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Abstract
Over time, various semantic frameworks have emerged for Epistemic Logic Programs (ELPs), which extend

Answer Set Programming (ASP) by incorporating epistemic operators. These frameworks often define ELP

semantics in terms of "world views," comprising sets of belief sets. Many of these approaches are "reduct-based,"

mirroring techniques used in ASP. They typically involve starting with a candidate world view, constructing the

program’s reduct based on this candidate, determining the stable models of the reduct, and verifying whether

the candidate indeed forms a valid world view. Several solvers have been devised for these methods. However,

ongoing debates over the "right" semantics continue, leading to the introduction of new variations. We recently

proposed a rapid prototyping approach to facilitate experimentation with reduct-based semantics. This approach

allows for testing on small to medium-sized programs before investing resources in developing dedicated solvers.

In this paper, we refine this method in our paper and showcase its implementation in the ASP Chef System,

applying it to various well-established seminal semantic approaches.

1. Introduction

The initial formulation of Epistemic Logic Programs (ELPs, referred to simply as "programs" unless

specified otherwise) was introduced several years ago in [1] and [2]. ELPs aimed to extend Answer Set

Programs (ASP programs), which are defined under the Answer Set Semantics [3], by incorporating

"epistemic operators" to facilitate various forms of epistemic reasoning in a practical yet principled

manner. Consequently, there was an early anticipation of extending ASP solvers to accommodate

ELPs. However, devising the semantics for ELPs, which should serve as the foundation for solver

implementations, proved to be more intricate than initially anticipated. The obstacles arise from the

fact that the new epistemic operators have the capability to introspectively examine a program’s own

semantics, defined in terms of its “answer sets.” In fact, K𝐴, where K represents "knowledge," is deemed

true if the (ground) atom 𝐴 holds true in every answer set of the program Π where K𝐴 is situated.

Semantics of ELPs is provided in terms of world views, which are sets of answer sets (instead of

a unique set of answer sets like in ASP). Each world view, in accordance with a specified semantic

approach, consistently fulfills the epistemic expressions found within a given program. Several semantic

approaches for ELPs have been introduced beyond the seminal ones, among which those proposed in

[4], [5], [6], [7], [8], [9], and [10]. Many of these approaches extend to ELPs what done for ASP, and

thus are reduct-based, that is, to find world views of a given program they prescribe to:

∙ start with a candidate world view;

∙ build the reduct of the program with respect to this candidate world view, according to some specific

definition of such reduct;

∙ compute the set of stable models of the reduct;

∙ check whether the candidate world view is indeed a world view, i.e., consists exactly of this set of

stable models.
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While solvers have been devised for several of these approaches, the landscape of semantic proposals

continues to evolve, with the likelihood of new ones being introduced in the future. This ongoing

evolution is driven by the absence of consensus regarding the “right” semantics.

We have proposed in [11] a fast-prototyping methodology to obtain what we can call a “quick solver”

(in the sense that it is quickly and easily obtained) for any reduct-based semantics, with no attention to

performance, but with the advantage of being able to experiment with the approach on small/medium

programs and not only on very small programs as done so far on paper. In this paper, we revise and

simplify the method described in [11] by making non-trivial changes that increase effectiveness and

usability of the approach. Consequently, we present its implementation in the ASP Chef system [12].

We then illustrate in some detail how the implementation works on some of the seminal semantic

approaches, and show how it is easily customizable to other approaches. So, the demanding process of

implementing a performant dedicated solver for a new semantic approach can be postponed after a

testing phase is performed by using the quick solver.

The paper is organized as follows. In Section 2 we recall ASP. In Sections 3 and 4, we recall ELPs

and their (envisaged) semantic properties, and we report the definition of some well-known semantic

approaches. In Section 5, we introduce our proposal for constructing a solver for any given reduct-based

semantics with no regard to efficiency but rather to fast prototyping. We present its implementation,

developed via the ASP Chef system, and discuss how it works on some well-known seminal semantic

approaches. Finally, in Section 6, we conclude. In the Appendix, for the sake of completeness, we

report tables with the results that well-established semantics return on some tiny programs, and a list

of available ELP solvers.

2. Answer Set Programming and Answer Set Semantics

In ASP one can see a program as a set of statements that specify a problem, where each answer set

represents a solution compatible with this specification. Whenever an ASP program has no answer sets,

it is said to be inconsistent, otherwise it is said to be consistent. Syntactically, an ASP program Π is a

collection of rules of the form

𝐴1 ∨ . . . ∨𝐴𝑔 ← 𝐿1, . . . , 𝐿𝑛 (1)

where each 𝐴𝑖, 0 ≤ 𝑖 ≤ 𝑔, is an atom, ∨ denotes disjunction and the 𝐿𝑖s, 0 ≤ 𝑖 ≤ 𝑛, are literals (i.e.,

atoms or negated atoms of the form 𝑛𝑜𝑡𝐴). The left-hand side and the right-hand side of the rule are

called head and body, respectively. A rule with empty body is called a fact. Disjunction can occur in

rule heads only (and hence in facts). A rule with empty head (or, equivalently, with head ⊥), of the

form ‘← 𝐿1, ..., 𝐿𝑛.’ or ‘⊥ ← 𝐿1, ..., 𝐿𝑛.’, is a constraint, stating that 𝐿1, . . . , 𝐿𝑛 are not allowed to be

simultaneously true in an answer set. The impossibility of fulfilling such requirements is one reason a

program is inconsistent. Various extensions of the ASP language, including those employing aggregates

and weak constraints, have been proposed. For a thorough explanation, we direct interested readers to

the literature [13, 14]. In this study, we consider just ground programs, so implicitly assuming that all

atoms are propositional.

The answer set (or “stable model”) semantics can be defined in several ways [15, 16, 17]. However,

the answer sets of a program Π, if any exists, are among the supported minimal classical models of the

program interpreted as a first-order theory in the obvious way. The original definition [3] introduced

for programs where rule heads were limited to be single atoms, was in terms of the ‘GL-Operator’.

Given set of atoms 𝐼 and program Π, 𝐺𝐿Π(𝐼) is defined as the least Herbrand model of the program Π𝐼
,

namely, the (so-called) Gelfond-Lifschitz reduct of Π w.r.t. 𝐼 . Π𝐼
is obtained from Π by: (1) removing all

rules which contain a negative literal 𝑛𝑜𝑡𝐴, for 𝐴 ∈ 𝐼 ; and by (2) removing all negative literals from

the remaining rules. The fact that Π𝐼
is a positive program ensures that a least Herbrand model exists.

Then, 𝐼 is an answer set whenever 𝐺𝐿Π(𝐼) = 𝐼 .

Well-developed freely available solvers exist that compute the answer sets of a given program [18, 19].

Solvers are normally provided within engines that feature auxiliary functionalities to aid programmers.



3. Epistemic Logic Programming

3.1. Introduction and Intuition

In Epistemic Logic Programming (ELP), one can postulate about what is known, meaning true in every

answer set of a program in the program itself. This is done through literals of the form K𝐿, K intuitively

meaning “knowledge”, where K𝐿 is called a subjective literal in contrast to usual objective literals.
Note that mentioning 𝐿 in some rules of a given program Π means that 𝐿 is intended to be true

in some of the answer sets of Π. In contrast, K𝐿 has a much stronger connotation, meaning that 𝐿
is unequivocally true in any situation, i.e., true in all the answer sets. This makes Epistemic Logic

Programming suitable for all those critical applications in fields such as law, cybersecurity, distributed

computing, recommender systems, etc., where one must be able to refer to, so to say, reliable truth.

Still, as in ASP, uncertainty or conflict about the truth of some atom gives rise to several answer sets;

in addition, in ELP, uncertainty or conflict about knowledge gives rise to radically alternative scenarios

called world views, that are sets of answer sets, each one stemming from the given program and the

assumptions on knowledge expressed therein. For example, the program Π1

𝑎← 𝑛𝑜𝑡 𝑏 𝑒← 𝑛𝑜𝑡K𝑓
𝑏← 𝑛𝑜𝑡 𝑎 𝑓 ← 𝑛𝑜𝑡K𝑒

(2)

has two world views, under every semantics: one is [{𝑎, 𝑒}, {𝑏, 𝑒}], where K𝑒 is true (as 𝑒 is, in fact,

true in both answer sets) and K𝑓 is false, and the other one is [{𝑎, 𝑓}, {𝑏, 𝑓}] where K𝑓 is true (as 𝑓
is, in fact, true in both answer sets) and K𝑒 is false. Note that, according to a widely-used convention,

each world view, which is a set of answer sets, is denoted by using brackets [ ]. The presence of two

answer sets in each world view of Π1 is due to the cycle on objective atoms 𝑎 and 𝑏. In contrast, the

presence of two world views is due to the cycle involving subjective literals (in general, the existence

and number of world views are related to such kinds of cycles; see [20] for a detailed discussion).

As a concrete example, consider the following program, expressed in basic non-disjunctive ASP

enriched via the K operator. The program states (in a hypersimplified way) under which conditions

a patient should consult a doctor. In particular, in the following formulation, a patient will consult a

specific doctor for some problem 𝑝 on which the doctor is specialized only if the doctor is known to

be reliable. Notice here the difference that this brings to the formulation: it is not sufficient that the

doctor might be possibly reliable (in some answer set) but must be certainly reliable (in every answer

set). Since the first rule must be grounded, in order to show concise world views we consider below

only one doctor. The initial version of the program can be the following:

𝑐𝑜𝑛𝑠𝑢𝑙𝑡(𝑝𝑎𝑡𝑖𝑒𝑛𝑡,𝑋, 𝑝)← 𝑑𝑜𝑐𝑡𝑜𝑟(𝑋), 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑋, 𝑝), 𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑋),K 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑋).
𝑑𝑜𝑐𝑡𝑜𝑟(𝑑1).
𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑑1, 𝑝).

This embryonic program has only one world view, shown below, with just one answer set inside (the

world view is enclosed in square brackets and the answer set in braces):

[{𝑑𝑜𝑐𝑡𝑜𝑟(𝑑1), 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑑1, 𝑝)}]

There is no indication in the program, and thus, from the world view, that the doctor is reliable and

has a good reputation and therefore can be consulted. One can then extend the program to outline

radical uncertainty by stating that a doctor may be known to be either reliable or unreliable. This is

expressed by a negative cycle on 𝑛𝑜𝑡K, that generates two world views:

𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑋)← 𝑑𝑜𝑐𝑡𝑜𝑟(𝑋), 𝑛𝑜𝑡K𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑋).
𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑋)← 𝑑𝑜𝑐𝑡𝑜𝑟(𝑋), 𝑛𝑜𝑡K 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑋).

Assume that there is also uncertainty about the doctor’s good reputation, expressed in ASP as follows:

𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1)← 𝑛𝑜𝑡 𝑛𝑜𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1).
𝑛𝑜𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1)← 𝑛𝑜𝑡 𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1).



The program outlined so far has, in fact, two world views, each including two answer sets, reflecting

the uncertainty about the doctor’s good reputation. The doctor is concluded reliable in one world view,

𝑊1, and unreliable in the other one, 𝑊2. Still, even in the former world view it is not concluded that

(s)he can be consulted because of the uncertainty about her reputation.

𝑊1 = [{𝑑𝑜𝑐𝑡𝑜𝑟(𝑑1), 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑑1, 𝑝), 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑑1), 𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1)},
{𝑑𝑜𝑐𝑡𝑜𝑟(𝑑1), 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑑1, 𝑝), 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑑1), 𝑛𝑜𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1)}]

𝑊2 = [{𝑑𝑜𝑐𝑡𝑜𝑟(𝑑1), 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑑1, 𝑝), 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑑1), 𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1)},
{𝑑𝑜𝑐𝑡𝑜𝑟(𝑑1), 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑑1, 𝑝), 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑑1), 𝑛𝑜𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1)}]

Assume now that a new rule will be established stating that a doctor has a good reputation if (s)he is

known to have issued brilliant diagnoses in the past and that evidence about this will also be acquired

concerning doctor 𝑑1.

𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑋)← 𝑑𝑜𝑐𝑡𝑜𝑟(𝑋),K 𝑝𝑎𝑠𝑡_𝑏𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑡_𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠(𝑋).
𝑝𝑎𝑠𝑡_𝑏𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑡_𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠(𝑑1).

Note that K 𝑝𝑎𝑠𝑡_𝑏𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑡_𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠(𝑑1) immediately follows as its argument is a fact, i.e., is

unconditionally true. The conclusion 𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑋) that can be now drawn rules out the second

answer set from both world views, which become:

𝑊 ′
1 = [{𝑑𝑜𝑐𝑡𝑜𝑟(𝑑1), 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑑1, 𝑝), 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑑1), 𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1),

𝑝𝑎𝑠𝑡_𝑏𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑡_𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠(𝑑1), 𝑐𝑜𝑛𝑠𝑢𝑙𝑡(𝑝𝑎𝑡𝑖𝑒𝑛𝑡, 𝑑1, 𝑝)}]
𝑊 ′

2 = [{𝑑𝑜𝑐𝑡𝑜𝑟(𝑑1), 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑(𝑑1, 𝑝), 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑑1), 𝑔𝑜𝑜𝑑_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑑1),
𝑝𝑎𝑠𝑡_𝑏𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑡_𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠(𝑑1)}]

According to 𝑊1, the patient can finally consult the doctor about her problem. In addition, since a

brilliant doctor can hardly be considered unreliable, one might add the following constraint, stating, in

fact, that it is impossible that a doctor issuing brilliant diagnoses in the past is known to be unreliable:

← 𝑑𝑜𝑐𝑡𝑜𝑟(𝑋),K 𝑝𝑎𝑠𝑡_𝑏𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑡_𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠(𝑋),K𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒(𝑋).

This constraint rules out the second world view, so 𝑊 ′
1 will become the unique world view of the

program, and no uncertainty is left.

Notice that for this very simple program that we have incrementally constructed, we end up with a

single world view, but this is not always the case. In general, there can be several world views, and so

uncertainty exists about which scenario (outlined in a world view) is more reliable. Extensions to the

basic ELP approach (that we do not consider here) provide epistemic operators ranging over the entire

set of world views.

3.2. Syntax and Semantics

Epistemic Logic Programs (ELPs) allow one to express within ASP programs positive and negative

subjective literals (in addition to objective literals, that are those that can occur in plain ASP programs,

plus the truth constants ⊤ and ⊥). A positive subjective literal is of the form K𝐿, where K is the

epistemic operator of knowledge and 𝐿 is an objective literal (so, epistemic operators cannot be nested),

meaning that 𝐿 is “known” as it is true in every answer set of the given program Π (namely, 𝐿 is a

cautious consequence of Π). The syntax of rules in an ELP program is analogous to ASP, save that literals

in the body can now be either objective or subjective. An ELP program is called objective if no subjective

literals occur therein; that is, it is an ASP program. A constraint involving (also) subjective literals is

called a subjective constraint, whereas one involving objective literals only is an objective constraint. Let

Bodysubj (𝑟) be the (possibly empty) set of subjective literals occurring in the body of rule 𝑟. Subjective
rules are those whose body is only composed of subjective literals.

Let a semantics 𝒮 be a function mapping each program into sets of belief views, that is sets of sets

of objective literals, where 𝒮 has the property that, if Π is an objective program, then the unique



member of 𝒮(Π) is the set of stable models of Π. Given a program Π, each member of 𝒮(Π) is called an

𝒮-world view of Π. One usually writes “world view” instead of “𝒮-world view” whenever mentioning

the specific semantics is irrelevant. As usual, for any world view 𝑊 and any subjective literal K𝐿, we

write 𝑊 |= K𝐿 if and only if for all 𝐼 ∈ 𝑊 the literal 𝐿 is satisfied by 𝐼 (i.e., if 𝐿 ∈ 𝐼 for 𝐿 atom, or

𝐴 ̸∈ 𝐼 if 𝐿 is 𝑛𝑜𝑡𝐴). 𝑊 satisfies a rule 𝑟 if each 𝐼 ∈𝑊 satisfies 𝑟.

An interesting attempt to establish useful properties that ELP’s semantics should obey can be found

in the works by Cabalar et al. 2021, 2020. The authors state that properties analogous to the ones which

have been defined over time for ASP might prove useful for ELPs as well. In ASP, in fact, the answer

sets of a given program can be computed incrementally, starting from the answer sets of the so-called

bottom part of the program, which are used to simplify the so-called top part, where the process can be

iterated by further splitting the top and/or the bottom [22]. Hence, Cabalar et al. extend to ELPs this

idea by proposing a notion of epistemic splitting, where top and bottom are defined w.r.t. the occurrence

of epistemic operators. They also consider subjective constraint monotonicity and foundedness. The

property of subjective constraint monotonicity states that, for any ELP program Π and any subjective

constraint 𝑟, 𝑊 is a world view of Π ∪ {𝑟} iff both 𝑊 is a world view of Π and 𝑊 satisfies 𝑟. Thus, if

this property is fulfilled by a semantic 𝒮 , a constraint can rule out world views but it cannot rule out

some answer set from within a world view. Notice that epistemic splitting implies subjective constraint

monotonicity. Foundedness implies that atoms occurring in sets within a world view cannot have

been derived through cyclic positive dependencies, where, to define such dependencies, K𝐴 is seen as

the same as 𝐴. Finally, they define the class of epistemically stratified programs that admit a unique

world view (these programs are those where, intuitively, the use of epistemic operators is stratified).

Foundedness appears to be a reasonable property to fulfill. The problem of unfounded world views was

discovered a long time ago with G94. In fact, in the example:

𝑎← K𝑎.

one has that [{𝑎}] is a world view, in that it entails K𝑎, thus allowing 𝑎 to be derived. This is due to the

fact that, in many approaches, what is known is dictated by the world view, and there is no way (so far,

though work is being done to overcome this problem) to impose that it should be consistently derived

from the program as well.

4. Proposals for ELP Semantics

In this section we report some of the most relevant semantic definitions for ELPs, concentrating on the

reduct-based ones. To compare the behaviour of the various semantics on practical tiny examples, the

reader may refer to Tables 1 and 2 in the Appendix. At present, there is no consensus about which is the

‘right’ semantic approach, and of which results a semantics should return on controversial examples

(for instance, on those in Table 2). A debate is quite lively about what the ‘intuitive’ outcome of these

examples should be. This constitutes a strong motivation for our approach, that is, providing a way

of quickly and easily constructing a solver so as to be able to make experiments with new semantic

approaches or with variations of existing ones.

We start with the seminal definition of the first ELP semantics, introduced in [2], that we call for

short G94. In what follows, let 𝑟 be a rule in an ELP program Π.

Definition 4.1 (G94-world views). The G94-reduct of Π w.r.t. a non-empty set of interpretations 𝑊 is
obtained by:

(i) replacing by ⊤ every subjective literal 𝐿 ∈ Bodysubj (𝑟) such that 𝐿 is of the form K𝐺 and 𝑊 |= 𝐺,
and

(ii) replacing all other occurrences of subjective literals of the form K𝐺 by ⊥.

A non-empty set of interpretations 𝑊 is a G94-world view of Π iff 𝑊 coincides with the set of all stable
models of the G94-reduct of Π w.r.t. 𝑊 .



This definition was then extended in [4] introducing the semantics G11:

Definition 4.2 (G11-world views). The G11-reduct of Π w.r.t. a non-empty set of interpretations 𝑊 is
obtained by:

(i) replacing by ⊥ every subjective literal 𝐿 ∈ Bodysubj (𝑟) such that 𝑊 ̸|= 𝐿,
(ii) removing all other occurrences of subjective literals of the form 𝑛𝑜𝑡K𝐿,

(iii) replacing all other occurrences of subjective literals of the form K𝐿 by 𝐿.

The set 𝑊 is a G11-world view of Π iff 𝑊 coincides with the set of all stable models of the G11-reduct of Π
w.r.t. 𝑊 .

Cabalar et al. [21] noticed that the semantics K15 introduced in [23] and recalled by the following

definition, slightly generalizes the semantics G11:

Definition 4.3 (K15-world views). The K15-reduct of Π w.r.t. a non-empty set of interpretations 𝑊 is
obtained by:

(i) replacing by ⊥ every subjective literal 𝐿 ∈ Bodysubj (𝑟) such that 𝑊 ̸|= 𝐿, and
(ii) replacing all other occurrences of subjective literals of the form K𝐿 by 𝐿.

The set 𝑊 is a K15-world view of Π iff 𝑊 coincides the set of all stable models of the K15-reduct of Π
w.r.t. 𝑊 .

Semantics G11 and K15, that are refinements of the original G94 semantics, have been proposed over

time to cope with new examples that were discovered, on which existing semantic approaches produce

unwanted or not intuitive world views.

K15 can be seen as a basis for the semantics proposed in [7], called S16 for short. In particular, S16

treats K15 world views as candidate solutions, to be pruned in a second step, where some world views

are removed by applying the principle of keeping those which maximize what is not known. World

views in S16 are obtained in particular as follows, where note however that [7] consider the operator

not, that can be rephrased as 𝑛𝑜𝑡K𝐴 where 𝑛𝑜𝑡 is ASP standard ‘default negation’ (meaning that 𝐴
must be false in some answer set of a given world view).

Let 𝐸𝑃 (Π) be the set of literals of the form not 𝐹 occurring in given program Π.

Definition 4.4 (S16-world views). Given Φ ⊆ 𝐸𝑃 (Π), the epistemic reduct ΠΦ of Π w.r.t. Φ is ob-
tained by:

(i) replacing every not 𝐹 ∈ Φ with ⊤, and
(ii) replacing every not 𝐹 ̸∈ Φ with 𝑛𝑜𝑡 𝐹 .

Then, the set 𝒜 of the answer sets of ΠΦ is a candidate world view if every not 𝐹 ∈ Φ is true w.r.t. 𝒜
(i.e., 𝐹 is false in some answer set 𝐽 ∈ 𝒜) and every not 𝐹 ̸∈ Φ is false (i.e., 𝐹 is true in every answer set
𝐽 ∈ 𝒜).

We say that𝒜 is obtained from Φ (or it is corresponding to Φ, or that it is a candidate world view w.r.t. Φ),
where Φ is called a candidate valid guess. Then, 𝒜 is an S16-world view if it is maximal, that is, if there
exists no other candidate world view obtained from guess Φ′ where Φ ⊂ Φ′ (so, Φ is called a valid guess).

All the above semantics, in order to check whether a belief view 𝒜 is indeed a world view, adopt

some kind of reduct, reminiscent of that related to the stable model semantics, and 𝒜 is a world view if

it is stable w.r.t. this reduct.

The F15 semantics [6, 24] is based on very different principles. Namely, it is based on a combination

of Equilibrium Logic [25, 26] with the modal logic S5. Differently from F15, FAAEL [10] is based

on the modal logic KD45. As [10] showed, FAAEL satisfies epistemic splitting, subjective constraint

monotonicity, and foundedness. G94 satisfies epistemic splitting, subjective constraint monotonicity,

but not foundedness. In [10], it is proved that FAAEL world views coincide with founded G94 world



views; this is an interesting connection, as a solver for G94, enhanced with a post-processing phase,

works also for FAAEL.

For formal definitions of F15 and FAAEL, which, for lack of space, we cannot report here, we refer the

reader to the aforementioned references. Also, we apologize to the readers and to the authors because,

for lack of space, we do not consider other recent semantics, such as [9, 27].

Another reduct-based semantics has been proposed by the authors of this paper [28, 29] and is still

under refinement; the last version is reported below. This approach considers subjective literals K𝐺 and

Knot𝐺 as new atoms, called knowledge atoms. Negation 𝑛𝑜𝑡 in front of knowledge atoms is assumed to

be the standard default negation. So, instead of ELPs proper, we here consider ASP programs possibly

involving knowledge atoms.

An epistemic interpretation 𝒲 is in our case a possibly empty set of sets of atoms, each such set

composed of objective atoms occurring in the head of some (possibly unit) rule in Π. We make a

difference with previous approaches where we allow𝒲 to be empty.

Definition 4.5 (CF24F-adaptation). The CF24F-adaptation Π-𝒲 of a program Π with respect to an
epistemic interpretation𝒲 is a new program, now obtained by modifying Π as follows:

(i) whenever𝒲 |= 𝐺, in all non-unit rules with head 𝐺 substitute head 𝐺 with K𝐺, and add new rule
𝐺← K𝐺 and

(ii) whenever𝒲 |= 𝑛𝑜𝑡𝐺, add new rule Knot𝐺← 𝑛𝑜𝑡𝐺

Let 𝐹Π-𝒲 be the set of the newly added rule heads of the form K𝐺.

The CF24F Adaptation is nothing other than our definition of a reduct, though extended and more

involved than previously known ones. Accordingly, we have the following notion of world view, given

that for any epistemic interpretation𝒲 for Π, let SM ′(Π) be the set of sets obtained from the stable

models SM (Π) of the CF24F-adaptation Π-𝒲 of Π by cancelling knowledge atoms.

Definition 4.6 (CF24F world view). An epistemic interpretation𝒲 is a CF24F world view of a program
Π if𝒲 = SM ′(Π-𝒲).

We may notice that, the S16 semantics is remarkable in the sense that it maximizes what is not

known, which is equivalent to minimizing what is known. The proposers of S16 consider each potential

world view (that, in their approach, is associated with a guess about what is not known) as a candidate

world view and discard those for which there exists another one with a larger guess on what is not

known (equivalently, a smaller guess on what is known) in terms of set inclusion. Rephrasing their

criterion (referred to as S16C) in terms of our approach, we have:

Definition 4.7 (S16 Criterion - CF24F+S16C). Each world view𝒲 as defined in Def. 4.6 is considered
to be a candidate world view. A candidate world view𝒲 is indeed a world view under CF24F+S16C if no
other candidate world view𝒲 ’ exists, where 𝐹Π-𝒲 ′⊂𝐹Π-𝒲 .

5. Fast Prototyping of a solver for reduct-based semantic approaches

An obstacle to developing a new solver for ELPs resides in the computational complexity of evaluating

them [30]. The central decision problem, that is, checking whether an ELP has a world view, is

Σ3
𝑃 -complete [7, 31].

Table 3 in the Appendix shows that solvers for various semantic approaches have been developed.

The method that we propose improves the one introduced in [11] and allows a solver for any reduct-

based semantics to be quickly obtained with little implementation effort. Thus, researchers proposing

new semantic approaches (as it often happens) or extending/modifying an existing one can exploit

the method in order to make experiments. It must be noticed, however, that the method provides

correctness of the solver with respect to a given semantics but does not cope with efficiency issues.

Thus, given the high complexity of evaluating ELPs, the prototypical solver obtained via our method

can only be used to experiment with programs of small-medium size.



5.1. The Method

Notice that, for checking whether an epistemic interpretation 𝒲 is a world view for program Π
according to a semantics 𝒮 based upon a definitionℛ of a reduct, one has to applyℛ to Π, then find the

set of answer sets of the reduced program, then possibly perform some post-processing thus obtaining a

final set of answer sets, then perform a final comparison to see whether the result coincides with𝒲 . In

the case of CF24F, for instance, the post-processing cancels knowledge atoms. If applying a minimality

criterion as defined in S16 and adopted in CF24F+S16C, the resulting ‘candidate’ world views must be

filtered, and this, as discussed in [7], adds further complexity.

To find all the world views of Π, one has to devise and check all the epistemic interpretations. This,

given the set 𝐴𝑡Π of the atoms occurring in Π, one has to find all the subsets of 𝐴𝑡Π, and all the sets

of such subsets. Clearly, this process is highly complex. Basically, it ‘absorbs’ most of the complexity

of the entire method. Then, all the epistemic interpretations must be checked (possibly with some

simplifications, for instance, to exclude those epistemic interpretations containing two sets, one included

in the other, etc.). Below we formalize the various steps of the proposed method.

Fast ELP-solver pipeline
The ‘quick solver’ for given 𝒮 ,ℛ, and 𝒫 , which returns all world views of any program Π, is obtained

by running on Π the pipeline of the following modules:

1. A module 𝑀𝒲 that computes all epistemic interpretations 𝒲1, . . . ,𝒲𝑘 for Π (i.e., all sets of

subsets of 𝐴𝑡Π);

2. A module 𝑀red that applies, for each𝒲𝑖, the reductℛ to Π, and generates the reduct program Π𝑖

(which is an ASP program);

3. A module 𝑀ASP that computes the set SMs 𝑖 of answer sets Π𝑖, for 𝑖 = 1, . . . , 𝑘;

4. In case a post-processing 𝒫 is required, a module 𝑀𝒫 applying 𝒫 to select the desired candi-

date SMs 𝑖’s;

5. A module 𝑀chk that checks each SMs 𝑖 produced by the previous step and selects those which

are world views w.r.t. 𝒮 , as they coincide with the corresponding𝒲𝑖.

Correctness of the solver depends upon the correct implementation of the various modules, that,

however, should not be difficult to ensure. In fact, each module copes with a single aspect and will thus

be sufficiently transparent and reasonable in size.

Note that the method initially designed and described in [11] makes a single call to an ASP solver.

Intuitively, this call processes a single ASP program that encodes the union (of standardized-apart
versions) of all Π𝑖s defined in step 2 of the above pipeline. The answer sets of such program are then

filtered to extract the answer sets of the individual Π𝑖s, which are subsequently combined into the

desired candidate world views. A method that makes a single call to an ASP solver remains feasible in

theory, but has strong limitations due to the excessive computational load required. Thus, one of the

crucial differences between the pipeline above and the method in [11] is the processing of a single Π𝑖 at

a time (step 3). This reduces the computational load and makes the (revised) approach practical.

5.2. The ASP Chef system

ASP, as observed in [12], has been widely applied to complex search and optimization combinatorial

problems in real-world and industrial applications [32, 33, 34], features linguistic high-level constructs

typical of logic-based programming languages but is not formulated nor intended as a comprehensive

programming language. Consequently, ASP is best utilized to tackle particular tasks within a more

extensive pipeline. This implies that tasks managed by ASP engines are anticipated to receive input

from other modules within the pipeline, potentially implemented using diverse paradigms. Likewise,

these tasks are also expected to generate output for consumption by subsequent modules within the

pipeline, which may also employ varied paradigms.



The ASP Chef system that we will use in our implementation aims to provide a framework, in which

users can employ ASP directly by specifying a set of logic rules but also indirectly via mapping data

from one format to the format accepted by ASP engines and mapping the output produced by ASP

engines to some other format suitable to be presented to the end-user or further processed in a pipeline.

ASP Chef is thus designed to ease the creation of operations pipelines rather than being just an IDE

(Integrated Development Environment) or an editor for ASP.

In the ASP Chef system, there is a notion of ASP recipe as a chain of ingredients that are the instanti-

ation of different operations, where an operation can be one of the “traditional” ASP computational

tasks, or some data manipulation procedure or data visualization procedure. In order to enable the

composition of linear chains of ingredients, sequences of interpretations (i.e., sequences of sets of atoms)

have been adopted as a uniform format for the input and the output of all operations that can have

parameters to customize their behaviour and have side output to enable inspection and visualization

of intermediate states of the evaluation of ASP recipes. The adopted uniform format allows several

operations implemented in ASP Chef to be combined in any order and new operations to be easily

accommodated.

A web app (https://asp-chef.alviano.net/) is available to implement even long pipelines involving ASP

as a core engine to perform several computational tasks, putting into practice the notion of ASP recipe.

Several operations are already available; the default ASP engine exploited in ASP Chef is clingo-wasm,

a web-accessible version of clingo [19]. Operations that have already been implemented and are

available to future developers include searching whether an atom is in an answer set and filtering

optimal answer sets according to a given objective function, sorting atoms within each model according

to their lexicographical ordering, merging and splitting interpretations.

5.3. Implementation in ASP Chef

We implemented the pipeline of modules as an ASP Chef recipe, which we illustrate below. The

complete recipe is accessible, usable, and modifiable through the ASP Chef web app, at this clickable link:

ELP in ASP Chef .

Let us remark that this recipe is not optimal because we chose to implement the pipeline for expository

purposes rather than aiming for an optimized implementation. Also, we chose to implement each step of

the pipeline separately, not necessarily using a minimal number of ingredients. Hence, a more compact

recipe could be obtained, for instance, by merging different ingredients or by skipping some steps that

perform some inessential processing (such as filtering of atoms that are useless for the subsequent

ingredients to reduce the size of clingo-wasm input).

The Recipe Let us now describe the crucial parts of our recipe. Concerning the input format, since

ASP Chef ingredients expect to be fed with a sequence of sets of atoms, we encoded the ELP program as a

set of atoms: each rule of the form (1) is encoded as a fact rule(head(𝐴1,...,𝐴𝑔),body(𝐿1,...,𝐿𝑛)).

Each subjective literal K𝐺 is encoded by a term k(𝐺), while negation is represented by the functor neg.

So, we reserved the symbols neg and k and they cannot occur in input. For example, the program (2) of

Section 3 is encoded as the set of four facts:

rule(head(a), body(neg(b))).
rule(head(b), body(neg(a))).
rule(head(e), body(neg(k(f)))).
rule(head(f), body(neg(k(e)))).

This single set of facts is the input sequence for the recipe. The following ASP program processes the

input set to detect atoms and literals, both objective and subjective, occurring in the ELP rules. This ASP

program is evaluated by a Search Models ingredient and uses some functions (i.e., @functor, @arity,

and @argument) introduced by a specific Introspection Terms ingredient (not detailed here) exploited

to introduce some Lua functionalities useful to decompose input facts and to access their sub-terms.

rule_head(rule(H,B), @argument(H,I)) :- rule(H,B), I = 1..@arity(H).

https://asp-chef.alviano.net/
https://asp-chef.alviano.net/#%21


rule_body(rule(H,B), @argument(B,I)) :- rule(H,B), I = 1..@arity(B).
hlit(L) :- rule_head(_,L). % literals occurring in heads or in bodies
blit(L) :- rule_body(_,L). % literals occurring in bodies
atom(L) :- hlit(L).
atom(A) :- blit(neg(A)), @functor(A)!="neg", @functor(A)!="k".
atom(A) :- blit(k(A)), @functor(A)!="neg", @functor(A)!="k".
blit(L) :- blit(neg(L)).
blit(L) :- blit(k(L)).
klit(A) :- blit(k(A)). % literals/atoms in subj. literals
klit(L) :- klit(neg(L)).

In the output of this ingredient, one obtains the set 𝐴𝑡Π encoded as a collection of facts of the form

atom(A). A Search Models ingredient evaluates such collection together with the simple ASP program:

{guess_true(A)} :- atom(A), hlit(A).

to generate a sequence of answer sets, each of them containing a possible subset of 𝐴𝑡Π. Then, a

Merge ingredient combines all these sets in a single set by distinguishing/indexing their elements by

the predicate __atomset__ (i.e., each atom ⟨𝑎𝑡𝑜𝑚⟩ occurring in the 𝑖-th set is encoded in output by an

atom of the form __atomset__(𝑖,⟨𝑎𝑡𝑜𝑚⟩)). Now a Search Models ingredient processes such “indexed

atoms” together with the ASP rules

numset(SetID) :- __atomset__(SetID,_).
{selectset(SetID)} :- numset(SetID).
% count the number of selected IDs
numOfSetsInW(Count) :- Count==#count{I:selectset(I)}.
setInW(SetID,A) :- __atomset__(SetID,A), selectset(SetID).

The first rule simply collects all sets indices SetID introduced by the previous ingredient. The second

rule generates all possible selections of such indices/sets (i.e., the possible epistemic interpretations).

Each of these epistemic interpretations𝒲𝑖 appears in one answer set of the ingredient output, and its

members (the candidate stable models of Π𝑖) are encoded by facts of the form setInW(SetID,A). This

completes step 1 in the pipeline.

A further Search Models ingredient evaluates the following program for each𝒲𝑖 generated by the

previous ingredient and infers which literals𝒲𝑖 models (by simply counting the modelling sets/IDs

and comparing their number with the cardinality of𝒲𝑖):

modeledByW(A) :- atom(A), numOfSetsInW(N), N>0,
N==#count{I,A:setInW(I,guess_true(A)),selectset(I)}.

modeledByW(neg(A)) :- atom(A), 0==#count{I,A:setInW(I,guess_true(A)),selectset(I)}.

At this point the reduct of Π can be computed, w.r.t. each of the epistemic interpretation𝒲𝑖. In the

case of semantics G94, this can be achieved by a Search Models ingredient processing the following

program (for each of the𝒲𝑖s):

red_blit(k(L),true) :- blit(k(L)), modeledByW(L).
red_blit(k(L),false) :- blit(k(L)), not modeledByW(L).
red_blit(neg(L),neg(L)) :- blit(neg(L)), @functor(L)!="k".
red_blit(L,L) :- blit(L), @functor(L)!="neg", @functor(L)!="k".
red_blit(neg(k(L)),false) :- blit(neg(k(L))), modeledByW(L).
red_blit(neg(k(L)),true) :- blit(neg(k(L))), not modeledByW(L).
% reduced rules head and body literals :
red_rule_head(rule(H,B), @argument(H,I)) :- rule(H,B), I = 1..@arity(H).
red_rule_body(rule(H,B), R) :- rule_body(rule(H,B), L), red_blit(L,R).

The first six rules assign to each literal in the input program Π a “substitute” (either the literal itself or

one of the truth values false and true), according to Def. 4.1. Then, depending on which subjective liter-

als are modeled by𝒲𝑖, facts of the form red_rule_head(⟨𝑟𝑢𝑙𝑒⟩,⟨𝑙𝑖𝑡⟩) and red_rule_body(⟨𝑟𝑢𝑙𝑒⟩,⟨𝑙𝑖𝑡⟩)
are derived, representing the rules of the reduced program. Each reduced program is represented in a

different set of atoms in the output sequence of the ingredient. This completes step 2 of the pipeline.



Each set so obtained is joined to the program below and the answer sets are computed. Each element of

each SMs 𝑖 (for all 𝑖) is encoded in a distinct set of atoms in the output sequence of the ingredient by a

collection of facts true(⟨𝑎𝑡𝑜𝑚⟩).

% detect falsified reduced rules bodies:
red_body_false(R) :- red_rule_body(R,false).
% infer true literals w.r.t. reduced rules
true(L) : red_rule_head(rule(H,B), L) :-
rule(H,B), not red_body_false(rule(H,B));
true(N):red_rule_body(rule(H,B),N), @functor(N)!="neg", @functor(N)!="true";
nottrue(M):red_rule_body(rule(H,B),neg(M)), @functor(M)!="neg",

@functor(M)!="false";
notnottrue(M):red_rule_body(rule(H,B),neg(neg(M))), @functor(M)!="false".

Few ingredients are used to gather in a single set the collection SMs 𝑖, for each 𝑖. This operation

outputs the sequence of SMs 𝑖s and completes step 3 in the pipeline.

Step 5 of the pipeline is performed (note that step 4 is not needed for G94). For brevity, we omit

the details: the remaining part of the recipe compares each SMs 𝑖 with𝒲𝑖 filtering out those that do

not match. The output is then processed for better readability, and the world views of Π are listed by

facts of the form worldView_SMid_Atom(⟨𝑆𝑀𝑖𝑑⟩,⟨𝑎𝑡𝑜𝑚⟩). For instance, this is the output for the ELP

program (2):

worldView_SMid_Atom(101,a).
worldView_SMid_Atom(101,e).
worldView_SMid_Atom(102,b).
worldView_SMid_Atom(102,e).
S
worldView_SMid_Atom(157,a).
worldView_SMid_Atom(157,f).
worldView_SMid_Atom(158,b).
worldView_SMid_Atom(158,f).

The two sets in the output sequence (separated by S) represent two world views made of two answer

sets (identified by different numeric IDs), each composed of two atoms.

The last three ingredient of the recipe,
1

provide a graphical representation of the result. Namely, a

Select Models ingredient can be used to select one of the world views. Then, a SearchModels ingredient

processes a simple ASP program joined with the selected world view and defines nodes and edges

of a graph. The yellow colors is associated to nodes representing answer sets (the corresponding ID

labels the node), while edges link each answer set to nodes representing its true atoms. Finally, a Graph

ingredient displays the world view.

We conclude this section by observing that the pipeline we described and implemented in ASP Chef

can be easily exploited to mechanize any reduct-based semantics for ELP (hence the “fast prototyping”).

It simply suffices to modify a single ingredient. Namely, the one that implements the module 𝑀red

of the pipeline and, for each𝒲𝑖, computes the reduct program Π𝑖. This is equivalent to providing

adequate alternative definitions of the predicates red_blit/2 and (possibly) red_rule_body/2 seen

before, according to the specific notion of reduct at hand. The rest of the recipe remains unchanged.

The following is a possible encoding of the G11-reduct which involves a change in the definition of

red_blit/2 only.

red_blit(k(L),false) :- blit(k(L)), not modeledByW(L).
red_blit(neg(k(L)),false) :- blit(neg(k(L))), modeledByW(L).
red_blit(neg(k(L)),true) :- blit(neg(k(L))),

not modeledByW(@argument(@argument(L,1),1)).
red_blit(k(L),L) :- blit(k(L)), modeledByW(L).
red_blit(neg(L),neg(L)) :- blit(neg(L)), @functor(L)!="k".
red_blit(L,L) :- blit(L), @functor(L)!="neg", @functor(L)!="k".

1

We thank an anonymous reviewer for suggesting this final fragment of the recipe.



In an analogous way one can customize the solver for the K15 semantics by using the following

definition of red_blit/2:

red_blit(k(L),false) :- blit(k(L)), not modeledByW(L).
red_blit(neg(k(L)),true) :- blit(neg(k(L))), not modeledByW(L).
red_blit(neg(k(neg(L))),neg(neg(L))) :- blit(neg(k(neg(L)))), modeledByW(neg(L)).
red_blit(k(L),L) :- blit(k(L)), modeledByW(L).
red_blit(neg(k(L)),neg(L)) :- blit(neg(k(L))), @functor(L)!="neg", modeledByW(L).
red_blit(neg(L),neg(L)) :- blit(neg(L)), @functor(L)!="k".
red_blit(L,L) :- blit(L), @functor(L)!="neg", @functor(L)!="k".

6. Conclusions

The quest for the “right” semantics of Epistemic Logic Programs continues and can be facilitated by the

possibility of experimenting with new semantic approaches, going beyond the tiny programs that one

may consider on paper. To allow for such experimentations, we devised a method for fast prototyping of

solvers for reduct-based semantic approaches. We illustrated the method for the G94 semantics (which

implies that the method is also indirectly applicable to FAAEL), and we showed that it is, however,

easily customizable to every other reduct-based approach. This is due to the modular definition and

the corresponding modular implementation in ASP Chef. As a matter of fact, we verified through the

proposed tool all the examples occurring in the literature plus others. A current limitation is the limited

scalability of the implementation, which still does not allow the application of the method to large

programs.

Thus, future work will be concerned with implementing and experimenting with other semantics

and improving the efficiency of the implementation. We will also investigate the possibility to extend

the method to semantic approaches that are not reduct-based.
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Table 1
On the left, examples where G94, G11, K15, F15, S16, and FAEEL agree. On the right, examples where
G94/G11/FAEEL differ from K15/F15/S16.

Program World views

𝑎 ∨ 𝑏 [{𝑎}, {𝑏}]

𝑎 ∨ 𝑏
𝑎← K𝑏 [{𝑎}, {𝑏}]

𝑎 ∨ 𝑏
𝑎← 𝑛𝑜𝑡K𝑏 [{𝑎}]

𝑎 ∨ 𝑏
𝑐← 𝑛𝑜𝑡K𝑏 [{𝑎, 𝑐}, {𝑏, 𝑐}]

𝑎← 𝑛𝑜𝑡K𝑏
𝑏← 𝑛𝑜𝑡K𝑎 [{𝑎}], [{𝑏}]

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎
𝑎← 𝑛𝑜𝑡K𝑎 [{𝑎}]

Program G94/G11/FAEEL K15/F15/S16

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎 [∅], [{𝑎}] [{𝑎}]

𝑎 ∨ 𝑏
𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑏 none [{𝑎}]

𝑎 ∨ 𝑏
𝑎← K𝑛𝑜𝑡 𝑏 [{𝑎}], [{𝑎}, {𝑏}] [{𝑎}, {𝑏}]

𝑎← 𝑏
𝑏← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎 [∅], [{𝑎, 𝑏}] [{𝑎, 𝑏}]

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑏
𝑏← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎 [∅], [{𝑎, 𝑏}] [{𝑎}, {𝑏}]

Table 2
Examples showing differences among several semantics.

Program World views
G94 G11/FAEEL K15 F15/S16

𝑎← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑏 ∧ 𝑛𝑜𝑡 𝑏
𝑏← 𝑛𝑜𝑡K𝑛𝑜𝑡 𝑎 ∧ 𝑛𝑜𝑡 𝑎

[∅], [{𝑎}, {𝑏}] [{𝑎}, {𝑏}]

𝑎← K𝑎 [∅], [{𝑎}] [∅]

𝑎← K𝑎
𝑎← 𝑛𝑜𝑡K𝑎 [{𝑎}] none

A. Semantic Results for Interesting ELP Programs

In Tables 1 and 2, a summary is reported, taken from [10], of how the semantics presented in this paper

behave on some examples which are considered to be significant of situations that can be found in

practical programming.

B. Available ELP Solvers

Table 3 shows, to the best of our knowledge, a list of available solvers for the semantics reported in

previous sections.



Table 3
List of solvers available for the semantics summarized in Section 4

Solver Year Semantics Underlying Impl. language Availability
ASP-solver

ELMO 1994 G94 dlv Prolog n/a

sismodels 1994 G94 claspD C++ n/a

Wviews 2007 G94 clingo C++ Windows binary

Esmodels 2013 G11 clingo (unknown) Windows binary

ELPS 2014 K15 clingo Java source+binary

GISolver 2015 K15 clingo (unknown) Windows binary

ELPsolve 2016 K15/S16 clingo C++ binary only

Wviews2 2017 G94 clingo Python Windows binary

EP-ASP 2017 K15/S16 clingo Python+ASP Windows binary

PelpSolver 2017 S16 clingo Java Windows binary

ELPsolve2 2017 S16 clingo C++ not public release

EHEX 2018 S16 clingo Python source

selp 2018 S16 clingo Python source

eclingo 2020 G94 clingo Python source
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