
A Description Logics Based Cognitively Inspired Tool
for Knowledge Generation Via Concept Combination
Antonio Lieto1, Gian Luca Pozzato2,∗∗ and Gioele Tallone2

1Dipartimento di Scienze Politiche e della Comunicazione/DISPC, Università degli Studi di Salerno, 84084 Fisciano (SA),
Italy
2Dipartimento di Informatica, Università degli Studi di Torino, 10149, Turin, Italy

Abstract
In this work we continue our investigation on tools for the dynamic generation of novel knowledge
by exploiting a recently introduced extension of a Description Logic of typicality able to combine
prototypical descriptions of concepts. Given a goal expressed as a set of properties, in case an intelligent
agent cannot find a concept in its initial knowledge base able to fulfill all these properties, our system
exploits the Description Logic TCL in order to find two concepts whose creative combination satisfies the
goal. The knowledge base of the agent is then extended by the prototype resulting from the concept
combination, and the combined concept represents the solution for the initial goal. In addition, we show
how the tool we propose can be employed in the field of cognitive architectures in order to overcome
situations like the impasse in SOAR by extending the possible options of its subgoaling procedures.

Keywords
Description Logics, Cognitive Architectures, Dynamic Knowledge Generation, Nonmonotonic reasoning

1. Introduction
A challenging problem in Artificial Intelligence concerns the capability of an intelligent agent
to achieve its goals when its knowledge base does not contain enough information to do that.
In this line of research, existing goal-directed systems usually implement a re-planning strategy
in order to tackle the problem. This is systematically performed by either an external injection
of novel knowledge or as the result of a communication with another intelligent agent [1].

In this work, we continue our investigation started with the works [2, 3, 4, 5], in which we
propose an alternative approach, consisting in a dynamic and automatic generation of novel
knowledge obtained through a process of commonsense reasoning. The idea is as follows:
given an intelligent agent and a set of goals, if it is not able to achieve them from an initial
knowledge base, then it tries to dynamically generate new knowledge by combining available
information. Novel information will be then used to extend the initial knowledge base in order
to achieve the goals. As an example, suppose that an intelligent agent is aware of the facts
that, normally, coffee contains caffeine and is a hot beverage, that the chocolate with cream is
normally sweet and has a taste of milk, whereas Limoncello is not a hot beverage (normally,

CILC 2024: 39th Italian Conference on Computational Logic, June 26-28, 2024, Rome, Italy
∗Corresponding author.
Envelope-Open alieto@unisa.it (A. Lieto); gianluca.pozzato@unito.it (G. L. Pozzato); gioele.tallone@edu.unito.it (G. Tallone)
GLOBE https://docenti.unisa.it/024406/home (A. Lieto); https://www.di.unito.it/~pozzato (G. L. Pozzato)
Orcid 0000-0002-8323-8764 (A. Lieto); 0000-0002-3952-4624 (G. L. Pozzato)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:alieto@unisa.it
mailto:gianluca.pozzato@unito.it
mailto:gioele.tallone@edu.unito.it
https://docenti.unisa.it/024406/home
https://www.di.unito.it/~pozzato
https://orcid.org/0000-0002-8323-8764
https://orcid.org/0000-0002-3952-4624
https://creativecommons.org/licenses/by/4.0

it is served chilled). Both coffee and Limoncello are after meal drinks. Cold winters in Turin
suggest to have a hot after-meal drink, also being sweet and having taste of milk. None of the
concepts in the knowledge base of the agent are able to achieve the goal on their own, however,
the combination between coffee and chocolate with cream provides a solution.

In this paper we introduce EDIFICA, which stands for “ExtenDIble & FlexIble concept Combi-
nation Architecture”, a tool extending GOCCIOLA [3] following this approach in the context of
Description Logics (from now on, DLs for short). DLs are one of the most important formalisms
of knowledge representation and are at the base of the languages for building ontologies such
as OWL. In this respect, we exploit the Description Logic TCL, recently introduced in order to
account for the phenomenon of concept combination of prototypical concepts [6]. The logic
TCL relies on the logic of typicality 𝒜ℒ𝒞 + TRaCl

R [7], whose semantics is based on the notion
of rational closure, as well as on the DISPONTE semantics of probabilistic DLs [8], and is
equipped with a cognitive heuristic used by humans for concept composition. In this logic,
typicality inclusions of the form 𝑝 ∶∶ T(𝐶) ⊑ 𝐷 are used to formalize that “we believe with
degree 𝑝 about the fact that typical 𝐶s are 𝐷s”. As in the distributed semantics, this allows us
to consider different scenarios containing only some typicality inclusions, each one having a
suitable probability. Such scenarios are then used to ascribe typical properties to a concept
𝐶 obtained as the combination of two concepts, revising the initial knowledge base with the
addition of typical properties of 𝐶. In the example, the revised knowledge base provided by the
logic TCL contains typical properties of the combination of coffee and chocolate with cream,
which suggests to consider a beverage corresponding to the famous Turin drink known as
Bicerín (little glass), made by coffee, chocolate and cream.

EDIFICA tries to tackle the main criticisms and drawbacks of GOCCIOLA, namely:

• GOCCIOLA randomly selects concepts to be combined; as an alternative, EDIFICA selects
such candidates starting from the properties of the goal to be fullfilled;

• GOCCIOLA is able to combine only two concepts at a time, whereas EDIFICA has no
longer this limitation;

• EDIFICA implements a more sophisticated mechanism in order to choose the list of
concepts to be combined among all the candidates;

• EDIFICA adopts a “smart” mechanism in generating scenarios in the logic TCL, for instance
by discarding inconsistent ones, rather than generating all of them by means of a “brute
force” mechanism as in GOCCIOLA.

Moreover, EDIFICA offers an open and modular architecture, that allows the user to provide
and add specific and suitable mechanisms. In addition, we also show how the proposed tool
can be employed in the field of cognitive architectures in order to overcome situations like the
impasse in the well-established architecture SOAR [9] by extending the possible options of its
subgoaling procedures.

The plan of the paper is as follows. In Section 2 we briefly recall the DL for concept combina-
tion TCL. In Section 3 we provide a formal description of the problem of dynamic knowledge
generation in the context of the logic TCL. In Section 4 we recall the main features of the ancestor
of EDIFICA, namely the system GOCCIOLA, and we show that it is a promising candidate to
tackle such a problem by means of some paradigmatic examples. In Section 5 we describe the

novel system EDIFICA, by emphasizing how it improves the existing GOCCIOLA. In Section 6
we show how EDIFICA can be employed in the field of cognitive architectures by extending the
options of their subgoaling procedures. We conclude in Section 7 with some pointers to future
issues.

2. The Logic TCL: a Description Logic of Typicality for Concept
Combination

In [6] we have introduced a nonmonotonic Description Logic of typicality called TCL (typicality-
based compositional logic). This logic combines two main ingredients. The first one relies on
the DL of typicality 𝒜ℒ𝒞 + TRaCl

R introduced in [7], which allows to describe the protoype of
a concept. In this logic, “typical” properties can be directly specified by means of a “typicality”
operator T enriching the underlying DL, and a TBox can contain inclusions of the form T(𝐶) ⊑ 𝐷
to represent that “typical 𝐶s are also 𝐷𝑠”. As a difference with standard DLs, in the logic
𝒜ℒ𝒞 +TRaCl

R one can consistently express exceptions and reason about defeasible inheritance
as well. For instance, a knowledge base can consistently express that “normally, athletes are fit”,
whereas “sumo wrestlers usually are not fit” by T(Athlete) ⊑ Fit and T(SumoWrestler) ⊑ ¬Fit ,
given that SumoWreslter ⊑ Athlete. The semantics of the T operator is characterized by the
properties of rational logic [10], recognized as the core properties of nonmonotonic reasoning.
𝒜ℒ𝒞 +TRaCl

R is characterized by a minimal model semantics corresponding to an extension to
DLs of a notion of rational closure as defined in [10] for propositional logic: the idea is to adopt
a preference relation among 𝒜ℒ𝒞 + TRaCl

R models, where intuitively a model is preferred to
another one if it contains less exceptional elements, as well as a notion of minimal entailment
restricted to models that are minimal with respect to such preference relation. As a consequence,
T inherits well-established properties like specificity and irrelevance: in the example, the logic
𝒜ℒ𝒞 + TRaCl

R allows us to infer T(Athlete ⊓ Bald) ⊑ Fit (being bald is irrelevant with respect
to being fit) and, if one knows that Hiroyuki is a typical sumo wrestler, to infer that he is not fit,
giving preference to the most specific information.

As a second ingredient, we have considered a distributed semantics similar to the one of
probabilistic DLs known as DISPONTE [8], allowing to label inclusions T(𝐶) ⊑ 𝐷 with a real
number between 0.5 and 1, representing its degree of belief/probability. In a slight extension
of the above example, we can express a degree of belief in the typicality inclusions about
athletes and sumo wrestlers: we believe with a probability of 80% that, normally, athletes
are fit whereas sumo wrestlers are not; furthermore, we believe that athletes are usually
young with a higher degree of 95%. This is formalized by the following knowledge base: (1)
SumoWrestler ⊑ Athlete; (2) 0.8 ∶∶ T(Athlete) ⊑ Fit ; (3) 0.8 ∶∶ T(SumoWrestler) ⊑ ¬Fit ; (4)
0.95 ∶∶ T(Athlete) ⊑ YoungPerson. We consider eight different scenarios, representing all
possible combinations of typicality inclusion: as an example, {((2), 1), ((3), 0), ((4), 1)} represents
the scenario in which (2) and (4) hold, whereas (3) does not. We equip each scenario with a
probability depending on those of the involved inclusions: the scenario of the example, has
probability 0.8×0.95 (since 2 and 4 are involved) ×(1−0.8) (since 3 is not involved)= 0.152 = 15.2%.
Such probabilities are then taken into account in order to choose the most adequate scenario
describing the prototype of the combined concept.

The logic TCL seems to be a promising candidate in order to tackle the problem of concept
combination. Combining the typical knowledge of pre-existing concepts is among the most
creative cognitive abilities exhibited by humans. This generative phenomenon highlights some
crucial aspects of the knowledge processing capabilities in human cognition and concerns
high-level capacities associated to creative thinking and problem solving. Dealing with this
problem requires, from an AI perspective, the harmonization of two conflicting requirements
that are hardly accommodated in symbolic systems (including formal ontologies [11]): the
need for a syntactic and semantic compositionality (typical of logical systems) and that one
concerning the exhibition of typicality effects. According to a well-known argument [12], in
fact, prototypes are not compositional. The argument runs as follows: consider a concept like
pet fish. It results from the composition of the concept pet and of the concept fish. However, the
prototype of pet fish cannot result from the composition of the prototypes of a pet and a fish:
e.g. a typical pet is furry and warm, a typical fish is grayish, but a typical pet fish is neither
furry and warm nor grayish (typically, it is red).

Given a knowledge base 𝒦 = ⟨ℛ,𝒯 ,𝒜⟩, where ℛ is the set of standard (rigid) inclusions of
𝒜ℒ𝒞, 𝒯 is the set of typicality inclusions, and 𝒜 is the ABox, and given two concepts 𝐶𝐻 and
𝐶𝑀 occurring in 𝒦, the logic TCL allows defining a prototype of the compound concept 𝐶 as the
combination of the HEAD 𝐶𝐻, the dominant element in the combination, and the MODIFIER
𝐶𝑀. Typical properties to ascribe to the combination of 𝐶𝐻 and 𝐶𝑀 are inclusions of the form
T(𝐶) ⊑ 𝐷 (or, equivalently, T(𝐶𝐻 ⊓ 𝐶𝑀) ⊑ 𝐷), whose intuitive meaning is that “𝐷 is a typical
property of 𝐶 combining 𝐶𝐻 and 𝐶𝑀”, and are obtained by considering blocks of scenarios with
the same probability, in decreasing order starting from the highest one. We first discard all the
inconsistent scenarios, then:

• we discard those scenarios considered as trivial, consistently inheriting all the properties
from the HEAD from the starting concepts to be combined. This choice is motivated
by the challenges provided by task of common-sense conceptual combination itself: in
order to generate plausible and creative compounds it is necessary to maintain a level of
surprise in the combination. Thus both scenarios inheriting all the properties of the two
concepts and all the properties of the HEAD are discarded since prevent this surprise;

• among the remaining ones, we discard those scenarios inheriting properties from the
MODIFIER in conflict with properties that could be consistently inherited from the HEAD;

• if the set of scenarios of the current block is empty, i.e. all the scenarios have been
discarded either because trivial or because preferring the MODIFIER, we repeat the
procedure by considering the block of scenarios having the immediately lower probability.

Remaining scenarios are those selected by the logic TCL. The ultimate output of our mechanism
is a knowledge base in the logic TCL whose set of typicality properties is enriched by those of
the compound concept 𝐶. Given a scenario 𝑤 satisfying the above properties, we define the
properties of 𝐶 as the set of inclusions 𝑝 ∶∶ T(𝐶) ⊑ 𝐷, for all T(𝐶) ⊑ 𝐷 that are entailed from
𝑤 in the logic TCL. The probability 𝑝 is such that:

• if T(𝐶𝐻) ⊑ 𝐷 is entailed from 𝑤, that is to say 𝐷 is a property inherited either from the
HEAD (or from both the HEAD and the MODIFIER), then 𝑝 corresponds to the degree of
belief of such inclusion of the HEAD in the initial knowledge base, i.e. 𝑝 ∶ T(𝐶𝐻) ⊑ 𝐷 ∈ 𝒯;

• otherwise, i.e. T(𝐶𝑀) ⊑ 𝐷 is entailed from 𝑤, then 𝑝 corresponds to the degree of belief of
such inclusion of a MODIFIER in the initial knowledge base, i.e. 𝑝 ∶ T(𝐶𝑀) ⊑ 𝐷 ∈ 𝒯.

The knowledge base obtained as the result of combining concepts 𝐶𝐻 and 𝐶𝑀 into the compound
concept 𝐶 is called 𝐶-revised knowledge base, and it is defined as follows:

𝒦𝐶 = ⟨ℛ,𝒯 ∪ {𝑝 ∶ T(𝐶) ⊑ 𝐷}, 𝒜⟩,

for all𝐷 such that eitherT(𝐶𝐻) ⊑ 𝐷 is entailed in 𝑤 orT(𝐶𝑀) ⊑ 𝐷 is entailed in 𝑤, and 𝑝 is defined
as above. In [6] we have shown that reasoning in the logic TCL remains in the same complexity
class of standard 𝒜ℒ𝒞 Description Logics, namely that reasoning in TCL is ExpTime-complete.

3. Exploiting the Logic TCL for Knowledge Generation Via
Concept Combination

We exploit the logic TCL in order to tackle the following problem: given a knowledge base 𝒦
in the Description Logic TCL, an intelligent agent has to achieve a goal 𝒢 intended as a set of
concepts {𝐷1, 𝐷2, … , 𝐷𝑛}. More precisely, the agent has to find a solution for the goal, namely a
concept 𝐶 such that, for all properties 𝐷𝑖, it holds that either𝒦 ⊧ 𝐶 ⊑ 𝐷𝑖 or𝒦 ⊧ T(𝐶) ⊑ 𝐷𝑖 in the
logic of typicality𝒜ℒ𝒞 +TRaCl

R . If𝒦 does not contain any solution for the goal, then the agent
tries to generate a new concept by combining two existing ones 𝐶1 and 𝐶2 by means of the logic
TCL: 𝐶 is then considered a solution for the goal if, considering the (𝐶1 ⊓ 𝐶2)-revised knowledge
base 𝒦𝐶 extending 𝒦, we have that, for all properties 𝐷𝑖, it holds that either 𝒦𝐶 ⊧ 𝐶 ⊑ 𝐷𝑖 or
𝒦𝐶 ⊧ T(𝐶) ⊑ 𝐷𝑖 in the logic of typicality 𝒜ℒ𝒞 + TRaCl

R .
This is formally defined as follows:

Definition 1. Given a knowledge base 𝒦 in the logic TCL, let 𝒢 be a set of atomic concepts
{𝐷1, 𝐷2, … , 𝐷𝑛} called goal. We say that a concept 𝐶 is a solution to the goal 𝒢 if either:

• for all 𝐷𝑖 ∈ 𝒢, either𝒦 ⊧ 𝐶 ⊑ 𝐷𝑖 or𝒦 ⊧ T(𝐶) ⊑ 𝐷𝑖 in the logic TCL

or

• 𝐶 corresponds to the combination of two concepts 𝐶1 and 𝐶2 occurring in𝒦, i.e. 𝐶 ≡ 𝐶1 ⊓ 𝐶2,
and the 𝐶-revised knowledge base𝒦𝐶 provided by the logic TCL is such that, for all 𝐷𝑖 ∈ 𝒢,
either 𝒦𝐶 ⊧ 𝐶 ⊑ 𝐷𝑖 or 𝒦𝐶 ⊧ T(𝐶) ⊑ 𝐷𝑖 in the logic TCL.

Let us conclude this section by formalizing the example of the Introduction.

Example 2. In the example of the Introduction, suppose that 𝒦 contains the information that,
normally, coffee contains caffeine and is a hot beverage; moreover, we have that the chocolate
with cream is normally sweet and has a taste of milk, whereas Limoncello is not a hot beverage
(normally, it is served chilled). Both coffee and Limoncello are after meal drinks. We can represent
these information as follows:

0.9 ∶∶ T(Coffee) ⊑ AfterMealDrink
0.8 ∶∶ T(Coffee) ⊑ WithCaffeine
0.85 ∶∶ T(Coffee) ⊑ HotBeverage
Limoncello ⊑ AfterMealDrink
0.9 ∶∶ T(Limoncello) ⊑ ¬HotBeverage
0.65 ∶∶ T(ChocolateWithCream) ⊑ Sweet
0.95 ∶∶ T(ChocolateWithCream) ⊑ TasteOfMilk

Cold winters in Turin suggest to have a hot after-meal drink, also being sweet and having taste of
milk. We can then define a goal 𝒢 as

𝒢 = {AfterMealDrink,HotBeverage, Sweet , TasteOfMilk}.

None of the concepts in the knowledge base represent a solution for the problem. However, the
combination between the concepts Coffee and ChocolateWithCream represents a solution. Indeed,
the revised knowledge base obtained by exploiting the logic TCL to combine these concepts allows
the agent to extend its knowledge with the following typicality inclusions:

0.9 ∶∶ T(Coffee ⊓ ChocolateWithCream) ⊑ AfterMealDrink
0.85 ∶∶ T(Coffee ⊓ ChocolateWithCream) ⊑ HotBeverage
0.65 ∶∶ T(Coffee ⊓ ChocolateWithCream) ⊑ Sweet
0.95 ∶∶ T(Coffee ⊓ ChocolateWithCream) ⊑ TasteOfMilk

providing a solution for the goal corresponding to the famous Turin drink known as Bicerín (little
glass).

4. The Ancestor of the System EDIFICA: the System GOCCIOLA

In this Section we describe GOCCIOLA, a preliminary implementation of a system able to
extend the knowledge of an agent in order to fulfill a set of properties representing the goal that
the agent wants to achieve. GOCCIOLA is implemented in Python and its current version, along
with the files for the examples presented in this paper, are available at http://di.unito.it/gocciola.
The architecture of the system GOCCIOLA is shown in Figure 1.

As an example, let us consider the goal: object, cutting, graspable, in other words our agent
is looking for an object being graspable and which is able to cut. The initial knowledge
base is formalized in the language of the logic TCL and it is stored in a suitable file. Rigid
properties, holding for all individuals of a given class, are stored as pairs object-property, whereas
typical properties are formalized as triples object-property-probability. We have considered an
extension with probabilities of a portion of the ontology opencyc1. As an example, the concept
Vase is stored as follows (on the right the corresponding knowledge base in TCL):

1https://github.com/asanchez75/opencyc.

http://di.unito.it/gocciola
https://github.com/asanchez75/opencyc

Figure 1: The architecture of the system GOCCIOLA.

vase, object
vase, high convexity
vase, ceramic, 0.8
vase, to put plants, 0.9
vase, to contain objects, 0.9
vase, graspable, 0.9

Vase ⊑ Object
Vase ⊑ HighConvexity
0.8 ∶∶ T(Vase) ⊑ Ceramic
0.9 ∶∶ T(Vase) ⊑ ToPutPlants
0.9 ∶∶ T(Vase) ⊑ ToContainObjects
0.9 ∶∶ T(Vase) ⊑ Graspable

To run GOCCIOLA, the user has to invoke the Python interpreter on the file main.py, which
consults the initial knowledge base and the goal to achieve (classes ReadKnowledgeBase and Goal,
respectively). First of all, the method resolve_goal checks whether the knowledge base contains
a concept 𝐶 immediately satisfying it, i.e. exhibiting all the concepts of the goal either as rigid
or typical properties: in this case, the system is done, and GOCCIOLA ends its computation by
suggesting such a concept 𝐶 as the solution. In case 𝐶 does not exist, the system GOCCIOLA
tries to extend the knowledge base of the agent by looking for at least two concepts, 𝐶1 and 𝐶2,
whose combination via TCL generates a concept 𝐶′ satisfying the goal. More in detail:

• GOCCIOLA computes a list of concepts of the initial knowledge base satisfying at least a
property of the goal. As an example, suppose that the following inclusions belong to the
knowledge base:

Spoon ⊑ Graspable
0.85 ∶∶ T(Spoon) ⊑ ¬Cutting
0.9 ∶∶ T(Vase) ⊑ Graspable
Vase ⊑ Object

Both Vase and Spoon are included in the list of candidate concepts to be combined;
• for each item in the list of candidate concepts to be combined, GOCCIOLA computes a
rank of the concept as the sum of the probabilities of the properties also belonging to the
goal, assuming a score of 1 in case of a rigid property. In the example, Vase is ranked as
0.9+1 = 1.9, since both Graspable and Object are properties belonging to the goal: for the
former we take the probability 0.9 of the typicality inclusion T(Vase) ⊑ Graspable, for the
latter we provide a score of 1 since the property Vase ⊑ Object is rigid. Concerning the
concept Spoon, GOCCIOLA computes a rank of 1: indeed, the only inclusion matching
the goal is the rigid one Spoon ⊑ Graspable;

• GOCCIOLA checks whether the concept obtained by combining the two candidate con-
cepts with the highest ranks, 𝐶1 and 𝐶2, is able to satisfy the initial goal. GOCCIOLA
computes a double attempt, by considering first 𝐶1 as the HEAD and 𝐶2 as the MODIFIER
and, in case of failure, 𝐶2 as the HEAD and 𝐶1 as the MODIFIER.

In order to combine the two candidate concepts 𝐶1 and 𝐶2, GOCCIOLA exploits the system
CoCoS [13], a tool generating scenarios and choosing the selected one(s) according to the logic
TCL. The current version of the system is implemented in Pyhton and exploits the translation
of an 𝒜ℒ𝒞 + TRaCl

R knowledge base into standard 𝒜ℒ𝒞 introduced in [14, 7] and adopted
by the system RAT-OWL [15]. CoCoS makes use of the library owlready2 2 that allows one
to rely on the services of efficient DL reasoners, e.g. the HermiT reasoner. GOCCIOLA also
exploits WordNet sysnsets in order to extend its search space in case of a failure. In detail, if
the goal contains properties not belonging to the initial knowledge base, GOCCIOLA looks for
hypernyms or hyponyms in order to rewrite such properties.

5. The System EDIFICA

As already mentioned in the Introduction, we have extended the system GOCCIOLA in order to
tackle the main limitations affecting the systems, namely:

• in order to achieve a given goal, GOCCIOLA randomly chooses concepts to be combined;
• GOCCIOLA is able to deal only with combinations of two concepts at a time;
• GOCCIOLA randomly chooses the two initial candidates to be combined in order to fulfill
a goal;

• in order to combine concepts 𝐶1 and 𝐶2, the underlying concept combination mechanism
based on CoCoS [13] generates all 2𝑛 possible scenarios, where 𝑛 is the sum of the number
of typicality inclusions of the form 𝑝 ∶∶ T(𝐶1) ⊑ 𝑃 and the number of typicality
inclusions of the form 𝑝 ∶∶ T(𝐶2) ⊑ 𝑃.

In this section we describe the main features of EDIFICA (https://github.com/JoddyJordan/
EDIFICA-Code) and we try to point out how it significantly improves both the performance
and the results proposed by its ancestor GOCCIOLA.

The goal of EDIFICA is the same of GOCCIOLA: find a concept combination based on the
generation of scenarios of possible properties able to achieve a given goal. The main difference

2https://pythonhosted.org/Owlready2/

https://github.com/JoddyJordan/EDIFICA-Code
https://github.com/JoddyJordan/EDIFICA-Code

Figure 2: The architecture of the system EDIFICA.

is that EDIFICA is a tool born with an architecture that can be extended by the user. This
architecture allows us to add a bunch of new features that are not present in GOCCIOLA. These
new features are:

• the possibility for the user to customize the input flows: information about rigid properties,
information about typical properties and information about the goal to solve;

• the possibility for the user to define a suitable module for the extraction of candidates for
goal-resolution, in other words concepts to be combined for finding a solution for the
initial problem;

• the possibility for the user to define a chooser of the best candidate (i.e. a set of concepts)
for the goal;

• the possibility for the user to adopt a combination of an arbitrary number of concepts,
with additional heuristics for the concept combination.

Furthermore, EDIFICA implements a more efficient scenario generation, in particular it imple-
ments a scheme of analysis of the properties involved in the concept combination in order to
avoid the generation of inconsistent scenarios: in this way, not all 2𝑛 scenarios are generated
and – only later – discarded, they are simply not generated.

The open architecture of EDIFICA is shown in Figure 2: such an architecture includes a set of
interfaces, each expressing a function of the system; moreover, a user can add new interfaces,
i.e. new functions, or re-define existing ones.

In order to better understand how EDIFICA improves GOCCIOLA, let us conclude this section
by a running example. Suppose both the systems have the following knowledge base:

AlcoholicBeverage ⊑ Beverage
𝐾𝑖𝑜𝑠𝑘𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒 ⊑ 𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
𝐻𝑜𝑡𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒 ⊓ 𝑅𝑜𝑜𝑚𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒 ⊑ ⊥
Coffee ⊑ 𝐾𝑖𝑜𝑠𝑘𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
0.75 ∶∶ T(Coffee) ⊑ 𝐻𝑜𝑡𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
0.75 ∶∶ T(Coffee) ⊑ 𝐶𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
𝐶𝑜𝑙𝑎 ⊑ 𝐾𝑖𝑜𝑠𝑘𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
0.75 ∶∶ T(𝐶𝑜𝑙𝑎) ⊑ 𝐸𝑥𝑡𝑟𝑎𝑆𝑤𝑒𝑒𝑡𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
𝑊ℎ𝑖𝑠𝑘𝑦 ⊑ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝑖𝑐𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
0.75 ∶∶ T(𝑊ℎ𝑖𝑠𝑘𝑦) ⊑ 𝑅𝑜𝑜𝑚𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
0.75 ∶∶ T(𝑊ℎ𝑖𝑠𝑘𝑦) ⊑ 𝐶𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
𝑅𝑢𝑚 ⊑ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝑖𝑐𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒
0.75 ∶∶ T(𝑅𝑢𝑚) ⊑ 𝑅𝑜𝑜𝑚𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒

Let us consider both the systems to solve the following goal:

{𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝑖𝑐𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒, 𝐾 𝑖𝑜𝑠𝑘𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒}

EDIFICA starts by finding the candidates for the goal resolution. A simple but effective mecha-
nism is by exploring every combination of subclasses of each single concept in the goal. The
result are the following candidates:

{𝐶𝑜𝑙𝑎, 𝑅𝑢𝑚}, {𝐶𝑜𝑙𝑎,Whisky}, {Coffee, 𝑅𝑢𝑚}, {Coffee,Whisky}

Subsequently, EDIFICA orders the candidates by a preference-function. This function is based
on two criteria: first, we order the candidates by an increasing number of concepts belonging
to the candidate; second, we order the candidates with same length by a decreasing number of
typical properties involved in such a candidate. The first candidate in this example is then:

{Coffee,Whisky}

Asmentioned, in addition to the above described “intelligent” choice of the candidate concepts to
be combined, EDIFICA also implements a smart generation of scenarios: rather than generating
all of them as done by GOCCIOLA, EDIFICA checks two kind of relations – conflict relations
and coordination relations – among typical properties. In our example, the candidate involves
four typical properties, so there are 16 possible scenarios; EDIFICA checks:

• Conflict relation: two concepts in the body of the typical properties are disjoint. For
instance, HotBeverage and RoomTemperatureBeverage are disjoint: we cannot have a
beverage which is at the same time hot and room temperature;

• Coordination relation: two concepts in the body of the typical properties can be coordi-
nated to be coherent: the concept CompanionBevarage occurs two times which means
that, if in a scenario one is true, in the other one it has to be also true and vice versa.

After this analysis, EDIFICA uses a recursive algorithm that fixes at every step the truth value
for the choice of a specific typical property and updates the other typical properties by using the
conflict and the coordination relations. In our example, only 6 scenarios are so generated, rather
than 24 = 16. If each candidate scenario is inconsistent, EDIFICA will discard the candidate and
pick the next list of concepts from the remaining ones.

6. Compliance and Extension of SOAR procedures

We conclude this work by showing how the proposed system EDIFICA can integrate, and extend,
the classical subgoaling mechanism embedded in a cognitive architecture like SOAR [9], with a
particular reference to the impasse mechanisms developed in such architecture. In our opinion,
this compliance represents an important aspect to point out since SOAR is one of the most
mature cognitive architectures and has been used by many researchers worldwide during the last
30 years in the field of cognitive modelling and intelligent systems. This system was considered
by Allen Newell a candidate for a Unified Theory of Cognition [16] and still represents an
important pillar in the effort of building a general integrated model of cognition [17]. This
system adheres strictly to Newell and Simon’s physical symbol system hypothesis [18] which
states that symbolic processing is a necessary and sufficient condition for intelligent behavior.
One of the main themes in SOAR is that all cognitive tasks can be represented by problem
spaces that are searched by production rules grouped into operators. These production rules
are fired in parallel to produce reasoning cycles. From a representational perspective, SOAR
exploits symbolic representations of knowledge (called chunks) and use pattern matching to
select relevant knowledge elements. Basically, when a production rule matches the contents of
declarative (working) memory, then the rule fires and the content from the declarative memory
(called Semantic Memory in SOAR) is retrieved.

Such type of knowledge structures, however, are usually heavily used to perform standard
logical reasoning and, as a consequence, are strongly biased towards a “classical” conceptu-
alisation of knowledge in terms of necessary or sufficient conditions and are not equipped
with commonsense representational and reasoning knowledge components 3. If a problem (an
impasse in SOAR terms) arises due to the fact that certain knowledge is lacking, resolving this
impasse automatically becomes the new goal (and this process is known as subgoaling). This
new goal becomes a subgoal of the original one, which means that once the subgoal is achieved,
control is returned to the main goal. The subgoal has its own problem space, state and possible
set of operators. Whenever the subgoal has been achieved it passes its results to the main goal,
thereby resolving the impasse. Learning is keyed to the subgoaling process: whenever a subgoal
has been achieved, new knowledge is added to the knowledge base to prevent the impasse that
produced the subgoal from occurring again (this learning process is known as chunking). If
an impasse occurs because the consequences of an operator are unknown, and in the subgoal
these consequences are subsequently found, knowledge is added to SOAR‚Äôs memory about
the consequences of that operator. An important feature in SOAR concerns the fact that it can
also use external input as part of its impasse resolution process, therefore new knowledge can

3This problem arises despite the fact that the chunks in SOAR can be represented as a sort of frame-like structures
containing some commonsense (e.g. prototypical) information. We remind to [19] for details analysis on such issue.

Figure 3: The SOAR Cognitive Architecture. In red, the compliance with EDIFICA in order to extend
the classical subgoaling procedure.

extended the Semantic Memory of SOAR and can be incorporated into the learned rules. In this
context, the proposed system can be integrated, and can extend, the SOAR subgoaling procedure
as illustrated in Figure 3. The process of bi-directional translation between a chunk-like repre-
sentation and the language of TCL can be provided as introduced in [20] and implemented in [15],
where a typicality-based property is translated into a standard Description Logic knowledge
base (corresponding to a chunk-based symbolic representation in SOAR). In particular, the
overall approach is compliant with the idea of a goal-directed contextual activation of concepts
obtained via a process of knowledge “proxyfication” [21] from the long-term memory to the
short term memory of a cognitive agent (already employed in knowledge-based systems like
DUAL-PECCS [22], integrated with different cognitive architectures, including SOAR [23, 24]).
A final element emerging from the described compliance consists in the fact that that the output
of the new subgoaling procedure (i.e. the novel concept dynamically generated in the KB and
made available in the working memory of the architecture to solve the original goal) can be
used in the SOAR learning mechanism known as chunking, which converts the obtained concept
used to solve the goal at hand in the procedural memory of the system in order to avoid to
perform ex-novo the same reasoning cycle in case the agent encouters againg the same goal to
solve.

From a more implementative point of view, the above mentioned integration between the

Semantic Memory in SOAR (SMEM) and our hybrid KB can be obtained as follows: SMEM
is accessed through two dedicated working memory channels, called ^command and ^result.
In particular, ^command is the branch of the working memory buffer where the GOAL setting
takes places. In case the goal cannot be satisfied, this kind of request, instead of launching
a standard search in the SOAR SMEM, can use our system to select which concepts can be
potentially combined to extend the available knowledge and to solve the goal in hand. This kind
of connection can be done by modifing the SOAR kernel and by creating novel RHS (Right Hand
Side) functions able to launch our system, and its TCL knowledge base in order to take advantage
of the reasoning procedure presented in the above sections. The result of this process will
produce in output a novel prototype-based representation that is can be used to solve and goal.
Such result can be stored in the ^result channel, the branch of the SOAR working memory
buffer devoted to acquiring the output from the external modules. Once the result of our system
is “proxyfied” and the goal is solved, it can then be used in the chunking mechanism of the
architecture.

7. Conclusions

We have presented EDIFICA, a tool implementing a cognitive architecture whose aim is to
dynamically extend a Description Logics knowledge base by exploiting conceptual combination.
EDIFICA extends GOCCIOLA by trying to tckle its main criticisms, namely a random choice
of the concepts to be combined in order to achieve a goal, a “brute force” approach in the
generation of possible scenarios and the limitation to solutions obtained by combining only
two concepts. Moreover, the architecture of EDIFICA is open and modular and can therefore
easily be personalized by the user.

EDIFICA, as well as GOCCIOLA, relies on CoCoS, a tool for combining concepts in the logic
TCL. In future research, we aim at studying the application of optimization techniques in [25, 26]
in order to improve the efficiency of CoCoS and, as a consequence, of EDIFICA.

In future research, we aim at extending EDIFICA in order to provide a partial solution,
satisfying a proper subset of the initial goals. Moreover, we are currently planning to evaluate
the results proposed by EDIFICA by suitable experiments involving humans. Similarly to what
done with GOCCIOLA, we have the objective of testing EDIFICA by asking it to solve some
well-established and paradigmatic examples from the literature, by considering a knowledge
base extending opencyc and involving humans. As mentioned in [27], there is no benchmark
test available for this kind of task on both human participants and artificial systems: therefore,
we aim at testing our system by comparing our results with the ones for the OROC system
[27], to the best of our knowledge, the first one proposing a proof-of-concept procedure for the
evaluation of concept composition, by considering the same goals they used as testbed.

References

[1] D. W. Aha, Goal reasoning: Foundations, emerging applications, and prospects., AI
Magazine 39 (2018).

[2] E. Chiodino, A. Lieto, F. Perrone, G. L. Pozzato, A goal-oriented framework for knowledge
invention and creative problem solving in cognitive architectures, in: G. D. Giacomo,
A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín, J. Lang (Eds.), ECAI 2020 - 24th
European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago
de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on
Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325 of Frontiers
in Artificial Intelligence and Applications, IOS Press, 2020, pp. 2893–2894. URL: https:
//doi.org/10.3233/FAIA325. doi:10.3233/FAIA200440.

[3] A. Lieto, F. Perrone, G. L. Pozzato, E. Chiodino, Beyond subgoaling: A dynamic knowledge
generation framework for creative problem solving in cognitive architectures, Cognitive
Systems Research 58 (2019) 305–316. doi:10.1016/J.COGSYS.2019.08.005.

[4] A. Lieto, G. L. Pozzato, F. Perrone, E. Chiodino, Knowledge capturing via conceptual
reframing: A goal-oriented framework for knowledge invention, in: M. Kejriwal, P. A.
Szekely, R. Troncy (Eds.), Proceedings of the 10th International Conference on Knowledge
Capture, K-CAP 2019, Marina Del Rey, CA, USA, November 19-21, 2019, ACM, 2019, pp.
109–114. URL: https://doi.org/10.1145/3360901. doi:10.1145/3360901.3364422.

[5] A. Lieto, G. L. Pozzato, F. Perrone, A dynamic knowledge generation system for cognitive
agents, in: 31st IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2019, Portland, OR, USA, November 4-6, 2019, IEEE, 2019, pp. 676–681. URL: https:
//ieeexplore.ieee.org/xpl/conhome/8970220/proceeding. doi:10.1109/ICTAI.2019.00099.

[6] A. Lieto, G. L. Pozzato, A description logic of typicality for conceptual combination,
in: M. Ceci, N. Japkowicz, J. Liu, G. A. Papadopoulos, Z. W. Ras (Eds.), Foundations of
Intelligent Systems - 24th International Symposium, ISMIS 2018, Limassol, Cyprus, October
29-31, 2018, Proceedings, volume 11177 of Lecture Notes in Computer Science, Springer,
2018, pp. 189–199. doi:10.1007/978-3-030-01851-1_19.

[7] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato, Semantic characterization of Rational
Closure: from Propositional Logic to Description Logics, Artificial Intelligence 226 (2015)
1–33. doi:10.1016/j.artint.2015.05.001.

[8] F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, Reasoning with probabilistic ontologies, in:
Q. Yang, M. Wooldridge (Eds.), Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, AAAI Press, 2015, pp. 4310–4316. URL: http://ijcai.org/proceedings/2015.

[9] J. Laird, The Soar cognitive architecture, MIT Press, 2012.
[10] D. Lehmann, M. Magidor, What does a conditional knowledge base entail?, Artificial

Intelligence 55 (1992) 1–60. doi:http://dx.doi.org/10.1016/0004-3702(92)90041-U.
[11] M. Frixione, A. Lieto, Towards an extended model of conceptual representations in formal

ontologies: A typicality-based proposal., J. UCS 20 (2014) 257–276.
[12] D. N. Osherson, E. E. Smith, On the adequacy of prototype theory as a theory of concepts,

Cognition 9 (1981) 35–58.
[13] A. Lieto, G. L. Pozzato, A. Valese, CoCoS: a typicality based concept combination system,

in: P. Felli, M. Montali (Eds.), Proceedings of the 33rd Italian Conference on Computational
Logic, Bolzano, Italy, September 20-22, 2018, volume 2214 of CEUR Workshop Proceedings,
CEUR-WS.org, 2018, pp. 55–59. URL: https://ceur-ws.org/Vol-2214/paper6.pdf.

[14] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato, Minimal model semantics and rational

https://doi.org/10.3233/FAIA325
https://doi.org/10.3233/FAIA325
http://dx.doi.org/10.3233/FAIA200440
http://dx.doi.org/10.1016/J.COGSYS.2019.08.005
https://doi.org/10.1145/3360901
http://dx.doi.org/10.1145/3360901.3364422
https://ieeexplore.ieee.org/xpl/conhome/8970220/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8970220/proceeding
http://dx.doi.org/10.1109/ICTAI.2019.00099
http://dx.doi.org/10.1007/978-3-030-01851-1_19
http://dx.doi.org/10.1016/j.artint.2015.05.001
http://ijcai.org/proceedings/2015
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(92)90041-U
https://ceur-ws.org/Vol-2214/paper6.pdf

closure in description logics, in: T. Eiter, B. Glimm, Y. Kazakov, M. Krötzsch (Eds.), Informal
Proceedings of the 26th International Workshop on Description Logics, volume 1014 of
CEUR Workshop Proceedings, CEUR-WS.org, 2013, pp. 168–180.

[15] L. Giordano, V. Gliozzi, G. L. Pozzato, R. Renzulli, An efficient reasoner for description
logics of typicality and rational closure, in: A. Artale, B. Glimm, R. Kontchakov (Eds.),
Proceedings of the 30th InternationalWorkshop on Description Logics, Montpellier, France,
July 18-21, 2017, volume 1879 of CEUR Workshop Proceedings, CEUR-WS.org, 2017. URL:
http://ceur-ws.org/Vol-1879/paper25.pdf.

[16] A. Newell, Unified theories of cognition, Harvard University Press, 1994.
[17] J. E. Laird, C. Lebiere, P. S. Rosenbloom, A standard model of the mind: Toward a common

computational framework across artificial intelligence, cognitive science, neuroscience,
and robotics., Ai Magazine 38 (2017).

[18] A. Newell, H. A. Simon, Computer science as empirical inquiry: Symbols and search,
Communications of the ACM 19 (1976) 113–126.

[19] A. Lieto, C. Lebiere, A. Oltramari, The knowledge level in cognitive architectures: Current
limitations and possible developments, Cognitive Systems Research 48 (2018) 39–55.

[20] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato, ALC+T: a preferential extension of de-
scription logics, Fundamenta Informaticae 96 (2009) 341–372. doi:10.3233/FI-2009-185.

[21] A. Lieto, A computational framework for concept representation in cognitive systems
and architectures: Concepts as heterogeneous proxytypes, Procedia Computer Science 41
(2014) 6–14.

[22] A. Lieto, D. P. Radicioni, V. Rho, A common-sense conceptual categorization system
integrating heterogeneous proxytypes and the dual process of reasoning, in: In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, AAAI
Press, 2015, pp. 875–881.

[23] A. Lieto, D. P. Radicioni, V. Rho, Dual peccs: a cognitive system for conceptual representa-
tion and categorization, Journal of Experimental & Theoretical Artificial Intelligence 29
(2017) 433–452.

[24] A. Lieto, D. Radicioni, V. Rho, E. Mensa, Towards a unifying framework for conceptual
represention and reasoning in cognitive systems, Intelligenza Artificiale 11 (2017) 139–153.

[25] M. Alberti, E. Bellodi, G. Cota, F. Riguzzi, R. Zese, cplint on SWISH: probabilistic logical
inference with a web browser, Intelligenza Artificiale 11 (2017) 47–64. doi:10.3233/
IA-170106.

[26] E. Bellodi, E. Lamma, F. Riguzzi, R. Zese, G. Cota, A web system for reasoning with
probabilistic OWL, Journal of Software: Practice and Experience 47 (2017) 125–142.
doi:10.1002/spe.2410.

[27] A.-M. Olteţeanu, Z. Falomir, Object replacement and object composition in a creative
cognitive system. towards a computational solver of the alternative uses test, Cognitive
Systems Research 39 (2016) 15–32.

http://ceur-ws.org/Vol-1879/paper25.pdf
http://dx.doi.org/10.3233/FI-2009-185
http://dx.doi.org/10.3233/IA-170106
http://dx.doi.org/10.3233/IA-170106
http://dx.doi.org/10.1002/spe.2410

	1 Introduction
	2 The Logic TCL: a Description Logic of Typicality for Concept Combination
	3 Exploiting the Logic TCL for Knowledge Generation Via Concept Combination
	4 The Ancestor of the System EDIFICA: the System GOCCIOLA
	5 The System EDIFICA
	6 Compliance and Extension of SOAR procedures
	7 Conclusions

