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Abstract
In this paper, a generalised version A𝛽 of the celebrated Ackermann encoding of the hereditarily finite sets, aimed
at assigning a real number also to each hereditarily finite hyperset and multiset, is studied. Such a mapping
establishes a significant link between real numbers and the theories of such generalised notions of set, so that
performing set-theoretic operations can be translated into their number-theoretic equivalent. By appropriately
choosing a parameter 𝛽, both the Ackermann encoding and the less known map R𝐴 arise as special cases; a
bijective encoding of a subuniverse of hereditarily finite multisets occurs whenever this parameter is chosen
among natural numbers, while if it is taken transcendental and within a peculiar interval of the real positive line,
then the function is surmised to ensure an injective mapping of both the aforementioned universes.
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Introduction

In 1937, Wilhelm Ackermann defined an encoding of the hereditarily finite sets – namely, finite sets
whose construction involves only finite sets at any nesting depth – into natural numbers (see [1]). This
bijection gives, for each hereditarily finite set, a detailed description of its elements and, recursively, of
any set entering its construction. Globally, it induces a well ordering of the universe of hereditarily
finite sets via their codes, while for each operation over such sets it provides an exact counterpart
over natural numbers. Most remarkably, Ackermann’s correspondence enabled also the migration of
results about Peano number theory into set theory (cf. [2, Sec. 7.6]); among others, it permits one to
prove the essential undecidability of axiomatic theories of sets by an argument à la Gödel (see [2]).
Regrettably, this bijection has a narrow realm of application, as becomes apparent when one moves on
to considering whatever extension of the family of all finite sets to broader ones, e.g., the hereditarily
finite hypersets and multisets.

A hyperset admits cycles in the membership relation, so it violates the so-called well-foundedness
principle. Despite this, a strongly restrained equality notion – namely, bisimilarity (see [3] and [4]) –
reconciles liberality with the philosophical Occam’s razor criterion. Hypersets find immediate applica-
tion in several fields. In particular, they can represent finite state automata or, more generally, graphs
labelled on edges; showing that two hypersets are bisimilar is analogous to proving the equivalence
of two such machines (see, e.g., [5]). If each distinct hyperset is assigned a unique number, up to this
equality criterion, then the aim of finding out bisimilarities can hopefully be attained just through a
comparison of these codes.

Differently from the previous case, a multiset allows each of its elements to occur with multiplicity
higher than one, while the order of those elements is still regarded as irrelevant. Despite their plain
application in computer sciences, a formal theory of pure multisets is not uniquely established yet –
nonetheless, an attempt can be found in [6] (see also, e.g., [7]). A hereditarily finite set can be regarded
as basis for the construction of a hereditarily finite multiset, the latter having as its elements the same
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elements of the former, possibly counted more than once; in this paradigm, an ordering of a multiset is
induced by the Ackermann ordering of hereditarily finite sets, and this finds application when writing
a termination function, which turns out to be much simpler than the one obtained by considering
hereditarily finite sets only (see [8]).

The aim of this paper, resulting from a master’s degree thesis,1 is to generalise the Ackermann
encoding and its variant R𝐴 – already introduced and studied in [9], [10], [11] and [12] – into a
parametrised family of encoding functions, motivated by missed injectivity over the union of the
two aforementioned universes, and aimed at showing the properties which are independent of the
specifically chosen one. Some special cases will be analysed in order to determine which parameters
yield a well-defined and injective mapping over at least a subuniverse of the joint family of hereditarily
finite sets, hypersets, and multisets.

This paper is structured as follows. In Section 1, it introduces the notions of hereditarily finite (hyper-,
multi-) sets; Section 2 focuses on the Ackermann encoding and the map R𝐴. In Section 3, the encoding
scheme A𝛽 is introduced, while the cases 𝛽 ∈ N and 𝑒−𝑒 ≤ 𝛽 ≤ 𝑒1/𝑒 are analysed in Sections 4 and 5
resp. – the latter being an interval whose significance emerges from a theorem by Euler. Section 6 is
devoted to show two meaningful examples, and Section 7 to point out the conclusions of this study.

1. Hereditarily finite families of sets

Standard set-theoretic notations will be adopted throughout the paper; in particular, P(·) will represent
the powerset operator. Recall that, if it exists, the transitive closure of a set 𝑠 is the collection of all its
elements, together with their own elements at any nesting depth:

trCl(𝑠) = 𝑠 ∪
⋃︁
𝑠′∈𝑠

trCl(𝑠′) .

Notice that its existence is always guaranteed if well-foundedness, together with a minimal axiomatic
equipment, is assumed on the membership relation (see, e.g., [4] and [13]).

To denote numerical sets, N, R and so on will be used; the abbreviations N+ := {𝑛 ∈ N | 𝑛 > 0},
R+
0 := {𝑧 ∈ R | 𝑧 ≥ 0} and similar are adopted. For classical numerical operations, standard notations

will be used; the following generalisation of a notation adopted in [10], namely

ℶ𝛽(0) = 0, ℶ𝛽(𝑛+ 1) = 𝛽ℶ𝛽(𝑛) = 𝛽𝛽··
·𝛽⏟  ⏞  

𝑛

,

for 𝛽 ∈ R+, 𝑛 ∈ N is justified by the frequent use of iterated exponentials along this paper.
The following definitions are given by means of the concept of cumulative hierarchy, meaning that

they are built up by introducing a sequence of levels or layers such that each one of them is strictly
contained in the subsequent one. The first and smallest universe of sets to be introduced is the following.

Definition 1.1 (Hereditarily finite sets).

HF𝑛 =

{︃
∅ if 𝑛 = 0

P(HF𝑛−1) if 𝑛 ∈ N+,
HF =

⋃︁
𝑛∈N

HF𝑛

defines the cumulative hierarchy of the hereditarily finite sets (sometimes referred as HF0).
Given ℎ ∈ HF, its rank rk(ℎ) is defined as the least integer 𝑟 such that ℎ ∈ HF𝑟+1.

Therefore, hereditarily finite (from now on, often abbreviated as h.f.) sets are finite at any nesting
depth; observe that this universe is well-founded by construction. The rank of a h.f. set expresses also
the maximum depth at which the empty set is nested inside it.

Differently from standard sets, the universe of multisets allows each element of any of its members to
occur more than once.
1Available upon request to S. Boscaratto.



Definition 1.2 (Multisets). Let 𝑂1, . . . , 𝑂𝑛 be 𝑛 distinct objects and let 𝑚1, . . . ,𝑚𝑛 ∈ N+ be positive
integers; then the list

𝑀 = [𝑂1, . . . , 𝑂1⏟  ⏞  
𝑚1

, . . . , 𝑂𝑛, . . . , 𝑂𝑛⏟  ⏞  
𝑚𝑛

],

or equivalently
𝑀 = { 𝑂𝑚1

1, . . . , 𝑂𝑚𝑛
𝑛},

up to any permutation, defines the multiset 𝑀 containing the objects 𝑂1, . . . , 𝑂𝑛 with multiplicities
𝑚1, . . . ,𝑚𝑛 respectively, i.e. containing exactly 𝑚𝑖 occurrences of 𝑂𝑖 for every 𝑖 ∈ {1, . . . , 𝑛}.2 The
multiplicity map of 𝑀 and its multiset membership relation are then defined as

𝜇𝑀 (𝑂𝑖) = 𝑚𝑖 ⇐⇒ 𝑂𝑖 ∈𝑚𝑖 𝑀.

Multisets are introduced and often used without much care about formal aspects (see [14]); here, just
the case in which their objects are themselves multisets at any nesting depth is taken into account, to
be coherent with HF. In this way a cumulative hierarchy of hereditarily finite multisets can be defined
by introducing an operator which is the multiset analogue to the common powerset. The following
definitions and properties are stated and proven in [12].

Definition 1.3 (𝜇-powerset). Given a multiset 𝑋 , define

P𝜇(𝑋) =
{︀
{ 𝑥𝑚1

1, . . . , 𝑥𝑚𝑛
𝑛} | 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 ∧ (∀𝑖 ̸= 𝑗)(𝑥𝑖 ̸= 𝑥𝑗)

∧𝑚1, . . . ,𝑚𝑛 ∈ N+ ∧ 𝑛 ∈ N
}︀
.

Definition 1.4 (Hereditarily finite multisets).

HF𝜇𝑛 =

{︃
∅ if 𝑛 = 0

P𝜇(HF𝜇𝑛−1) if 𝑛 ∈ N+,
HF𝜇 =

⋃︁
𝑛∈N

HF𝜇𝑛

defines the cumulative hierarchy of the hereditarily finite multisets.
Given 𝐻 ∈ HF𝜇, its rank rk(𝐻) is the least integer 𝑟 such that 𝐻 ∈ HF𝜇𝑟+1.

Some arithmetical operations such as sum, multiplication by a positive integer, product and exponen-
tiation are defined inside HF𝜇, so that polynomials of multisets can be defined, too (see [12]). Moreover,
HF𝜇 is a well-founded universe much as HF, which is in turn naturally embedded into HF𝜇, being its
subuniverse admitting each distinct element once at any nesting depth.

Differently from the previous cases, the following universe is not defined by means of a cumulative
hierarchy but by means of set systems describing the transitive closures of its members; the equal-
ity criterion between two hypersets generalises from one-to-one correspondence of their elements
(extensionality, see [13]) to bisimilarity (see [3] and the definitions below).

Definition 1.5 (Bisimulation). A dyadic relation ♭ on the finite set 𝑉 of the nodes of an directed graph
ℳ = (𝑉,𝐸) is said to be a bisimulation on ℳ if 𝑢0♭𝑢1 always implies that

• for every child 𝑣1 of 𝑢1, 𝑢0 has at least one child 𝑣0 s.t. 𝑣0♭𝑣1, and
• for every child 𝑣0 of 𝑢0, 𝑢1 has at least one child 𝑣1 s.t. 𝑣0♭𝑣1.

The largest of all bisimulations on ℳ (relative to inclusion) is the following equivalence relation.3

Definition 1.6 (Bisimilarity). The bisimilarity of a digraph ℳ whose set 𝑉 of nodes is finite is the
dyadic relation ≡ℳ over 𝑉 such that 𝑢 ≡ℳ 𝑣 holds between 𝑢, 𝑣 in 𝑉 if and only if 𝑢 ♭ 𝑣 holds for
some bisimulation ♭ on ℳ.
2Following [12], multiplicities are unconventionally written as left superscripts in order to avoid confusion with the notation
𝑂𝑛 = 𝑂 × · · · ×𝑂⏟  ⏞  

𝑛

.

3See [3, pp. 20–22].



In the wording of [15, pp. 78–80], bisimilarity induces the coarsest partition of 𝑉 that is stable w.r.t. ℳ.
The graphs taken into account here are associated with systems of set equations involving unknowns 𝜍𝑖
(acting as nodes); each equation 𝜍𝑖 = {𝜍𝑖,1, . . . , 𝜍𝑖,𝑚𝑖} brings the edges ⟨𝜍𝑖, 𝜍𝑖,1⟩, . . . , ⟨𝜍𝑖, 𝜍𝑖,𝑚𝑖⟩ into 𝐸.

Definition 1.7 (Hereditarily finite rational hypersets). A hereditarily finite rational hyperset is the
solution 𝜍0 (unique, up to bisimilarity) of a finite set system

S (𝜍0, 𝜍1, . . . , 𝜍𝑛) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜍0 = {𝜍0,1, . . . , 𝜍0,𝑚0}
𝜍1 = {𝜍1,1, . . . , 𝜍1,𝑚1}

...

𝜍𝑛 = {𝜍𝑛,1, . . . , 𝜍𝑛,𝑚𝑛}

with 𝜍𝑖,𝑗 ∈ {𝜍0, 𝜍1, . . . , 𝜍𝑛} for every 𝑖 ∈ {0, 1, . . . , 𝑛} and 𝑗 ∈ {1, . . . ,𝑚𝑖}. The class of h.f. rational
hypersets is denoted by HF1/2.

Example 1.1. The hyperset Ω = {{{· · · }}} is the solution of the equation 𝜍 = {𝜍}.

Notice that also h.f. well-founded sets can be defined by finite set systems, with the constraint that the
elements of 𝜍𝑖 can only be chosen from among 𝜍𝑖+1, . . . , 𝜍𝑛. Moreover, by allowing multiple occurrences
of the same unknown, h.f. multisets can be defined in this way too. Multihypersets, i.e., non-well-founded
multisets, are neither treated in this paper nor – to the best of authors’ knowledge – elsewhere.

2. Encoding sets as natural and real numbers

Definition 2.1 (Ackermann encoding of HF).

N𝐴(ℎ) =
∑︁
ℎ′∈ℎ

2N𝐴(ℎ′) if ℎ ∈ HF

recursively defines the Ackermann encoding of hereditarily finite sets.

The Ackermann encoding has a number of well-known and interesting properties, which allow an
exact match not only between HF and N, but also between the related operations and theories. Some of
these properties are shown below.4

• N𝐴 is a bijection between HF and N.
• ℎ′ ∈ ℎ ∈ HF if and only if there is a ‘1’ at position N𝐴(ℎ

′) of the binary expansion of N𝐴(ℎ).
• N𝐴 gives a natural, total ordering to HF: this is established as ℎ ≺ ℎ′ ⇔ N𝐴(ℎ) < N𝐴(ℎ

′).

To extend the domain of an encoding map so as to embrace also h.f. hypersets, in [10] the function
Q𝐴 was introduced. Although it keeps some of the most desirable features of the Ackermann encoding –
actually, the restriction of Q𝐴 to the universe HF equals N𝐴 –, it is not uniformly extensible to multisets
too, and presupposes an ordering of hypersets for which no convenient standard has emerged yet.5

Another variant, introduced in [9] and adopted also in [10], keeps a stronger formal kinship with N𝐴.

Definition 2.2 (R𝐴-code). The R𝐴-codes of hereditarily finite rational hypersets are defined as follows:

R𝐴(ℏ) =
∑︁
ℏ′∈ℏ

2−R𝐴(ℏ′) for ℏ ∈ HF1/2.

Notice that this definition allows the codes of h.f. hypersets to be finite, despite not so evidently
guaranteeing it. As a very intuitive extension of this encoding, the following definition is introduced.

4For a proof see, e.g., [11].
5[16] shows an attempt towards this direction.



Definition 2.3 (R𝜇
𝐴-code). The R𝜇

𝐴-codes of hereditarily finite multisets are defined as follows:

R𝜇
𝐴(𝐻) =

∑︁
𝐻′∈𝐻

𝜇𝐻(𝐻 ′) · 2−R𝜇
𝐴(𝐻′) for 𝐻 ∈ HF𝜇.

Clearly, if the multiplicities are all equal to 1 at any nesting depth, the multiplicity map is unnecessary
and the resulting formula is the same as the previous one, thereby showing that R𝜇

𝐴

⃒⃒
HF1/2

= R𝐴.
Observe that this encoding is not injective over the whole HF𝜇, indeed

R𝜇
𝐴

(︀
[[∅], [∅]]

)︀
= 2 · 2−1 = 1 = 20 = R𝜇

𝐴

(︀
[∅]

)︀
.

Besides, a suitable subuniverse of it is defined in [12] as a domain where injectivity can be conjectured.

Definition 2.4. Let

ℋ2,𝑛 =

{︃{︀
𝐻 ∈ HF𝜇 | 𝜇𝐻({∅}) ≤ 1

}︀
if 𝑛 = 0{︀

𝐻 ∈ ℋ2,0 | 𝐻 ⊆ ℋ2,𝑛−1

}︀
if 𝑛 ∈ N+.

Then define

ℋ2 =
∞⋂︁
𝑛=0

ℋ2,𝑛,

so that ℋ2 is the cumulative hierarchy of multisets containing no occurrences of {∅} with multiplicity
larger than 1 at any nesting depth.6

Conjecture 2.1 (Conjecture 4.11, [12]). The encoding map R𝜇
𝐴 is injective over ℋ2.

Although this conjecture has some relevant consequences over HF in the first place (see [12]), an
example in Section 6 will disprove a preceding conjecture on the injectivity of R𝐴 over HF1/2; since the
violated injectivity is strictly related to the choice of 2−1 as basis for the exponentiation, this led to the
quest for an appropriate substitute to guarantee this essential property. Moreover, a theorem stating
existence and uniqueness of the codes of h.f. rational hypersets (Theorem 4, [11]) turns out to be not
fully validated because of an inaccuracy regarding the proof of a preceding lemma (Lemma 4 (vi), [11]).
In Section 5 the same lemma will be presented in a generalised version, aimed at going towards the
direction of proving this essential feature of an encoding map.

3. A generalised Ackermann map

Consider the following family of encodings of hereditarily finite (hyper-, multi-) sets, including those
already known.

Definition 3.1 (A𝛽-code). Let 𝛽 ∈ R+ ∖ {1}; then

A𝛽(ℎ)
def
=

∑︁
ℎ′∈ℎ

𝜇ℎ(ℎ
′) · 𝛽A𝛽(ℎ

′) for ℎ ∈ HF1/2 ∪ HF𝜇

defines the A𝛽-codes of the hereditarily finite (hyper-, multi-) sets.

Remark 1. Although the codes may vary significantly by changing the basis 𝛽, two hereditarily finite
sets trivially have an established and constant code; they are

∅ ↦−→ 0, {∅} ↦−→ 1.

As a consequence, the codes of the multisets containing just the empty set but with any multiplicity
range over all natural numbers:

(∀𝛽 ∈ R+ ∖ {1})(∀𝑚 ∈ N)
(︁
A𝛽

(︀
{ ∅𝑚 }

)︀
= 𝑚

)︁
.

6This notation is an adaption from H∞
1 introduced in [12]: here the subscript ‘2’ stands for the inverse basis of exponentiation.

This choice will be justified in Section 5. The motivation behind calling it a cumulative hierarchy can also be found in [12].



Example 3.1. The A𝛽-code of the super-singleton {∅}𝑛 := {{∅}𝑛−1} for 𝑛 ∈ N+ is A𝛽({∅}𝑛) = ℶ𝛽(𝑛).

Notice that the definition, as it stands, is not insisting in any way on the injectivity of the codes;
indeed, the following two particular cases arise.

Example 3.2. Let 𝛽 = 2; then A2
⃒⃒
HF

= N𝐴. Since the latter is bijective onto N, the former cannot be
injective over its whole domain, which is a much wider family of generalised sets; in particular (see
Remark 1):

(∀𝑖 ∈ N+)
(︁
A𝛽(ℎ𝑖) = A𝛽

(︀
{ ∅𝑖 }

)︀)︁
.

Example 3.3. Let 𝛽 = 1/2; then A1/2 = R𝜇
𝐴. As has been already seen, R𝜇

𝐴

(︀
[[∅], [∅]]

)︀
= 1.

A remarkable general property is that any basis makes the codes of h.f. sets grow beyond any bound.

Proposition 3.1. Let 𝛽 ∈ R+ ∖ {1}; then, the set of A𝛽-codes of HF is superiorly unbounded.

Proof. Fix 𝑛 ∈ N. For any odd number 𝑗 ∈ N, consider ℎ𝑗 as the 𝑗-th h.f. set with respect to the
Ackermann ordering, therefore ∅ ∈ ℎ𝑗 ; then

A𝛽(ℎ𝑗) =
∑︁
ℎ′∈ℎ𝑗

𝛽A𝛽(ℎ
′) =

∑︁
ℎ′∈ℎ𝑗

A𝛽

(︀
{ℎ′}

)︀
≥ 1.

Case 𝛽 < 1. Observe that, in this case,

A𝛽

(︀
{ℎ𝑗}

)︀
= 𝛽A𝛽(ℎ𝑗) ≤ 𝛽.

Besides,
A𝛽

(︀
{{ℎ𝑗}}

)︀
= 𝛽A𝛽({ℎ𝑗}) ≥ 𝛽𝛽 > 𝛽.

Let 𝑘 = 2𝑛⌈𝛽−1⌉ and consider the h.f. set ℎ = {{ℎ𝑘′} | 𝑘′ ≤ 𝑘}. Thus,

A𝛽(ℎ) =
𝑘∑︁

𝑘′=0

A𝛽

(︀
{{ℎ𝑘′}}

)︀
≥

𝑘∑︁
𝑘′=0
𝑘′ odd

A𝛽

(︀
{{ℎ𝑘′}}

)︀
> 𝛽 · 𝑘

2
= 𝑛.

Case 𝛽 > 1. Let 𝑗 > 1; then,
A𝛽

(︀
{ℎ𝑗}

)︀
= 𝛽A𝛽(ℎ𝑗) > 𝛽.

Consider again 𝑘 = 2𝑛⌈𝛽−1⌉, and ℎ = {ℎ𝑘′ | 𝑘′ ≤ 𝑘}. As in the previous case,

A𝛽(ℎ) =

𝑘∑︁
𝑘′=0

A𝛽

(︀
{ℎ𝑘′}

)︀
≥

𝑘∑︁
𝑘′=0
𝑘′ odd

A𝛽

(︀
{ℎ𝑘′}

)︀
> 𝛽 · 𝑘

2
= 𝑛.

4. Natural bases

Generalising the Ackermann map from h.f. sets to natural numbers, consider a basis 𝛽 ∈ N+, 𝛽 ≥ 2;
even when 𝛽 > 2, the Ackermann ordering is clearly kept over HF, but there may be a gap between
two consecutive codes; e.g., if 𝛽 = 3, their codes are 0, 1, 3, 4, 27, . . . .

A rather intuitive feature that any of these encodings share with Ackermann’s is that the expression
of the codes as base-𝛽 numbers shows the membership relation as the presence of a ‘1’ at the position
given by the Ackermann ordering; therefore, codes of h.f. sets are sequences of just 0s and 1s in that
representation. Notably, the missing codes can be filled with multisets with multiplicities at most 𝛽 − 1
at any nesting depth; in this way, A𝛽 over a proper subfamily of HF𝜇 turns out to be bijective, and
the code of a multiset as expressed as a base-𝛽 number defines completely its members with their
appropriate multiplicities.

To achieve a reasonable definition of the subuniverse of HF𝜇 that can be encoded with a natural
basis, consider an alternative version of powerset which is compatible with multisets.



Definition 4.1 (𝑚-powerset). Given a multiset 𝑋 and 𝑚 ∈ N+, define

P(𝑚)(𝑋) =
{︀
{ 𝑥𝑚1

1, . . . , 𝑥𝑚𝑛
𝑛} | 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 ∧ (∀𝑖 ̸= 𝑗)(𝑥𝑖 ̸= 𝑥𝑗)

∧𝑚1, . . . ,𝑚𝑛 ∈ N+ ∧ (∀𝑖)(𝑚𝑖 ≤ 𝑚) ∧ 𝑛 ∈ N
}︀
.

By using the classical powerset operation and the multiplication of a multiset by an integer (see
[12]), P(𝑚)(𝑋) = P(𝑚𝑋) may serve as an equivalent definition: this follows from the upper bound
this generalised powerset imposes to the multiplicity. Notice that the two operations coincide when
𝑚 = 1. On the other hand, since Definition 1.3 of 𝜇-powerset admits arbitrarily large multiplicities, the
multiset resulting from its application can be reproduced by the union of all the multisets generated
from 𝑚-powersets: P𝜇(𝑋) =

⋃︀
𝑚∈N+ P(𝑚)(𝑋).

With this new operator, the h.f. multisets that can be properly encoded by A𝑚 with 𝑚 ∈ N+ ∖ {1}
can reasonably be delimited.

Definition 4.2 (Hereditarily finite 𝑚-multisets). Let 𝑚 ∈ N+ ∖ {1}. Then,

HF(𝑚)
𝑛 =

{︃
∅ if 𝑛 = 0

P(𝑚−1)(HF
(𝑚)
𝑛−1) if 𝑛 ∈ N+,

HF(𝑚) =
⋃︁
𝑛∈N

HF(𝑚)
𝑛

defines the cumulative hierarchy of the hereditarily finite 𝑚-multisets.

The simplest case occurs when 𝑚 = 2, since HF = HF(2) as subfamilies of h.f. multisets. More
generally, it is guaranteed that the elements of each ℎ ∈ HF(𝑚) have multiplicities at most 𝑚− 1 at any
nesting depth. Each HF(𝑚) ranges over every layer HF𝜇𝑛 and HF𝜇 =

⋃︀
𝑚∈N+∖{1}HF

(𝑚), in complete

analogy with the relationship between P𝜇 and P(𝑚). Moreover, the rank of an h.f. multiset inside
HF(𝑚) is the same as inside HF𝜇:

HF(𝑚)
𝑛 = HF(𝑚) ∩ HF𝜇𝑛.

Given the above definitions, the following statement holds true.

Theorem 4.1. Let 𝑚 ∈ N+ ∖ {1}. Then the encoding map

A𝑚
⃒⃒
HF(𝑚)

: HF(𝑚) −→ N

is bijective.

Proof. Given any ℎ ∈ HF(𝑚), its code is well-defined by the recursive construction of the map A𝑚. On
the other hand, any 𝑛 ∈ N can be expressed as a sum of powers of 𝑚:

𝑛 = 𝑎0 + 𝑎1𝑚+ 𝑎2𝑚
2 + · · ·+ 𝑎𝑘𝑚

𝑘 , with 𝑎𝑖 ∈ {0, . . . ,𝑚− 1} and 𝑘 ∈ N.

Then the proof follows by induction on the degree 𝑘, given the base case

𝑎0 = A𝑚

(︀
[∅, . . . , ∅⏟  ⏞  

𝑎0

]
)︀
.

This meaningful property ensures a total ordering of each HF(𝑚); a total ordering of the whole HF𝜇

would be a limit case of all such encodings, but it cannot be implemented without introducing transfinite
ordinals. Moreover, since HF(𝑚) is naturally embedded into HF(𝑚+1), the ordering given by A𝑚 to the
former is kept by the ordering given by A𝑚+1 to the latter.

Despite these promising results about A𝑚 over HF(𝑚), no 𝛽 = 𝑚 would remain acceptable over the
whole families of h.f. sets and multisets, due to violated injectivity: with the given definition, every
A𝑚-code of a set in HF ∖ {∅, {∅}} is the code of at least one multiset in HF𝜇 ∖ HF.

Moreover, recalling what this paper is aimed at, the most significant reason to abandon any encoding
attempt with an integer basis is that there is no convergence on the codes of hypersets.



A3(ℎ)
(︀
A3(ℎ)

)︀
3

∑︀
ℎ′∈ℎ 𝜇ℎ(ℎ

′) · 3A3(ℎ
′) Multiset Corr. set

0 0 0 ∅ ∅

1 1 30 [∅] {∅}

2 2 2 · 30 [∅, ∅] {∅}

3 10 31
[︀
[∅]

]︀ {︀
{∅}

}︀
4 11 31 + 30

[︀
[∅], ∅

]︀ {︀
{∅}, ∅

}︀
5 12 31 + 2 · 30

[︀
[∅], ∅, ∅

]︀ {︀
{∅}, ∅

}︀
6 20 2 · 31

[︀
[∅], [∅]

]︀ {︀
{∅}

}︀
7 21 2 · 31 + 30

[︀
[∅], [∅], ∅

]︀ {︀
{∅}, ∅

}︀
8 22 2 · 31 + 2 · 30

[︀
[∅], [∅], ∅, ∅

]︀ {︀
{∅}, ∅

}︀
9 100 32

[︀
[∅, ∅]

]︀ {︀
{∅}

}︀
10 101 32 + 30

[︀
[∅, ∅], ∅

]︀ {︀
{∅}, ∅

}︀
11 102 32 + 2 · 30

[︀
[∅, ∅], ∅, ∅

]︀ {︀
{∅}, ∅

}︀
12 110 32 + 31

[︀
[∅, ∅], [∅]

]︀ {︀
{∅}

}︀
13 111 32 + 31 + 30

[︀
[∅, ∅], [∅], ∅

]︀ {︀
{∅}, ∅

}︀
14 112 32 + 31 + 2 · 30

[︀
[∅, ∅], [∅], ∅, ∅

]︀
{{∅}, ∅}

15 120 32 + 2 · 31
[︀
[∅, ∅], [∅], [∅]

]︀ {︀
{∅}

}︀
16 121 32 + 2 · 31 + 30

[︀
[∅, ∅], [∅], [∅], ∅

]︀ {︀
{∅}, ∅

}︀
17 122 32 + 2 · 31 + 2 · 30

[︀
[∅, ∅], [∅], [∅], ∅, ∅

]︀ {︀
{∅}, ∅

}︀
18 200 2 · 32

[︀
[∅, ∅], [∅, ∅]

]︀ {︀
{∅}

}︀
19 201 2 · 32 + 30

[︀
[∅, ∅], [∅, ∅], ∅

]︀ {︀
{∅}, ∅

}︀
Table 1
The first 20 multisets of HF(3) with respect to the ordering given by the A3 encoding, together with their
corresponding h.f. sets (multiple occurrences are merged together), their A3-codes as base-10 and base-3
numbers, and as a sum of powers of 3 to underline the strict correspondence between digits and multiplicities.
Notice that the codes 0,1,3,4 etc. of multisets also belonging to HF are sequences of just 0s and 1s in base 3.

5. Other bases

5.1. Over hypersets

A most remarkable result concerning iterated exponentials, first discovered by L. Euler in 1777 and
subsequently re-discovered and proven in several papers, is shown below.7 Here, its statement is taken
with slight changes from [18].

Theorem 5.1. The function 𝑥 = 𝑓(𝑧) = lim𝑛→∞ ℶ𝑧(𝑛) = 𝑧𝑧
𝑧·

··

converges when 𝑒−𝑒 ≤ 𝑧 ≤ 𝑒1/𝑒 and
diverges for all other positive 𝑧 outside this interval. On this interval 𝑓 is the partial inverse of 𝑔 [namely,
𝑔(𝑥) = 𝑥1/𝑥], that is,

𝑔
(︀
𝑓(𝑧)

)︀
= 𝑧 if 𝑒−𝑒 ≤ 𝑧 ≤ 𝑒1/𝑒,

𝑓
(︀
𝑔(𝑥)

)︀
= 𝑥 if 𝑒−1 ≤ 𝑥 ≤ 𝑒

[𝑒 = 2.71828 . . . is the Euler number]. In particular, four nontrivial modes of convergence and divergence
occur.

Case 1: 𝑧 > 1. The sequence of hyperpowers increases monotonically: ℶ𝑧(1) < ℶ𝑧(2) < ℶ𝑧(3) < · · · .
Subcase 1c: 1 < 𝑧 ≤ 𝑒1/𝑒. The sequence is bounded by 𝑒, and so 𝑓(𝑧) converges.

7[17]. A brief history of this theorem can be found in, e.g., [18] and [19].



Subcase 1d: 𝑒1/𝑒 < 𝑧. The sequence increases without bound, and so 𝑓(𝑧) diverges.
Case 2: 𝑧 < 1. The sequence of hyperpowers oscillates: ℶ𝑧(2𝑛) < ℶ𝑧(2𝑛− 1) for 𝑛 > 1 and, moreover,

the two subsequences ℶ𝑧(2) < ℶ𝑧(4) < ℶ𝑧(6) < · · · and · · · < ℶ𝑧(5) < ℶ𝑧(3) < ℶ𝑧(1) each converge.
Subcase 2c: 𝑒−𝑒 ≤ 𝑧 < 1. The preceding two subsequences of odd and even hyperpowers converge to

the same value, and so 𝑓(𝑧) converges.
Subcase 2d: 𝑧 < 𝑒−𝑒. The preceding two subsequences each converge separately to different values,

and so 𝑓(𝑧) diverges.

Notice that, if the infinitely iterated exponential function 𝑓 converges, then its limit is a solution of
the exponential equation 𝑥 = 𝑧𝑥; the function 𝑘(𝑥, 𝑧) = 𝑧𝑥 − 𝑥 has a unique zero if 0 < 𝑧 ≤ 1, two
zeros if 1 < 𝑧 ≤ 𝑒1/𝑒 – actually, for 𝑧 = 𝑒1/𝑒 there is a unique zero with multiplicity 2, namely 𝑥 = 𝑒 –
and no zeros if 𝑧 > 𝑒1/𝑒. In the second case, the limit of the function is the lower of such zeros (see,
e.g., [19]).

Definition 5.1. Let 𝛽 ∈ R+, 𝛽 ≤ 𝑒1/𝑒; then Ω𝛽−1 is defined as the lower solution of the equation
𝑥 = 𝛽𝑥, i.e.

Ω𝛽−1 = min
𝑥∈R+

{𝑥 | 𝑥 = 𝛽𝑥}.

Corollary 5.1. Let 𝛽 ∈ R+, 𝑠𝑛 = ℶ𝛽(𝑛) = A𝛽({∅}𝑛).
Case 1: 𝑒−𝑒 ≤ 𝛽 < 1. The following hold true.

0 = 𝑠0 < 𝑠2 < · · · < 𝑠2𝑖 < · · · < Ω𝛽−1 < · · · < 𝑠2𝑖+1 < · · · < 𝑠3 < 𝑠1 = 1,

lim
𝑖→∞

𝑠2𝑖 = Ω𝛽−1 = lim
𝑖→∞

𝑠2𝑖+1.

Case 2: 1 < 𝛽 ≤ 𝑒1/𝑒. The following hold true.

0 = 𝑠0 < 1 = 𝑠1 < 𝛽 = 𝑠2 < · · · < 𝑠𝑖 < · · · < Ω𝛽−1 ,

lim
𝑖→∞

𝑠𝑖 = Ω𝛽−1 .

For a further generalisation of A𝛽-codes to HF1/2, which follows naturally from the previous corollary
on the code of Ω, consider the following extension of the concept of code system (Definition 4, [11]).

Definition 5.2 (A𝛽-code systems). Consider the set system

S (𝜍0, 𝜍1, . . . , 𝜍𝑛) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜍0 = [𝜍0,1, . . . , 𝜍0,𝑚0 ]

𝜍1 = [𝜍1,1, . . . , 𝜍1,𝑚1 ]
...

𝜍𝑛 = [𝜍𝑛,1, . . . , 𝜍𝑛,𝑚𝑛 ]

and define its index map

𝐼S :

𝑛⋃︁
𝑖=0

{⟨𝑖, 𝑗⟩ | 1 ≤ 𝑗 ≤ 𝑚𝑖} −→ {0, 1, . . . , 𝑛},

that associates the index of the unknown 𝜍𝑖,𝑗 to its corresponding index in the list 𝜍0, 𝜍1, . . . , 𝜍𝑛, namely
𝜍𝑖,𝑗 = 𝜍𝐼S (𝑖,𝑗). Given 𝛽 ∈ R+ ∖ {1}, 𝑒−𝑒 ≤ 𝛽 ≤ 𝑒1/𝑒, the A𝛽-code system of S (𝜍0, 𝜍1, . . . , 𝜍𝑛) in the
real unknowns 𝑥0, 𝑥1, . . . , 𝑥𝑛 is

C𝛽(𝑥0, 𝑥1, . . . , 𝑥𝑛) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥0 = 𝛽𝑥0,1 + · · ·+ 𝛽𝑥0,𝑚0

𝑥1 = 𝛽𝑥1,1 + · · ·+ 𝛽𝑥1,𝑚1

...

𝑥𝑛 = 𝛽𝑥𝑛,1 + · · ·+ 𝛽𝑥𝑛,𝑚𝑛 ,

where 𝑥𝑖,𝑗 is a shorthand for 𝑥𝐼S (𝑖,𝑗) for 𝑖 ∈ {0, 1, . . . , 𝑛} and 𝑗 ∈ {1, . . . ,𝑚𝑖}.



Definition 5.3 (Normal set systems). A set system S (𝜍0, 𝜍1, . . . , 𝜍𝑛) is said to be normal if there
exist 𝑛 + 1 pairwise non-bisimilar hypersets ℏ0, ℏ1 . . . , ℏ𝑛 ∈ HF1/2 that satisfy all the equations in
S (𝜍0, 𝜍1, . . . , 𝜍𝑛) once assigned to 𝜍0, 𝜍1, . . . , 𝜍𝑛.

The following definitions are taken from [11] to show how rational hypersets can be arbitrarily
approximated by sequences of sets or multisets.

Definition 5.4 (Multiset approximating sequences). Consider a normal set system S (𝜍0, 𝜍1, . . . , 𝜍𝑛),
and let 𝐼S be its index map. The multiset approximating sequence for the solution of S (𝜍0, 𝜍1, . . . , 𝜍𝑛) is
the sequence (⟨𝐻𝑗

𝑖 | 0 ≤ 𝑖 ≤ 𝑛⟩)𝑗∈N of the (𝑛+ 1)-tuples of well-founded hereditarily finite multisets
defined by

⟨𝐻𝑗
𝑖 | 0 ≤ 𝑖 ≤ 𝑛⟩ =

{︃
⟨∅ | 0 ≤ 𝑖 ≤ 𝑛⟩ if 𝑗 = 0⟨︀
[𝐻𝑗

𝑖,1, . . . ,𝐻
𝑗
𝑖,𝑚𝑖

] | 0 ≤ 𝑖 ≤ 𝑛
⟩︀

if 𝑗 > 0,

where 𝐻𝑗−1
𝑖,𝑢 is a shorthand for 𝐻𝑗−1

𝐼S (𝑖,𝑢), for every 𝑖 ∈ {0, 1, . . . , 𝑛} and every 𝑢 ∈ {1, . . . ,𝑚𝑖}.
Given a normal set system S (𝜍0, 𝜍1, . . . , 𝜍𝑛), two distinct unknowns 𝜍𝑖 and 𝜍𝑖′ , with 𝑖, 𝑖′ ∈

{0, 1, . . . , 𝑛}, are said to be distinguished at step 𝑘 > 0 by its multiset approximating sequence if
𝐻𝑘

𝑖 ̸= 𝐻𝑘
𝑖′ .

8 Further, 𝐻𝑗
𝑖 is referred as the 𝑗-th multiset approximation value of 𝜍𝑖.

Some significant properties of set and multiset approximating sequences are shown in [11]. Another
definition is here adapted from [11], with the aim of mirroring the multiset approximating sequence
for the solution of a normal set system to a numerical approximating sequence for the solution of the
corresponding A𝛽-code. The interval initially considered is delimited by 𝑒−𝑒 and 𝑒1/𝑒 to guarantee at
least the convergence on the code of Ω by Corollary 5.1.

Definition 5.5 (A𝛽-code increment sequences). Assume 𝛽 ∈ R+ ∖ {1}, 𝑒−𝑒 ≤ 𝛽 ≤ 𝑒1/𝑒 and consider
the set system S = (𝜍0, 𝜍1, . . . , 𝜍𝑛) with index map 𝐼S and multiset approximating sequence (⟨𝐻𝑗

𝑖 |
0 ≤ 𝑖 ≤ 𝑛⟩)𝑗∈N. The A𝛽-code increment sequence (⟨𝛿𝑗𝑖 | 0 ≤ 𝑖 ≤ 𝑛⟩)𝑗∈N for the system S (𝜍0, 𝜍1, . . . , 𝜍𝑛)
is defined as

𝛿𝑗𝑖 = A𝛽(𝐻
𝑗+1
𝑖 )− A𝛽(𝐻

𝑗
𝑖 )

for every 𝑖 ∈ {0, 1, . . . , 𝑛} and 𝑗 ∈ N.

Some meaningful properties are stated below.

Lemma 5.1. Given 𝛽 ∈ R+, 𝛽 < 1,

(∀𝑥, 𝑦 ∈ R)
(︀
|𝑦| ≤ |𝑥| ∧ 𝑥𝑦 ≤ 0 ⇒ |𝛽𝑦 − 1| ≤

⃒⃒
𝛽−𝑥 − 1

⃒⃒)︀
.

Proof. Let 𝑥, 𝑦 ∈ R such that 𝑥𝑦 ≤ 0, and suppose |𝑦| ≤ |𝑥|. Then, since 𝛽 < 1,

1 ≤ 𝛽−|𝑦| ≤ 𝛽−|𝑥|.

Suppose 𝑦 ≤ 0 ≤ 𝑥, then

1 ≤ 𝛽𝑦 ≤ 𝛽−𝑥 ⇒ 0 ≤ 𝛽𝑦 − 1 ≤ 𝛽−𝑥 − 1 ⇒ |𝛽𝑦 − 1| ≤ |𝛽−𝑥 − 1|.

Otherwise, i.e. 𝑥 ≤ 0 ≤ 𝑦,

1 ≤ 𝛽−𝑦 ≤ 𝛽𝑥 ⇒ 𝛽−𝑥 ≤ 𝛽𝑦 ≤ 1 ⇒ 𝛽−𝑥−1 ≤ 𝛽𝑦−1 ≤ 0 ⇒ 0 ≤ |𝛽𝑦−1| ≤ |𝛽−𝑥−1|.

8If two unknowns are distinguished at a certain step, then they are distinguished at every subsequent step; see Lemma 2 (a),
[11].



Lemma 5.2. Given 𝛽 ∈ R+ ∖ {1}, 𝑒−𝑒 ≤ 𝛽 ≤ 𝑒1/𝑒, let S (𝜍0, 𝜍1, . . . , 𝜍𝑛) be a normal set system with
index map 𝐼S , multiset approximating sequence (⟨𝐻𝑗

𝑖 | 0 ≤ 𝑖 ≤ 𝑛⟩)𝑗∈N and A𝛽-code increment sequence
(⟨𝛿𝑗𝑖 | 0 ≤ 𝑖 ≤ 𝑛⟩)𝑗∈N. Then, for every 𝑖 ∈ {0, 1, . . . , 𝑛} and 𝑗 ∈ N, the following facts hold true.

A𝛽(𝐻
𝑗+1
𝑖 ) =

𝑗∑︁
𝑘=0

𝛿𝑘𝑖 (1)

𝛿0𝑖 = 𝑚𝑖 (2)

𝛿𝑗+1
𝑖 =

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗
𝑖,𝑢)

(︀
𝛽𝛿𝑗𝑖,𝑢 − 1

)︀
where 𝐻𝑗

𝑖,𝑢 = 𝐻𝑗
𝐼S (𝑖,𝑢) (3)

Moreover, if 𝛽 < 1,

𝛿2𝑗+1
𝑖 ≤ 0 ≤ 𝛿2𝑗𝑖 , (4)

|𝛿𝑗+1
𝑖 | ≤ |𝛿𝑗𝑖 |, (5)

while, if 𝛽 > 1,

0 ≤ 𝛿𝑗𝑖 , (6)

(∃𝑘)
(︀
𝛿𝑘+1
𝑖 ≥ 𝛿𝑘𝑖 ) ⇒ lim

𝑗→∞
𝛿𝑗𝑖 > 0. (7)

Proof. Fix an index 𝑖 ∈ {0, 1, . . . , 𝑛}; along the proof, the following shorthand notation will be adopted.

𝐻𝑗
𝑖,𝑢 = 𝐻𝑗

𝐼S (𝑖,𝑢), 𝛿𝑗𝑖,𝑢 = 𝛿𝑗𝐼S (𝑖,𝑢), 𝑚𝑖,𝑢 = 𝑚𝐼S (𝑖,𝑢).

Claim (1). It is inductively proven by using the definition of A𝛽-code increment sequence:

A𝛽(𝐻
1
𝑖 ) = 𝛿0𝑖 + A𝛽(𝐻

0
𝑖 ) = 𝛿0𝑖

A𝛽(𝐻
𝑗+1
𝑖 ) = 𝛿𝑗𝑖 + A𝛽(𝐻

𝑗
𝑖 ) = 𝛿𝑗𝑖 +

𝑗−1∑︁
𝑘=0

𝛿𝑘𝑖 =

𝑗∑︁
𝑘=0

𝛿𝑘𝑖 .

Claim (2). This is another trivial consequence of the given definitions. Indeed, the codes of the first
step of multiset approximating sequence are the sum of as many 1s as the elements of the considered
hyperset, the empty set being the step 0 of whatever sequence.

Claim (3). By expanding

𝛿𝑗+1
𝑖 =

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗+1
𝑖,𝑢 ) −

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗
𝑖,𝑢) =

𝑚𝑖∑︁
𝑢=1

(︁
𝛽A𝛽(𝐻

𝑗+1
𝑖,𝑢 ) − 𝛽A𝛽(𝐻

𝑗
𝑖,𝑢)

)︁
=

=

𝑚𝑖∑︁
𝑢=1

(︁
𝛽A𝛽(𝐻

𝑗
𝑖,𝑢)+𝛿𝑗𝑖,𝑢 − 𝛽A𝛽(𝐻

𝑗
𝑖,𝑢)

)︁
=

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗
𝑖,𝑢) ·

(︀
𝛽𝛿𝑗𝑖,𝑢 − 1

)︀
.

the result is proven.
The next two claims hold just in the case 𝛽 < 1; since this is also the case of A1/2 = R𝐴, they

conclude the part treated also by Lemma 4, [11] in that specific case.
Claim (4). It follows by (2) and (3), since 𝛿0𝑖 ≥ 0 for every 𝑖 ∈ {0, 1, . . . , 𝑛}, so that 𝛿1𝑖 is a non-

positive sum, because 𝛽𝛿0𝑖 − 1 ≤ 0. Therefore, by induction, the A𝛽-code increment sequence assumes
alternatively non-negative and non-positive values, for even and odd indices respectively.

Claim (5). The key step in the proof of this claim is the inequality

𝛽𝛿𝑗𝑖 ·
⃒⃒⃒
𝛽𝛿𝑗+1

𝑖 − 1
⃒⃒⃒
≤

⃒⃒⃒
𝛽𝛿𝑗𝑖 − 1

⃒⃒⃒
. (8)



which will now be proven by induction on 𝑗 ∈ N, for every 𝑖 ∈ {0, 1, . . . , 𝑛}. Since

⃒⃒
𝛿1𝑖
⃒⃒
=

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
0
𝑖,𝑢) ·

⃒⃒⃒
𝛽𝛿0𝑖,𝑢 − 1

⃒⃒⃒
=

𝑚𝑖∑︁
𝑢=1

⃒⃒⃒
𝛽𝛿0𝑖,𝑢 − 1

⃒⃒⃒
=

𝑚𝑖∑︁
𝑢=1

(1− 𝛽𝑚𝑖,𝑢) ≤ 𝑚𝑖 =
⃒⃒
𝛿0𝑖
⃒⃒
, (9)

and thus 0 ≤ −𝛿1𝑖 ≤ 𝛿0𝑖 by claim (4), the base case of (8) is proven by

0 ≥ 𝛿1𝑖 ≥ −𝛿0𝑖 ⇒ 1 ≤ 𝛽𝛿1𝑖 ≤ 𝛽−𝛿0𝑖 ⇒ 0 ≤ 𝛽𝛿1𝑖 − 1 ≤ 𝛽−𝛿0𝑖 − 1 ⇒

⇒ 0 ≤ 𝛽𝛿0𝑖 ·
(︀
𝛽𝛿1𝑖 − 1

)︀
≤ 1− 𝛽𝛿0𝑖 ⇒ 𝛽𝛿0𝑖 ·

⃒⃒⃒
𝛽𝛿1𝑖 − 1

⃒⃒⃒
≤

⃒⃒⃒
𝛽𝛿0𝑖 − 1

⃒⃒⃒
.

Then, to move on from the induction hypothesis (8) to the next value of 𝑗, we argue as follows:

⃒⃒⃒
𝛿𝑗+2
𝑖

⃒⃒⃒
=

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗+1
𝑖,𝑢 ) ·

⃒⃒⃒
𝛽𝛿𝑗+1

𝑖,𝑢 − 1
⃒⃒⃒
=

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗
𝑖,𝑢)+𝛿𝑗𝑖,𝑢 ·

⃒⃒⃒
𝛽𝛿𝑗+1

𝑖,𝑢 − 1
⃒⃒⃒
=

=

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗
𝑖,𝑢) · 𝛽𝛿𝑗𝑖,𝑢 ·

⃒⃒⃒
𝛽𝛿𝑗+1

𝑖,𝑢 − 1
⃒⃒⃒
≤

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗
𝑖,𝑢) ·

⃒⃒⃒
𝛽𝛿𝑗𝑖,𝑢 − 1

⃒⃒⃒
=

⃒⃒⃒
𝛿𝑗+1
𝑖

⃒⃒⃒
.

Observe that (4) and |𝛿𝑗+2
𝑖 | ≤ |𝛿𝑗+1

𝑖 | for some 𝑖 ∈ {0, 1, . . . , 𝑛} make 𝛿𝑗+1
𝑖 and 𝛿𝑗+2

𝑖 suitable values for
𝑥 and 𝑦 of Lemma 5.1, so that ⃒⃒⃒

𝛽𝛿𝑗+2
𝑖 − 1

⃒⃒⃒
≤

⃒⃒⃒
𝛽−𝛿𝑗+1

𝑖 − 1
⃒⃒⃒

holds, and thus
𝛽𝛿𝑗+1

𝑖 ·
⃒⃒⃒
𝛽𝛿𝑗+2

𝑖 − 1
⃒⃒⃒
≤

⃒⃒⃒
𝛽𝛿𝑗+1

𝑖 − 1
⃒⃒⃒
.

This completes the proof of the claim (8). Claim (5) then follows for 𝑗 > 0 as an immediate by-product
of its proof, while in the case 𝑗 = 0, it amounts to (9).

Consider next the case 𝛽 > 1.
Claim (6). The A𝛽-code increment sequence is positive, since

𝛿𝑗+1
𝑖 =

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗
𝑖,𝑢) ·

(︀
𝛽𝛿𝑗𝑖,𝑢 − 1

)︀
≥

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑗
𝑖,𝑢) ≥ 0,

being 𝛿0𝑖 = 𝑚𝑖 ≥ 0 non-negative in the first place.
Claim (7). Assume 𝛿𝑘+1

𝑖 ≥ 𝛿𝑘𝑖 ; it follows

𝛿𝑘+2
𝑖 − 𝛿𝑘+1

𝑖 =

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑘+1
𝑖,𝑢 ) ·

(︀
𝛽𝛿𝑘+1

𝑖,𝑢 − 1
)︀
−

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑘
𝑖,𝑢) ·

(︀
𝛽𝛿𝑘𝑖,𝑢 − 1

)︀
=

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑘
𝑖,𝑢) · 𝛽𝛿𝑘𝑖,𝑢 ·

(︀
𝛽𝛿𝑘+1

𝑖,𝑢 − 1
)︀
−

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑘
𝑖,𝑢) ·

(︀
𝛽𝛿𝑘𝑖,𝑢 − 1

)︀
=

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑘
𝑖,𝑢) ·

(︁
𝛽𝛿𝑘𝑖,𝑢

(︀
𝛽𝛿𝑘+1

𝑖,𝑢 − 1
)︀
−
(︀
𝛽𝛿𝑘𝑖,𝑢 − 1

)︀)︁
=

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
𝑘
𝑖,𝑢) ·

(︀
𝛽𝛿𝑘𝑖,𝑢+𝛿𝑘+1

𝑖,𝑢 − 2𝛽𝛿𝑘𝑖,𝑢 + 1
)︀
.

Since 𝛽A𝛽(𝐻
𝑘
𝑖,𝑢) ≥ 0, focus now on the sum between parentheses.

𝛽𝛿𝑘𝑖,𝑢+𝛿𝑘+1
𝑖,𝑢 − 2𝛽𝛿𝑘𝑖,𝑢 + 1 ≥ 𝛽2𝛿𝑘𝑖,𝑢 − 2𝛽𝛿𝑘𝑖,𝑢 + 1 =

(︀
𝛽𝛿𝑘𝑖,𝑢 − 1

)︀2 ≥ 0

Therefore, the A𝛽-code increment sequence is either stable or increasing from the 𝑘-th step on.



Remark 2. Observe that, despite not being proven over HF1/2 yet, convergence on the codes of h.f. well-
founded sets and multisets is guaranteed by the convergence of the multiset approximating sequence
within a number of steps equal to their rank, so that the A𝛽-code increment sequence is constantly 0
for all the subsequent steps.

If 𝑒−𝑒 ≤ 𝛽 < 1, the convergence on the A𝛽-code of Ω appears to imply at least the convergence
on the A𝛽-codes of the other rational hypersets ℏ such that ℏ ∈ ℏ. Otherwise, if 1 < 𝛽 ≤ 𝑒1/𝑒 the
convergence is not guaranteed, since whenever 𝛿𝑘+1

𝑖 ≥ 𝛿𝑘𝑖 the code sequence ⟨A𝛽(𝐻
𝑗
𝑖 )⟩𝑗∈N diverges

due to statement (7) of the preceding lemma. An initial result is presented below, showing a minimum
requirement to get 𝛿1𝑖 < 𝛿0𝑖 .

Proposition 5.1. Given 𝛽 > 1, consider the set system S (𝜍0, 𝜍1, . . . , 𝜍𝑛) with index map 𝐼S ; let
𝑖 ∈ {0, 1, . . . , 𝑛} be such that 𝑚𝑖 > 0 and define 𝑚𝑖,𝜐 = max𝑢∈{1,...,𝑚𝑖}{𝑚𝑖,𝑢}. If 𝑚𝑖,𝜐 < log𝛽 2,
then 𝛿1𝑖 < 𝛿0𝑖 .

Proof. Recalling that 𝛿0𝑖 = 𝑚𝑖 = A𝛽(𝐻
1
𝑖 ), 𝑚𝑖,𝜐 < log𝛽 2 implies

𝛿1𝑖 =

𝑚𝑖∑︁
𝑢=1

𝛽A𝛽(𝐻
0
𝑖,𝑢)(𝛽𝛿0𝑖,𝑢 − 1) =

𝑚𝑖∑︁
𝑢=1

(𝛽𝛿0𝑖,𝑢 − 1) =

𝑚𝑖∑︁
𝑢=1

(𝛽𝑚𝑖,𝑢 − 1)

≤ 𝑚𝑖(𝛽
𝑚𝑖,𝜐 − 1) < 𝑚𝑖(2− 1) = 𝑚𝑖 = 𝛿0𝑖 .

Observe that the above constraint appears to be quite restrictive when dealing with the convergence
of the multiset approximating sequence’s A𝛽-codes, also because it has to be strengthened at every
subsequent step. Although a further analysis needs to be done on the convergence on A𝛽-codes of
HF1/2, the existence and uniqueness of A𝛽-codes of all rational hypersets for a basis chosen between
𝑒−𝑒 and 1 can be conjectured.9

Conjecture 5.1. Consider 𝛽 ∈ R, 𝑒−𝑒 ≤ 𝛽 < 1, and ℏ ∈ HF1/2. Then, there exists and is unique its
A𝛽-code.

(∀ℏ ∈ HF1/2)(∀𝛽 ∈ R)
(︀
𝑒−𝑒 ≤ 𝛽 < 1 ⇒ ∃!A𝛽(ℏ) ∈ R+

)︀
.

The challenging question of injectivity is still open; it will follow from the injectivity of the map over
HF𝜇, by the method of multiset approximating sequence.

5.2. Over multisets

For what concerns the application of the map A𝛽 to h.f. multisets, observe that in all the cases 𝛽 = 1/𝑚
with 𝑚 ∈ N+ ∖ {1}, analogues of the properties valid for R𝜇

𝐴 can be found too. Injectivity is violated
at the very first levels of the hierarchy, since A1/𝑚

(︀
{ {𝑚 ∅}}

)︀
= 𝑚 · 1/𝑚 = 1, so that to require it an

analog of ℋ2 has to be introduced as domain for this map.

Definition 5.6. Let 𝑚 ∈ N+ ∖ {1} and

ℋ𝑚,𝑛
def
=

{︃{︀
𝐻 ∈ HF𝜇 | 𝜇𝐻({∅}) ≤ 𝑚− 1

}︀
if 𝑛 = 0{︀

𝐻 ∈ ℋ𝑚,0 | 𝐻 ⊆ ℋ𝑚,𝑛−1

}︀
if 𝑛 ∈ N+.

Then define

ℋ𝑚
def
=

∞⋂︁
𝑛=0

ℋ𝑚,𝑛,

thus ℋ𝑚 is the collection of multisets containing no occurrences of {∅} with multiplicity larger than
𝑚− 1 at any nesting depth.
9The case 𝛽 > 1 shall be excluded in view of counterexamples such as Example 6.2 below.



Further, by developing tools analogous to the ones of [12], the following can be stated.

Conjecture 5.2. Given 𝑚 ∈ N+ ∖ {1}, the coding map A1/𝑚 is injective over the collection ℋ𝑚.

Theorem 5.2. Under Conjecture 5.2, every hereditarily finite set of rank at least 4 has a transcendental
A1/𝑚-code.

Proof. It is a rearrangement of the proof of Theorem 4.12, [12], where the reduction operator is generalised
to

𝜌𝑚(𝐻) =
(︁
𝐻 ∖

{︁
{∅}𝑚

⌊︀
𝑘
𝑚

⌋︀ }︁)︁
+
{︁

∅
⌊︀

𝑘
𝑚

⌋︀ }︁
,

so that it replaces every 𝑚-uple of {∅} in 𝐻 with a single occurrence of ∅.

Since multisets introduce multiple occurrences of their elements, for every algebraic basis 𝑒−𝑒 ≤ 𝛽 <
1 there are issues similar to the ones already encountered for 𝛽 = 1/𝑚 with 𝑚 natural, the latter being
a subcase of the former. Indeed, since by definition an algebraic number is the root of a polynomial
with integer coefficients, an algebraic basis 𝛽 satisfies

𝑃 (𝛽) = 0 where 𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + · · ·+ 𝑎𝑘𝑥

𝑘 ∈ Z[𝑥].

Therefore, in these cases it would be necessary to introduce a proper subfamily of HF𝜇 to exclude
the possibility that the same polynomial is reproduced by the code of any multiset in it. The case of
interest is the one in which 𝑎0 < 0, 𝑎𝑖 ≥ 0 for 𝑖 ∈ {1, . . . , 𝑘}, so that the A𝛽-codes of { ∅−𝑎0 } and
{ {𝑎1 ∅}, {𝑎2 ∅2 }, . . . , {𝑎𝑘 ∅𝑘 }} would coincide.

These observations lead to focus on transcendental real numbers within 𝑒−𝑒 and 1. The most obvious
choice appears to be 𝑒−1 = 1/𝑒 ∼ 0.36788 . . . , since 𝑒 is one of the most studied transcendental
mathematical constants and is used for both the definitions of the natural logarithm and the product
logarithm (see, e.g., [20]).

Despite being the only possible choice to encode completely both HF𝜇 and HF1/2, 𝑒−1 and any
other transcendental basis suffer of a lack of knowledge about their behaviour when involved in
(iterated) exponentiation. Nonetheless, having already excluded all the algebraic numbers from count,
the following conjecture is stated as a motivation for future research.

Conjecture 5.3. The A𝑒−1 encoding of h.f. multisets and hypersets is injective over the whole universe
HF1/2 ∪ HF𝜇.

6. Other results

Example 6.1 (Non-injectivity of R𝐴). Consider 𝛽 = 1/2; then, A1/2(ℏ) = R𝐴(ℏ) = 1, where

ℏ = {{{{. . . }, {∅}}, {∅}}, {∅}}

is the solution of the set system

S (𝜍0, 𝜍1, 𝜍2) =

⎧⎪⎨⎪⎩
𝜍0 = {𝜍0, 𝜍1}
𝜍1 = {𝜍2}
𝜍2 = {}.

It suffices to observe that the corresponding A1/2-code is the solution of 𝑥 = 2−𝑥 + 2−1, which
is trivially 1. Moreover, notice that by iteratively putting ℏ0 = ℏ and ℏ𝑛 = {ℏ𝑛, ℏ𝑛−1} for 𝑛 ∈ N+,
countably many non-bisimilar hypersets with A1/2-code 1 are obtained.



Example 6.2 (Convergence and divergence at the two extreme cases). Consider the hyperset

ℏ = {{{{. . . }, ∅}, ∅}, ∅},

solution of

S (𝜍0, 𝜍1) =

{︃
𝜍0 = {𝜍0, 𝜍1}
𝜍1 = {}.

By considering its multiset approximating sequence and the corresponding A𝛽-code approximating
sequence for the bases 𝛽 = 𝑒−𝑒 and 𝛽 = 𝑒1/𝑒, it turns out that the former guarantees convergence to a
finite real number, while the latter does not. This is easily explained by using an analytical approach:
indeed, observe that the A𝛽-code of ℏ is the root of the equation 𝑥 = 𝛽𝑥 + 1, so that its existence
depends on the behaviour of the function 𝑔(𝑥) = (𝑥− 1)1/𝑥. To find out its extrema, consider

𝑑

𝑑𝑥
𝑔(𝑥) =

(𝑥− 1)1/𝑥−1
(︀
𝑥− (𝑥− 1) ln(𝑥− 1)

)︀
𝑥2

.

that is zero at the point

𝑥 = 𝑒𝑊 (1/𝑒)+1 + 1 ∼ 4.59112 . . . s.t. 𝑧 = 𝑔(𝑥) = (𝑒𝑊 (1/𝑒)+1)1/(𝑒
𝑊 (1/𝑒)+1+1) ∼ 1.32110 . . .

where 𝑊 (·) is the principal branch of the product logarithm. This last value, representing the maximum
value of 𝑔(𝑥), is the greatest that can be assigned to 𝛽 to ensure the convergence on the A𝛽-code of ℏ.

7. Conclusions and open problems

A parameterised encoding scheme has been defined, in such a way so as to embrace both the celebrated
Ackermann encoding and the new and less known R𝜇

𝐴 map, the latter being a version of the former
that permits an extension of its domain from hereditarily finite well-founded sets to the universes of
h.f. ill-founded sets (hypersets) and h.f. (well-founded) multisets. This generalised Ackermann encoding,
defined as

A𝛽(ℎ) =
∑︁
ℎ′∈ℎ

𝜇ℎ(ℎ
′)𝛽A𝛽(ℎ

′)

– where 𝜇ℎ(ℎ
′) expresses the multiplicity of ℎ′ inside ℎ – depends on a real, positive and non-1 basis 𝛽,

whose choice turns out to be significant to obtain both an everywhere convergent and injective map, at
least on a subuniverse.

Selecting such a basis 𝛽 among natural numbers has shown how one can define a subfamily of
h.f. multisets over which the map is bijective. This mapping then gives a total ordering of this sub-
family, and given the code of a multiset in it one can extrapolate which multisets belong to it with its
corresponding multiplicity. This result appears to be promising in algorithmics to encode multisets
whose maximum multiplicity is known, at any nesting depth. Despite this, all these encodings cannot
apply to h.f. hypersets, since all their codes would be missing.

Given this first example, the focus has shifted to an interval – including 1 – on which a theorem by
Euler ensures at least the convergence on the code of the hyperset Ω = {Ω}. Following the example
of a previous paper concerning R𝐴, a way to approximate hypersets and their codes has been shown
(with a basis within this interval); some properties of these approximating sequences have been proven,
concluding that it is plausible that any of such bases can encode properly the universe of h.f. hypersets
and multisets if lower than 1.

Once the most promising interval where to look for 𝛽 was found, the algebraic bases have been
excluded, due to issues regarding injectivity over h.f. multisets. This suggested that one should adopt a
transcendental basis, e.g., the inverse Euler number 𝑒−1, for future studies; the main difficulty in this
case is the lack of knowledge on the behaviour of iterated exponentials with a transcendental basis.

Despite the results obtained about this encoding scheme, several problems are still left open. The
challenge of proving existence and uniqueness of codes of all the h.f. rational hypersets is still there, even



when choosing a basis within the aforementioned interval and lower than 1. Moreover, determining the
range in which a 𝛽 > 1 must lie in to ensure existence of the code of a h.f. hyperset might be a way to
introduce a non-arbitrary concept of rank for the universe of such aggregates. Nonetheless, this would
follow from a deep study of nested exponential equations in two variables, which are made possible
just with a significant knowledge of real analysis.
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