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Abstract 
Our paper is devoted to solution of path-planning problem for various autonomous vehicles. We 
offer to solve this problem by assuming that state variables of a dynamical system, which is 
considered as trajectory generator, are defined in some coordinate system. This coordinate 
system is interconnected with the target coordinate system where the path planning problem is 
solved. The use of an intermediate coordinate system makes it possible to form the desired path 
by defining transformations from one coordinate system to another. Since a number of such 
transformations can be very huge, an enormous number of dynamical systems can be obtained 
from one initial one. In our paper, we use a polar-like coordinate system as an intermediate one 
and we use trigonometrical functions to define interrelations between polar and orthogonal 
coordinate systems. All used coordinate systems are the simplest two-dimensional ones and we 
show the methodology of dynamical system transformation from one coordinate system to 
another. At the same time, one can easily increase the number of the initial state variables and 
extend our approach from plane to space. We prove the benefits of our approach by considering 
the Duffing pendulum as a dynamical system that is defined in polar coordinates and then we use 
various transformation routines to design a chaotic dynamical system in the orthogonal 
coordinate system. These routines are based on the use of various affine transformations of 
pendulum state variables. As a result, various chaotic attractors are being formed to use as the 
desired paths for unmanned vehicles. 
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1. Introduction 

Chaotic path planning is an innovative approach to trajectory generation [1, 2, 3] that 

leverages the principles of chaos theory [4] to create non-linear, unpredictable paths [5, 6]. 

Unlike conventional deterministic [7, 8] or random path planning methods [9, 10], chaotic 

path planning [11] introduces complex dynamics that result in extensive coverage and 

adaptability, making it particularly useful for applications in robotics, autonomous vehicles, 

and exploration. 
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Chaos theory deals with systems that exhibit sensitive dependence on initial conditions 

[12, 13, 14], leading to behavior that appears random despite being deterministic. This 

characteristic is harnessed in chaotic path planning to generate paths that are both 

unpredictable and thorough. Commonly used chaotic systems include the logistic map [15], 

the Henon map [16], the Lorenz system [17], and the Chua circuit [18, 19, 20] each providing 

distinct patterns of chaos that can be tailored to specific application needs. Last decades lots 

of papers have appeared in the scientific press to show studies [21, 22, 23, 24], designs [25, 

26, 27], and usage of various chaotic systems [28, 29, 30]. 

The primary motivation behind chaotic path planning is to achieve superior area 

coverage and unpredictability. In autonomous robotic systems, this translates to more 

efficient exploration, improved obstacle avoidance, and enhanced security against pattern 

recognition by adversaries [31, 32]. For instance, robotic vacuum cleaners can utilize 

chaotic paths to ensure thorough cleaning, while surveillance drones can unpredictably 

patrol areas to prevent detection [33, 34]. 

In practice, chaotic path planning involves the following steps: 

• Initialization: Selection of a chaotic system and definition of initial conditions 

[35, 36, 37]. 

• Sequence Generation: Iteration of the chaotic map or solving differential 

equations to produce a sequence of points [38, 39]. 

• Path Construction: The connection of these points to form a continuous path, 

adjusted in real-time for obstacle avoidance and environmental changes [40, 41]. 

It is clearly understood that the solution of the third task depends on coordinate systems 

where a chaotic system is defined. Many authors consider the system motion in the 

conventional orthogonal coordinate system [42]. Nevertheless, the huge number of such 

systems' attractors are known and that is why the vehicle that is moving along them can be 

intercepted.  

We offer to avoid this drawback of chaotic path planning routine by using some 

coordinate transformation to define system dynamics in various coordinates. 

Our paper is organized as follows: firstly, we show the possibility of attractor changing 

by studying system dynamics in various coordinate systems. Then we design the 

generalized chaotic system by considering transformation from polar to cartesian 

coordinates. At third, we study the peculiarities of chaotic systems implementation by using 

discrete-time devices. At fourth, we consider an example of a chaotic path planning system's 

design and study. 

2. Method 

2.1. Second order dynamical system motions in polar coordinates 

Let us consider the simplest second order dynamical system which motion is described as 

follows 

𝑦̇1 = 𝑦2;  𝑦̇2 = −𝑦1. (1) 



If one starts to study (1) with phase plane method he obtains very trivial linear 

oscillations (Figure 1a) and phase trajectories (Figure 1b). 

 

a) System time response b) System phase portrait 

Figure 1: System simulation results. 

Due to the simplicity of the above-given oscillations one can use (1) in various 

applications including planning of circle motions for any devices. 

It is necessary to say that in the classical control theory studying of all dynamical systems 

are performed by using the orthogonal cartesian coordinates and assuming that system 

state variables make some orthogonal basis in the system state space.  

It is clear that the above-mentioned coordinates are not the only possible ones and 

studying of system motions depend on how to interpret the system state variables and 

which coordinate basis they form.  

Generally speaking, one can use any coordinates to describe system motions in it. It is 

clearly understood that such changing of the system of coordinate cause occurring of phase 

portraits which differ from known existing one. That is why we offer to perform such 

coordinate transformations to solve path planning problems and design novel motion 

trajectories which can be used as paths for some autonomous vehicles. 

In our paper we consider system state variables as coordinates which are given in a polar 

system of coordinates and their generalizations. Thus, one of system state variable is 

considered as a linear position of some body. This position can be considered as distance ρ 

from some origin 0 to a representing point A and another represent angular position φ of 

the considered body (Figure 2). In the Figure 2 we assume that linear position is 

represented by y1 and angular one is y2, it is necessary to say that fore the system (1) it does 

not matter how to interpret each state variable because they have similar values and forms 

but differ with initial phase. For more complex system it can produce different phase 

portraits. 



It is clear that polar and orthogonal cartesian coordinates interrelates each other with 

well-known dependencies, which can be written down for considered case in such a way 

𝑥1 = 𝑦1 cos(𝑦2) ;  𝑥2 = 𝑦1𝑠𝑖𝑛(𝑦2). (2) 

 

Figure 2: State variables interpretation in polar coordinates. 

Results of numerical solution of (1) and (2) are shown in Figure 3. 

 

a) System time response b) System phase portrait 

Figure 3: Output variables of dynamical system (1) and (2) with initial condition y1(0)=π. 

It is clear that shown in Figure 3 simulation results more complex than given in Figure 1 

and allow to form more complex motion trajectories. Moreover, because the use of 

trigonometric functions oscillations become nonlinear and depend values of 𝑦2 state 

variable. System output variables have different form and amplitude.  



Because of the use of nonlinear function, the considered system depends on initial 

conditions. In Figure 4, we show simulation results for (1) with twice reduced initial value 

of 𝑦1 variable. 

 

a) System time response b) System phase portrait 

Figure 4: Output variables of dynamical system (1) and (2) with initial condition y1(0)=π/2. 

Analysis of simulation results from Figure 3 and Figure 4 allows us to claim that 

considering of system state variables in polar coordinates allows to design nonlinear 

dynamical system which can be used to produce motions path which are tremendously 

differ from those which are produced buy interpreting state variables in orthogonal 

cartesian coordinates. 

2.2. The Generalized Motion in the Orthogonal Coordinate Basis 

Analysis of curves which are studied by using polar coordinate system shows that in the 

most general case distance ρ is considered as function of body angular position φ. We claim 

that the opposite is also true, so angular position φ can depend on linear one ρ. This 

assumption gives us the possibility to generalize (2) as follows 

𝑥1 = 𝑓1(𝑦1, 𝑦2) cos(𝑓2(𝑦1, 𝑦2)) ;  𝑥2 = 𝑓1(𝑦1, 𝑦2) sin(𝑓2(𝑦1, 𝑦2)). (4) 

From control theory viewpoint (1) and (3) form dual channel dynamical system which 

motion is defined by following operator equations 

𝑥1 = 𝑓1(𝑦1, 𝑦2) 𝑐𝑜𝑠(𝑓2(𝑦1, 𝑦2)) ;  𝑥2 = 𝑓1(𝑦1, 𝑦2) 𝑠𝑖𝑛(𝑓2(𝑦1, 𝑦2)) ;  

𝑠𝑦1 = 𝑠𝑦1(0) + 𝑦2;  𝑠𝑦2 = 𝑠𝑦2(0) − 𝑦1, 

(5) 

where 𝑠 is a Laplace operator and 𝑦1(0), 𝑦2(0) are initial values of system state variable. 

One can find block-diagram of such system in Figure 5. 

Contrary to the initial dynamical system (1) which is considered as core system and that 

block-diagram is shown in dashed rectangular, the dynamical system (5) can be considered 



as a dual channel system. The parallel channels of this system are designed by using 

trigonometric expressions with nonlinear generalized arguments which depend on initial 

dynamical system state variables. 

 

Figure 5: Scheme of the generalized dynamical system. 

Since the dynamical system which is shown in Figure 5 is described with differo-

algebraic equations it causes some inconveniences to use control theory methods to study 

systems of such type.  

We offer to avoid this fact and rewrite (5) by using differential equations only. To do this 

we differentiate (4) by time 

𝑥̇1 = (
𝜕𝑓1(𝑦1, 𝑦2)

𝜕𝑦1
𝑦2 −

𝜕𝑓1(𝑦1, 𝑦2)

𝜕𝑦2
𝑦1) cos(𝑓2(𝑦1, 𝑦2)) + 

+𝑓1(𝑦1, 𝑦2) (
𝜕𝑓2(𝑦1, 𝑦2)

𝜕𝑦2
𝑦1 −

𝜕𝑓2(𝑦1, 𝑦2)

𝜕𝑦1
𝑦2) sin(𝑓2(𝑦1, 𝑦2)) ; 

𝑥̇2 = (
𝜕𝑓1(𝑦1, 𝑦2)

𝜕𝑦1
𝑦2 −

𝜕𝑓1(𝑦1, 𝑦2)

𝜕𝑦2
𝑦1) 𝑠𝑖𝑛( 𝑓2(𝑦1, 𝑦2)) + 

+𝑓1(𝑦1, 𝑦2) (
𝜕𝑓2(𝑦1, 𝑦2)

𝜕𝑦2
𝑦1 −

𝜕𝑓2(𝑦1, 𝑦2)

𝜕𝑦1
𝑦2) cos(𝑓2(𝑦1, 𝑦2)). 

(6) 

It is clear that the use of (6) requires to have input signals y1 and y2 which are produced 

by dynamical system (1). Thus, one can consider (1) as the generator of harmonic signals 

for nonlinear dual channel transformation system (6). The main drawback of such system 

is interrelations between channels by input signals. This drawback does not allow to 

perform trajectory calculations by using (6) in parallel way for each channel because it is 

necessary to obtain common inputs. 

We offer to avoid this drawback and improve system performance by redefining motion 

for each channel with two differential equations. That is why we offer to differentiate 𝑥1 and 

𝑥2 output variable for two times. 



𝑥̇1 = (𝛻𝑓1(𝑦1, 𝑦2)cos(𝑓2(𝑦1, 𝑦2)) − 𝛻𝑓2(𝑦1, 𝑦2)𝑓1(𝑦1, 𝑦2)sin(𝑓2(𝑦1, 𝑦2))) (
𝑦2

−𝑦1
) ; 

𝑥̈1 = (𝛻𝑓1(𝑦1, 𝑦2)cos(𝑓2(𝑦1, 𝑦2)) − 𝛻𝑓2(𝑦1, 𝑦2)𝑓1(𝑦1, 𝑦2)sin(𝑓2(𝑦1, 𝑦2))) (
−𝑦1

−𝑦2
) + 

(𝛻2𝑓1(𝑦1, 𝑦2)cos(𝑓2(𝑦1, 𝑦2)) − 2𝛻𝑓1(𝑦1, 𝑦2)𝛻𝑓2(𝑦1, 𝑦2)sin(𝑓2(𝑦1, 𝑦2)) − 

−𝑓1(𝑦1, 𝑦2) (𝛻2𝑓2(𝑦1, 𝑦2)sin(𝑓2(𝑦1, 𝑦2)) + (𝛻𝑓2(𝑦1, 𝑦2))
2

𝑐𝑜𝑠(𝑓2(𝑦1, 𝑦2)))) (
𝑦2

−𝑦1
). 

(7) 

𝑥̇2 = (𝛻𝑓1(𝑦1, 𝑦2)sin(𝑓2(𝑦1, 𝑦2)) + 𝛻𝑓2(𝑦1, 𝑦2)𝑓1(𝑦1, 𝑦2)cos(𝑓2(𝑦1, 𝑦2))) (
𝑦2

−𝑦1
) ; 

𝑥̈2 = (𝛻𝑓1(𝑦1, 𝑦2)sin(𝑓2(𝑦1, 𝑦2)) + 𝛻𝑓2(𝑦1, 𝑦2)𝑓1(𝑦1, 𝑦2)cos(𝑓2(𝑦1, 𝑦2))) (
−𝑦1

−𝑦2
) + 

(𝛻2𝑓1(𝑦1, 𝑦2)sin(𝑓2(𝑦1, 𝑦2)) + 2𝛻𝑓1(𝑦1, 𝑦2)𝛻𝑓2(𝑦1, 𝑦2)cos(𝑓2(𝑦1, 𝑦2)) + 

+𝑓1(𝑦1, 𝑦2) (𝛻2𝑓2(𝑦1, 𝑦2)cos(𝑓2(𝑦1, 𝑦2)) − (𝛻𝑓2(𝑦1, 𝑦2))
2

𝑠𝑖𝑛(𝑓2(𝑦1, 𝑦2)))) (
𝑦2

−𝑦1
). 

(8) 

Equations (6) and (7) define motion of the considered system in the orthogonal cartesian 

coordinates by assuming that 𝑦1 and 𝑦2 are given polar coordinates. Nevertheless, one can 

use the first equation in (7) and (8) as well as (4) to solve inverse problem for the 

considered dual channel dynamical system and define 𝑦𝑖  as function of 𝑥𝑖. 

Such a solution depends on functions 𝑓𝑖(𝑦1, 𝑦2) and in the most general case can be 

defined as follows 

𝑦1 = 𝑔11(𝑥1, 𝑥̇1) = 𝑔21(𝑥2, 𝑥̇2);  𝑦2 = 𝑔12(𝑥1, 𝑥̇1) = 𝑔22(𝑥2, 𝑥̇2), (9) 

where 𝑔𝑖𝑗(∙) are nonlinear functions which are inverse to functions 𝑓1(𝑦1, 𝑦2) and 𝑓2(𝑦1, 𝑦2). 

If one substitutes (9) into the last equations of (7) and (8), he can rewrite these equations 

in such a way 

𝑥̈1 = 𝑞11(𝑥1, 𝑥̇1)cos(𝑞12(𝑥1, 𝑥̇1)) + 𝑞13(𝑥1, 𝑥̇1)𝑐𝑜𝑠(𝑞12(𝑥1, 𝑥̇1)); (10) 

𝑥̇2 = 𝑞21(𝑥2, 𝑥̇2)cos(𝑞22(𝑥2, 𝑥̇2)) + 𝑞23(𝑥2, 𝑥̇2)𝑐𝑜𝑠(𝑞12(𝑥2, 𝑥̇2)), (11) 

where 𝑞𝑖𝑗(∙) are some nonlinear functions which are obtained after substituting (9) into (7) 

and (8) and performing algebraic simplifications. 

The proposed approach allows us to define two independent nonlinear 2nd order 

differential equations which allows to define components of acceleration of moved body 

which motion is defined in the orthogonal coordinate basis.  

It is clearly understood that these components define projections of moved body 

acceleration vector and its length can be found in a trivial way 

𝑎 = √𝑥̈1
2 + 𝑥̈2

2. 
(12) 

One can use (12) to check if the planned motion can be physically implemented and 

suitable for the considered body, body speed and position can be found by integrating (10) 

and (11).  

3. Results and Discussion 

3.1. Duffing Pendulum Modeling and Simulating 

It is clear that one can use both regular and chaotic dynamical system equation to define 

their state variables as polar coordinates in some space plane. Moreover, in case of the use 



chaotic systems it becomes possible to design dynamical system with predefined chaotic 

attractor.  

Let us show the benefits of the usage of our approach by considering well-known Duffing 

equation 

𝑦1̇ = 𝑦2;   𝑦2̇ = −𝑎11𝑦2 − 𝑎01𝑦1 − 𝑎03𝑦1
3 + 𝑏1𝑐𝑜𝑠(𝑏2𝑡), (13) 

where 𝑦1 and 𝑦2 are pendulum position and speed, 𝑎𝑖𝑗  are pendulum factors, 𝑏1 and 𝑏2 are 

external harmonic signal parameters. 

In this paper we study Duffing pendulum with following parameters 𝑎11 = 0.02, 𝑎01 =

1, 𝑎03 = 5, 𝑏1 = 8, 𝑏2 = 0.5. Also, we assume zero initial conditions for the considered 

motion. Numerical solution of the Duffing equation (13) is shown in Figure 6. 

 

a) System time response b) System phase portrait 

Figure 6: Numerical solution of (13). 

Analysis of Figure 6 proves that under some conditions Duffing pendulum can be 

considered as chaotic dynamical system with external harmonic excitation. Figure 6 makes 

the initial base to compare with novel results. Due to the features of attractor in Figure 6b 

we call it as infinity-like attractor. It necessary to say that the Duffing pendulum is 

considered because of this is a one of simplest second order chaotic systems. Nevertheless, 

one can use any chaotic system as the core to perform the above-given transformations. 

3.2. Duffing Pendulum Dynamic in Polar Coordinates 

3.2.1. The Simplest Polar to Cartesian Coordinate Transformations 

At first, we consider the simplest case of the proposed approach use. In this case we assume 

that core dynamical system is defined as (13) and transformation expressions given by (2). 

To study the effect of interpreting system state variables we consider both cases 

𝜌 = 𝑦1; 𝜑 = 𝑦2  (14) 

and 

𝜌 = 𝑦2; 𝜑 = 𝑦1 . (15) 



Simulation results for the dynamical system (13) with transformation (2) and variables 

(14) are shown in Figure 7 and Figure 8 illustrates results of numerical solution of (13) and 

(2) with variables (15). 

 

a) System time response b) System phase portrait 

Figure 7: Numerical solution of (13) with transformations (2) and variables (14). 

 
a) System time response b) System phase portrait 

Figure 8: Numerical solution of (13) with transformations (4) and variables (15). 

Analysis of given in Figure 7 and Figure 8 simulation results allows us to claim that 

interpretation of Duffing pendulum state variables as variables in polar coordinates with 

following transformation into orthogonal coordinates allows us to dramatically change 

Duffing pendulum attractor and form of its oscillations. Moreover, the use 𝑦1 as pendulum 

linear position and 𝑦2 as its angular position gives us the possibility to increase the 

nonlinearity of oscillations and make them more complex. At the same time, the use of 𝑦2 as 

pendulum linear position and y1 as its linear one makes pendulum oscillation less nonlinear. 

In both cases pendulum attractors differ from the initial one. Furthermore, the assuming 

that pendulum variables are defined in polar coordinates avoid occurring of dual scroll 

attractors and produce novel attractors for this dynamical system which we call as eye-like 

for given in Figure 7b attractor and clover-like attractor for attractor which is given in 

Figure 8b. 



3.2.2. The Affine Polar to Cartesian Coordinate Transformations 

Now we make transformations (14) and (15) more complex and assume that the pendulum 

linear position in polar coordinates is defined as linear combination of Duffing pendulum 

state variables and its angular position is unchanged 

𝜌 = 𝑦1 + 𝑦2; 𝜑 = 𝑦2  (16) 

and 

𝜌 = 𝑦1 + 𝑦2; 𝜑 = 𝑦1.  (17) 

One can find simulation results for dynamical systems which are described by (13), (16) 

and (13), (17) in Figure 9 and Figure 10. 

 

a) System time response b) System phase portrait 

Figure 9: Numerical solution of (13) with transformations (2) and variables (16). 

 
a) System time response b) System phase portrait 

Figure 10: Numerical solution of (13) with transformations (4) and variables (17). 



In Figure 11 and Figure 12 we show simulation results for the case when linear 

pendulum position is defined by only one pendulum state variable and its angular position 

is sum of pendulum state variables. In other words, following transformations are used 

𝜌 = 𝑦1; 𝜑 = 𝑦1 + 𝑦2  (18) 

and 

𝜌 = 𝑦2; 𝜑 = 𝑦1 + 𝑦2.  (19) 

 
a) System time response b) System phase portrait 

Figure 11: Numerical solution of (13) with transformations (4) and variables (18). 

 
a) System time response b) System phase portrait 

Figure 12: Numerical solution of (13) with transformations (4) and variables (19). 

Analysis of given in Figure 9 – Figure 12 simulation results shows that if one defines 

linear combinations of Duffing pendulum state variables and then use the obtained 

combinations as initial signals for transformation (2) it becomes possible to change system 

attractors in tremendous ways.  

It is necessary to say that usage of linear combinations of Duffing pendulum state 

variables also allows us to form hidden attractors. One of such attractors (Figure 13) can be 

obtained if one uses following transformation which is the combination of the two previous 

ones 



𝜌 = 𝑦1 + 𝑦2; 𝜑 = 𝑦1 + 𝑦2 . (20) 

The main feature of the shown in Figure 13 system that in polar coordinates its linear 

and angular positions equal each other. 

 

a) System time response b) System phase portrait 

Figure 13: Numerical solution of (13) with transformations (4) and variables (20). 

Such an attractor is formed because of the quite stable amplitude of chaotic oscillations 

in the considered system. Contrary to the above-considered systems the last one forms 

motion trajectories which quite close each other but motions along these trajectories 

becomes according to unpredictive laws. 

Similar results can be obtained in special cases when one of pendulum positions is 

assumed as constant (Figure 14 and Figure 15) 

𝜌 = 𝑟; 𝜑 = 𝑦1 + 𝑦2;  (21) 

𝜌 = 𝑦1 + 𝑦2; 𝜑 = 𝑓 . (22) 

 

a) System time response b) System phase portrait 

Figure 14: Numerical solution of (13) with transformations (4) and variables (21). 



 

a) System time response b) System phase portrait 

Figure 15: Numerical solution of (13) with transformations (4) and variables (22). 

Analysis of Figure 13 – Figure 15 proves the possibility of design chaotic systems with 

hidden attractors by using Duffing equations.  

3.3. Duffing Pendulum-based Chaotic Dynamical System Design and Implementation 

We design all above-considered chaotic systems by taking into account the given in previous 

section approach which is based on the taking into account (13) and differentiate (2) for 

two times for each linear and angular pendulum position in the polar coordinates. 

Now let us show the system design which is based on (13), (2). 

We show such a design by differentiating first expression in (2)  

 𝑥̇1 = 𝑦2 cos(𝑦2) − 𝑦1(𝑏1 cos(𝑏2𝑡) − 𝑎11𝑦2 − 𝑎01𝑦1 − 𝑎03𝑦1
3) sin(𝑦2). (23) 

It is clear that both of expressions (2) and (23) are nonlinear for state variables 𝑦𝑖 . That 

is why, we use numerical methods to solve them  

𝑦1 =
𝑥1

𝑐𝑜𝑠(𝑦2)
; 

𝑦2 = 𝑦2 −
𝑥̇1−𝑦2cos (𝑦2)+𝑥1(𝑏1 cos(𝑏2𝑡)−𝑎11𝑦2𝑖−1−𝑎01

𝑥1
𝑐𝑜𝑠(𝑦2)

−𝑎03
𝑥1

3

𝑐𝑜𝑠3(𝑦2)
) 𝑡𝑎𝑛(𝑦2)

𝑦2 𝑠𝑖𝑛(𝑦2)−𝑐𝑜𝑠(𝑦2)−𝑥1(𝑎11+
𝑎01𝑥1 𝑠𝑖𝑛(𝑦2)

𝑐𝑜𝑠2(𝑦2)
+

3𝑎03𝑥1
3 𝑠𝑖𝑛(𝑦2)

𝑐𝑜𝑠4(𝑦2)
) 𝑡𝑎𝑛(𝑦2)−

−𝑥1(𝑎11𝑦2+
𝑎01𝑥1

𝑐𝑜𝑠(𝑦2)
−

𝑎03𝑥1
3

𝑐𝑜𝑠3(𝑦2)
)(1+𝑡𝑎𝑛2(𝑦2))

. 

(24) 

Then we differentiate (23) one more time  

𝑥1

..
= −𝑦1cos (𝑏2𝑡)2cos (𝑦2)𝑏1

2 + 𝑏1((2𝑎03𝑦1
4 + 2𝑎01𝑦1

2 + 2𝑎11𝑦1𝑦2 + 1)cos (𝑦2 + 

+sin (𝑦2)(𝑎11𝑦1 − 2𝑦2))cos (𝑏2𝑡) + 𝑦1sin (𝑦2)sin (𝑏2𝑡)𝑏1𝑏2 − 

−(𝑎03𝑦1
4 + 𝑎01𝑦1

2 + 𝑎11𝑦1𝑦2 + 1)(𝑎03𝑦1
3 + 𝑎01𝑦1 + 𝑎11𝑦2) cos(𝑦2) − sin(𝑦2) × 

× (𝑎03𝑎11𝑦1
4 − 5𝑎03𝑦2𝑦1

3 + 𝑎01𝑎11𝑦1
2 + 𝑎11

2 𝑦1𝑦2 − 3𝑎01𝑦1 − 2𝑎11𝑦2
2). 

(25) 



and substitute into the second derivative (25) values of 𝑦1 and 𝑦2 from (24). 

Other equations are defined in the similar way. We offer to use numerical approximation 

of derivative operator with feedback differences 

 
𝑑

𝑑𝑡
≈

1−𝑧−1

𝑧−1𝑇
, (26) 

where 𝑧−1 is a shift operator and 𝑇 is a discretization time to implement (25) and similar 

equations in the digital devices. 

To perform transformation of (25) in discrete-time form, let us rewrite it as follows 

 𝑥̇11 = 𝑥12; 

𝑥̇12 = −𝑦1cos (𝑏2𝑡)2cos (𝑦2)𝑏1
2 + 𝑏1((2𝑎03𝑦1

4 + 2𝑎01𝑦1
2 + 2𝑎11𝑦1𝑦2 + 1) cos(𝑦2)) 

+sin (𝑦2)(𝑎11𝑦1 − 2𝑦2))cos (𝑏2𝑡) + 𝑦1sin (𝑦2)sin (𝑏2𝑡)𝑏1𝑏2

− (𝑎03𝑦1
4 + 𝑎01𝑦1

2 + 𝑎11𝑦1𝑦2 + 1)(𝑎03𝑦1
3 + 𝑎01𝑦1

+ 𝑎11𝑦2) cos(𝑦2)

− sin(𝑦2) (𝑎03𝑎11𝑦1
4 − 5𝑎03𝑦2𝑦1

3 + 𝑎01𝑎11𝑦1
2 + 3𝑦2𝑎11

2 𝑦1

− 𝑦2𝑎01𝑦1 − 2𝑎11𝑦2
2) 

(27) 

and apply (26)  

 𝑥11 = 𝑧−1𝑥11 + 𝑇𝑧−1𝑥12; 

𝑥12 = 𝑧−1𝑥12 + 𝑧−1𝑇(𝑏1(()2𝑎03𝑦1
4 + 2𝑎01𝑦1

2 + 2𝑎11𝑦1𝑦2 + 1)cos (𝑦2) −

𝑦1cos (𝑏2𝑡)2cos (𝑦2)𝑏1
2 + +sin (𝑦2)(𝑎11𝑦1 − 2𝑦2))cos (𝑏2𝑡) +

𝑦1sin (𝑦2)sin (𝑏2𝑡)𝑏1𝑏2 − (𝑎03𝑦1
4 + 𝑎01𝑦1

2 + 𝑎11𝑦1𝑦2 + 1)(𝑎03𝑦1
3 + 𝑎01𝑦1 +

𝑎11𝑦2)cos (𝑦2) − sin (𝑦2)(𝑎03𝑎11𝑦1
4 − 5𝑎03𝑦2𝑦1

3 + 𝑎01𝑎11𝑦1
2 + 3𝑦2𝑎11

2 𝑦1 −

𝑦2𝑎01𝑦1 − 2𝑎11𝑦2
2)). 

(28) 

One can use modern CPU/MCU/FPGA devices to implement the designed chaotic system. 

4. Conclusions 

The interpreting of dynamical system state variables as coordinates in some coordinate 

system which is different from the orthogonal cartesian one gives us the possibility to define 

novel dynamical systems with novel oscillations and attractors. One can transform these 

attractors into a conventional orthogonal cartesian coordinate system by using various 

transformation expressions. The use of these transformations allows us to define a 

multichannel dynamical system and bind each channel with corresponding coordinates to 

define body position in the plane for each time moment. Combining these moments gives us 

the possibility to define the desired trajectory for a considered body. Different 

transformation allows us to determine different paths for a vehicle and use them in various 

applications. 

One can use both regular and chaotic systems as core systems to implement our 

approach. In the case of chaotic system usage, one can get various chaotic systems, in which 

attractors have features that can be useful in one or another application. 

The above-considered systems are designed and studied by using linear combinations of 

Duffing pendulum state variables. Even in this case, the transformed system is defined with 

quite complex equations due to the trigonometric function use and system nonlinearity. 

This fact requires to use of numerical methods to complete the coordinate transformation. 

We believe that replacing nonlinear functions with piecewise linear ones makes it possible 



to simplify transformation from one coordinate system to another and avoid the use of 

numerical methods. We see the check of this hypothesis as one of the future developments 

of our work. One more possible problem to solve by using the proposed approach is 

studying dynamical systems with nonlinear combinations of their state variables. Also, one 

can use the proposed approach to design multidimensional dynamical systems that have 

attractors in some N-th dimensional coordinate systems. 
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