).

Aggregating these scores to produce a leaderboard is a very interesting topic that is out of scope
for the current paper. Here, we show that the scores produced by the new model are more
consistent than those of the old one in large graphs.

4. Results

In Section 4.1 we briefly discuss the simulator, the hardware/software testbed and the simulation
scenarios carried out. In Section 4 we compare the performance of the 𝑠1 score in the old and
new model under different simulation scenarios.

4.1. Testbed

We have implemented a simulator that models an exercise based on a multitude of hosts
organized in multiple networks. Each host exhibits a specific challenge which the trainee is
supposed to solve. The trainee is also supposed to advance through the lab in a specific sequence.
This is a quite popular model in the cyber exercise world (e.g. HackTheBox Pro Labs [2] and
Offensive Security Proving Grounds [3]). The simulator automates the analysis proposed in
this paper performing the following operations. It receives an input parameter the number of
challenges 𝑘 which, in this paper, is also the lab size in terms of number of hosts. We range
𝑘 ∈ [5, 60] hosts because current lab deployments are similarly sized. Then, it generates 𝑘
nodes of the global graph and connects them randomly using the Watts-Strogatz algorithm
which is used to create small world graphs. Then, for each node in the global graph a local
graph is generated which represents the intermediate challenge. For simplicity in each local
graph we use a constant number of ten nodes; we have verified that this design choice does
not alter the main results of the paper. We also connect the nodes of the local graph randomly
using the Watts-Strogatz algorithm. At this point, we have represented an exercise in the new
model. To perform a fair comparison, we also generate the equivalent large reference graph in
the old model by connecting the local graphs as shown by the global graph.

After setting up the graphs, the simulator performs random walks over the global graph
and, for each node of the global graph, performs random walks into the associated local graph.
To speed up simulations, local random walks are performed with two different error rates:
0.95 (related to a beginner) and 0.0 (related to an expert). The goal is twofold: (a) simulate
the progress of a trainee through different hosts in the lab; (b) simulate the progress of both a
high skilled and a rookie trainee into a specific challenge. At every step of the global and local
random walks we compute the appropriate global and local scoring functions. Finally, at the
end of an exercise the simulator saves the test configuration (𝑘, the local and global reference
and trainee graphs, the global and local scores) into separate files.

The simulator has been developed in Python 3.11.7 and uses the networkx package to handle
large graphs. Simulations have been run in a host with an Intel Core 12700H CPU, 16 GB RAM
and 1 TB SSD, running the ArchLinux GNU/Linux distribution.

4.2. Simulation results

Figure 6 shows the evaluation of scores 𝑠0 and 𝑠1 under different simulation scenarios. Labels
have the form score/model/stats, where “score” is either the 𝑠0 or 𝑠1 score, “model” refers to
the old-style or new-style trainee graphs (local or global in the latter case) and “stats” is either
the minimum or maximum score value observed during a specific simulation. Let’s focus on

Figure 6:

the 𝑠1/old/max and 𝑠1/old/min labels that represent the maximum and minimum values of 𝑠1
computed with the old model in exercises of increasing complexity in terms of vertices. As can
be seen, the maximum value of the symmetric difference drops with 𝑘, making 𝑠1 unusable
starting with approximately 𝑘 = 15 machines. The ratio of vertices in common between a
trainee graph and a reference graph tends to drop as the number of vertices and edges increases.
Keeping a high 𝑠1 score would mean that an attacker exploits every node in exactly every
possible way as defined by an instructor, which is very hard and often simply not needed.
On the other hand, the minimum value stabilizes to zero for pretty much the whole range of
considered hosts; this means that bad performance is consistently evaluated. A very similar
behavior is exhibited by the 𝑠1 score in the new model (labels 𝑠1/new-global/*) when operating
on larger and larger global trainee graphs.

Let us now focus on the other 𝑠0/new-global/* and 𝑠1/new-local/* labels that represent
respectively 𝑠0 in the new model (applied on a global trainee graph) and 𝑠1 in the new model
(applied to local trainee graphs). Here, the aforementioned limitations does not apply; both
good and bad performance is consistently evaluated for the whole range of considered hosts.
In particular, the 𝑠0/new-global/max plot is consistently high because 𝑠0 rewards very highly
a trainee that is able to find the shortest exploitation path (which almost always happens in

repeated simulations). Regarding 𝑠1/new-local/max, 𝑠1 performs extremely well due to the
constant and low number of ten nodes in every local graph generated by the simulator.

Table 4.2 shows the values of the 𝑠1 score in a pathological simulation representing an exercise
run in a lab of 𝑘 = 50 nodes. We show only this value for reasons of space, but we have verified
that the problem persists basically for every value of 𝑘, and is more frequent with increasing
values of 𝑘. The old reference graph has a shortest path to the goal of length 1. Two trainees
carry out the exercise, each one exhibiting different skills (a beginner with error rate 0.95 and an
expert with error rate 0). The expert trainee finds the shortest path and completes the challenge,
while the beginner trainee develops an incomplete exploitation path of length 9 and fails to
complete the challenge. One would expect a higher score for the expert trainee with respect
to the beginner trainee; however, this is not the case. The expert trainee receives a score of
0.035, while the beginner trainee receives a score of 0.07 (exactly doubled). The reason for this
anomaly lies again in the way symmetrical graph difference works. The beginner trainee graph
shares a longer path with the reference graph than the expert trainee would; this leads to a
higher similarity of graphs and a higher 𝑠1 score.

Error rate
Reference

shortest path
Trainee

shortest path
Completed 𝑠1/old

0 1 1 True 0.035
0.95 1 9 False 0.07

Table 1
Scoring anomalies in the old model

Table 4.2 compares the values of the 𝑠0 and 𝑠1 scores in the old and new model under the
same pathological simulation. As we can see, the 𝑠1 score still exhibits the same limitation and
is thus useless as a scoring function. On the other hand, the 𝑠0 score behaves correctly since it
only focuses on path lengths and not on graph similarities. This leaves the question open as on
how to fix 𝑠1 to remove this anomaly. We reserve to address this problem in future work.

Error rate Completed 𝑠1/new-local/[min-max] 𝑠1/new-global 𝑠0/new-global
0 True [0.95− 0.95] 0.027 1.0

0.95 False [0.10− 0.20] 0.07 0.0

Table 2
Scoring anomalies - old vs. new models

5. Related Work

Previous literature has explored formal representations to articulate an attacker’s maneuvers
in terms of the techniques utilized and vulnerabilities exploited within systems and configu-
rations. Attack trees [4], bring the first structured representation of attacks on a system and
the corresponding countermeasures, organized in a hierarchical tree format. The concept of
attack trees has been broadened in academic research. Attack-defense trees [5] explicitly model
interactions between attackers and defenders, enabling a more comprehensive and precise

security assessment compared to traditional attack trees. Attack-response trees [6] enhance
attack-defense trees to account for uncertainties in intrusion detection such as false positives
and negatives.

It is worth pointing out that as the number of vertices and edges in attack trees increases, their
complexity escalates rapidly. Specifically, it becomes increasingly resource-intensive to trace all
pathways from a leaf node to the root node. In realistic scenarios, the network of nodes and
connections often surpasses thousands, where the mere addition of a single node significantly
expands the number of arcs and potential attack routes. Moreover, given that the root node
symbolizes the ultimate aim of the attack, complex multi-stage attacks may necessitate the
utilization of multiple attack trees for accurate representation. Attack graphs [7] represent the
infrastructure requiring protection, including network topology, vulnerable assets, and available
exploits. They point out the pathways an attacker must traverse to achieve specific objectives.
All the aforementioned approaches offer a static perspective of attacks and mitigation strategies,
but they fail to track the progress of an attacker on a live system.

In the nascent stages of scoring systems research for cyber ranges, the main approaches
are focused on signaling goal completion rather than evaluating trainee performance, as in
[8], [9], [10]. To the best of our knowledge, [1] is the first proposal that models and assesses
user activity in cyber exercises with the help of trainee graphs, reference graphs and scoring
functions. However, as this paper shows, the original trainee and scoring model may perform
poorly in large environments.

6. Conclusions

In this paper we have discussed our previously published trainee and scoring model [1] in
the context of larger exercise labs. We have shown how the accuracy of the symmetrical
difference decreases abruptly as the number of nodes and edges in the reference graph increases.
Furthermore, there are pathological corner cases where trainees performing worse receive
higher scores than those who perform better. We have tracked down the failures in the way
the symmetric difference works and have devised a strategy to mitigate some of its flaws by
feeding smaller graphs to the scoring functions. We have verified through simulations that our
approach indeed improves the accuracy of the 𝑠1 score.

Future work will be centered on fixing the scoring anomaly produced by 𝑠1 in some corner
case simulations and on implementing the new scoring model in the prototype presented in
[1].

References

[1] M. Andreolini, V. G. Colacino, M. Colajanni, M. Marchetti, A framework for the evaluation
of trainee performance in cyber range exercises, Mob. Netw. Appl. 25 (2020) 236–247. URL:
https://doi.org/10.1007/s11036-019-01442-0. doi:10.1007/s11036-019-01442-0.

[2] htbprolabs, HackTheBox Pro Labs, https://www.hackthebox.com/hacker/pro-labs, 2017.
[3] ospg, Offensive Security Proving Grounds, https://www.offsec.com/labs/, 2020.
[4] B. Schneier, Attack trees, Dr. Dobb’s journal 24 (1999) 21–29.

https://doi.org/10.1007/s11036-019-01442-0
http://dx.doi.org/10.1007/s11036-019-01442-0
https://www.hackthebox.com/hacker/pro-labs
https://www.offsec.com/labs/

[5] B. Kordy, P. Kordy, S. Mauw, P. Schweitzer, Adtool: security analysis with attack–defense
trees, in: International conference on quantitative evaluation of systems, Springer, 2013,
pp. 173–176.

[6] S. A. Zonouz, H. Khurana, W. H. Sanders, T. M. Yardley, Rre: A game-theoretic intrusion
response and recovery engine, IEEE Transactions on Parallel and Distributed Systems 25
(2013) 395–406.

[7] X. Ou, W. F. Boyer, M. A. McQueen, A scalable approach to attack graph generation,
in: Proceedings of the 13th ACM conference on Computer and communications security,
ACM, 2006, pp. 336–345.

[8] P. Čeleda, J. Čegan, J. Vykopal, D. Tovarňák, Kypo–a platform for cyber defence exercises,
M&S Support to Operational Tasks Including War Gaming, Logistics, Cyber Defence.
NATO Science and Technology Organization (2015).

[9] J. Vykopal, M. Vizváry, R. Oslejsek, P. Celeda, D. Tovarnak, Lessons learned from com-
plex hands-on defence exercises in a cyber range, in: 2017 IEEE Frontiers in Education
Conference (FIE), IEEE, 2017, pp. 1–8.

[10] M. Carlisle, M. Chiaramonte, D. Caswell, Using ctfs for an undergraduate cyber education,
in: 2015 {USENIX} Summit on Gaming, Games, and Gamification in Security Education
(3GSE 15), 2015.

	1 Introduction
	2 Background
	2.1 Modeling trainee activities
	2.2 Scoring functions

	3 A trainee model for large environments
	3.1 Limitations of the original trainee model
	3.2 The proposed trainee model

	4 Results
	4.1 Testbed
	4.2 Simulation results

	5 Related Work
	6 Conclusions

