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Abstract

In this work, we address an extension of the contrast sequential pattern mining problem which aims at detecting
condensed representations for contrast sequential patterns. The problem is encoded with Answer Set Programming
(ASP). The efficiency and scalability of the ASP encoding are evaluated on two publicly available dataset, iPRG
and UNIX.
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1. Introduction

The continuous increase in available data makes effective and efficient techniques necessary to extrap-
olate key information to be used to make decisions in various application contexts. An example is
temporal data (e.g. system logs, banking transactions, telephone records, ...) that must be analyzed
using suitable methodologies such as Sequential Pattern Mining (SPM) [1]. In SPM, the goal is to find
frequent and non-empty temporal sequences (i.e. sequential patterns) from a sequence dataset. It also
happens that available temporal data is labeled or grouped according to precise semantics. For example,
in the domain of network security it is possible to label the network behavior as normal or as anomalous
and in this last case an attack could be underway. The idea behind Contrast Pattern Mining (CPM) [2]
is to find statistically significant differences between two or more disjoint datasets or portions of the
same dataset. The possibility of merging the two previous concepts for finding significant differences
between frequent sequences of different classes is known as Contrast Sequential Pattern Mining (CSPM)
[3]. CSPM is the pattern mining task considered in this paper.

In recent years there has been an increasing interest in the so-called Declarative Pattern Mining
(DPM), a research stream in which the objective is to develop declarative approaches to pattern mining.
Several encodings have been presented so far, to cover pattern mining tasks such as sequence mining
[4, 5] and frequent itemset mining [6, 7]. Answer Set Programming (ASP) is widely used in DPM. The
first proposal is described by Guyet et al. [8]. The authors explore the SPM problem with ASP and
compare their method with a dedicated algorithm. Gebser et al. [5] use ASP for extracting condensed
representations of sequential patterns. Samet et al. in [9] mine rare sequential patterns with ASP. In [10],
Guyet et al. propose a real world application to ASP-based DPM investigating the possible association
between hospitalization for seizure and antiepileptic drug switch from a French medico-administrative
database. Guyet et al. [11] present the use of ASP to mine sequential patterns within two representations
of embeddings (fill-gaps vs skip-gaps) and compare them with CP. An hybrid ASP approach is proposed
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by Paramonov et al. [12] which combines dedicated algorithms for pattern mining and ASP. In [13, 14]
Guyet’s ASP encodings for SPM are adapted in order to address the requirements of an application in
the digital forensics domain.! Motivated by the same application, Lisi and Sterlicchio in [15] propose
an ASP-based approach to CPM.? In [16], the same authors present the first ASP encoding for the
CSPM problem, which we call MASS-CSP (Mining with Answer Set Solving - Contrast Sequential Patterns)
hereafter. In this paper we want to carry on the work on MASS-CSP by facing one of the major problems
in pattern mining, i.e. the huge number of patterns most of which might be not useful. To this aim we
explore the so-called condensed representations to decrease the size of output.

The paper is organized as follows. In Section 2 we briefly recall the basics of ASP and give the necessary
background on CSPM. In Section 3 we define the problem of mining condensed representations for the
CSPM task and report the experimental results obtained on the a couple of datasets. Section 4 concludes
the paper with final remarks.

2. Background

2.1. Answer Set Programming

Answer Set Programming (ASP) [17, 18] is a declarative programming paradigm that allows for the
representation and solving of complex combinatorial problem. It is based on the logical formalism
of logic programs, specifically disjunctive logic programs with answer set semantics. ASP provides a
powerful tool for solving problems in various domains such as planning, scheduling, reasoning about
actions, and knowledge representation. In an ASP program, rules are defined using predicates and
logical connectors such as conjunction, disjunctions, and negations. The program consists of a set of
rules which define relationships between different elements in the problem domain. These rules are then
used to generate answer sets - sets of consistent interpretations that satisfy all constraints specified in
the program. One advantage of ASP over other declarative programming paradigms is its expressiveness
and flexibility in representing complex problems concisely through logical constraints. Additionally,
ASP programs can be easily modified or extended without changing their overall structure due to
their modular nature. ASP solvers use sophisticated algorithms based on efficient search techniques to
compute answer sets, the most important are Clingo [19] and DLV [20]. An example of general rule is:
a1V...Vay < by,...,bg,notbgi1,...,notby,. The rule says thatif by, . .., by are true and there is not
reason for believing that by 1, .. ., by, are true then at least one of the ay, . .., a, is believed to be true.
The left hand side and the right hand side of the <— are called head and body respectively. Rules without
body are called facts. The head is unconditionally true and the arrow is usually omitted. Conversely,
rules without head are called constraints and are used to discard stable models, thus reducing the number
of answers returned by the ASP solver.

2.2. Contrast Sequential Pattern Mining

Contrast sequential Pattern Mining (CSPM) [3] is a data mining technique that aims to discover interesting
patterns in sequential data by comparing and contrasting different sequences. This approach goes
beyond traditional sequential item pattern mining, which focuses solely on finding frequent patterns, by
also considering the differences between sequences. The main idea behind CSPM is to identify patterns
that occur frequently in one group of sequences but infrequently in another group. This allows for the
detection of significant differences between two sets of sequences and can provide valuable insights
into the underlying relationships or trends within data. By focusing on contrasting patterns, CSPM can
uncover hidden associations or trends that may not be apparent when analyzing each group separately.
This can lead to new discoveries and insights into complex datasets where traditional pattern mining
techniques may fall short. Below, we will show how to arrive at the final definition of CSPM starting
from SPM, finally we will show an example to understand the technique.

'We refer to this encoding as MASS-SP (Mining with Answer Set Solving - Sequential Patterns).
*We refer to this encoding as MASS-CP (Mining with Answer Set Solving - Contrast Patterns).



ID | Sequence | Class
1 (abacd) 4

2 (abe) Cy
3 (cabe) Ch
4 <C> &
5 (bcaa) Cy

6 (cba) Cy
7 (cba) Cy
8 | (abacba) Cy

Table 1
Example of a sequence dataset. Each sequence has a class label, that is used in CSPM

Let D be a database containing a set of sequences S = {s1, S, ..., Si}, where each sequence
s; consists of ordered elements or items from an alphabet Y. A sequence is represented as s; =
(i1, 12, ..., 1m), where each item i; belongs to ¥ and appears in the sequence in order according
to some timestamp or position information. A sequential pattern P is defined as an ordered list of
items ™ = (a1, ag, ...,ax) such that each a; € ¥ and occurs consecutively in at least one sequence
in S. The support of a sequential pattern 7 is the number of sequences in which it occurs. Given a
minimum support threshold minsup, SPM aims to find all frequent sequential patterns 7, such that
supp(m) > minsup. frequent sequential patterns are those that occur frequently enough within
the dataset base on the specified support threshold. A contrast sequential pattern is defined as a
sequential pattern tha occurs frequently in one sequence dataset but not in the others. It is necessary
to introduce the concept of growth rate and contrast rate to find contrast sequential patterns. Given
two sequences dataset, D labeled with the C class and D5 labeled as C', first we compute the growth
rate from D5 to D; of a sequential pattern m as GR¢, (7) = supp(m D/ID1| 1 e supp(m, D) =0

supp(m, D2)/|Da[*
and supp(m, D1) # 0 then GR¢, (m) = oo. After, the growth rate from D; to D of 7 is defined

as GRe, (7)) = %. If the supp(mw, D1) = 0 and supp(w, D2) # 0 then GR¢, () = oo.
The contrast rate of 7 is defined as CR(w) = maz{GR¢,(7), GRc,(m)} and if GR¢, (7) = 0 and
GRc,(m) = 0 then CR(mw) = oo. 7 is a contrast sequential pattern if CR(w) > mincr, where mincr
is the minimum contrast rate threshold.

Table 1 shows a sequences dataset D that we split in D; and Dy according to the classes C' and
(5, respectively. We start by finding sequential patterns first and given minsup = 2, (abc) is a
sequential pattern because in occurs in sequences 1, 2, 3, and 8. Another example is (cba) within
sequences number 6, 7, and 8. Assuming we have found all the sequential patterns, we check whether
these are contrasting for one of the two classes. Given mincr = 2, 11 = (abc) and the metrics
supp(mi, D1) = 3, supp(mi, D2) = 1, GRe, (m1) = 3, GRe,(m1) = 0.33, and CR(m) = 3, 7y is
a contrast sequential pattern for C; because CR(m1) > mincr. Given my = (cba) and its metrics
supp(ma, D1) = 0, supp(m2, D2) = 3, GRc,(m) = 0, GRc,(m) = oo, 2 is a contrast sequential
pattern for CY. In this specific case it has GR = oo therefore it is only a pattern for the C class.

3. Mining Condensed Representations of Contrast Sequential Patterns

In traditional pattern mining, algorithms often generate a large number of patterns that may contain
redundant or overlapping information. This can lead to issues such as increased computational com-
plexity, difficulty in interpretation, and inefficiency in storing and processing the discovered patterns.
Condensed representation techniques address these challenges by summarizing the set of mined pat-
terns into a more compact form without losing important insights or key relationship within data.
One common method used for condensed representation concerns the concept of closed and maximal
patterns [11]. A pattern s is closed, w.r.t. a dataset D, if no other pattern ¢ exists such that s C ¢ and
supp(s, D) = supp(t, D). A pattern s in maximal, w.r.t. a dataset D, if there are no other patterns ¢
such that s C t and supp(s, D) > minsup. With reference to the example reported in Section 2.2, we



Dataset [ |D| ID]| max|T| | avg|T| | density
iPRG 21 8628 | 111,743 12 11.95 0.62
iPRG_25_25 20 50 657 12 11.88 0.64
iPRG_100_100 20 200 2591 12 11.83 0.64
iPRG_500_500 21 1000 | 12,933 12 11.92 0.62
iPRG_1000_1000 21 2000 | 25,841 12 11.91 0.61
UNIX 2672 | 9099 | 165,748 1256 18.22 0.01
UNIX_25_25 70 50 365 55 7.3 0.10
UNIX_100_100 178 200 2281 175 11.41 0.06
UNIX_500_500 420 | 1000 | 13,289 187 13.29 0.03
UNIX_755_755 540 | 1510 | 20,234 214 134 0.02

Table 2
Features of iPRG and UNIX User sub-datasets: The number of distinct symbols, the number of sequences, the

total number of symbols in the dataset, the maximum sequence length, the average sequence length, and the

[|D]] )
[Z[|D]

density (calculated by

know that (a bc) and (cba) are sequential patterns. Following the definition of closed and maximal
patterns, (abc) and (cba) are not only maximal but also closed and because CR({abc)) > mincr
and CR({cba)) > mincr also contrast patterns.

In the next section we examine the computational behavior of the condensed representations for the
CSPM task comparing with the results obtained in [16] in Figures 1, 2 and, 3. In pattern mining, it is
usual to evaluate the effectiveness (number of extracted patterns), runtime and memory consumption
of an algorithm. Moreover in ASP-based DPM approaches it is important to know the solver and
grounder time. To this end, we conducted experiments on two datasets (Table 2) creating several
subsets of increasing size. In iPRG, each transaction is a sequence of peptides that is known to cleave in
presence of a Trypsin enzyme,® while in UNIX User, each transaction is a sequence of shell commands
executed by a user during one session.?. We have chosen these datasets because (i) they are suitable
for the task considered in this paper (classified sequences), (ii) they have been already used in the
DPM literature, in particular in [11, 4] although for a different task, and (iii) they are publicly available.
Notably, transactions in both datasets are labelled with one of two classes, pos and neg.

Due to lack of space we do not report the ASP encodings and all the experiments carried out, which
however can be found in the Github repository devoted to MASS-CSP.

3.1. Evaluation

In the following we report and discuss the results obtained from scalability tests on iPRG and UNIX
User. We have used the version 5.4.0 of Clingo, with default solving parameters. The timeout (T.O) has
been set to 1 hour. The ASP programs were run on a laptop computer with Windows 10 (with Ubuntu
20.04.4 subsystem), AMD Ryzen 5 3500U @ 2.10 GHz, 8GB RAM without using the multi-threading
mode of clingo. Multi-threading reduces the mean runtime but introduces variance due to the random
allocation of tasks. Such variance is inconvenient for interpreting results with repeated executions.
Tables 3 and 4 summarize the experiments conducted on iPRG and UNIX. It is clear that with the
extraction of maximal patterns the output is further reduced compared to closed ones. Obviously a
pattern can be both closed and maximal as shown for all sub-datasets when minsup grows up to 20%. As
the input to the program increases, the total execution time and occupied memory increases accordingly
as well as grounding time (time - solv. t.) but not much. Only when the size of the dataset reaches the
order of thousands of rows (iPRG_1000_1000) or when minsup is 10% (iPRG_500_500 maximal) the
process ends because of the timeout. The reason is that a high value of minsup is able to reduce the search
space and runtime. Figures 1, 2 (iPRG), and 3 (UNIX) compare basic, closed and maximal representations.

*https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html
*https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data
*https://github.com/mpia3/Contrast-Sequential-Pattern-Mining
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It seems that maximal representation requires more time compared to the closed one while closed
representation requires more memory compared to the maximal one. The advantage of using condensed
representations instead of the basic frequent formulation is when we want to reduce the output size.
It is strange that for UNIX_100_100 (Figure 3) the number of condensed patterns is higher than the
basic ones and it will be necessary to delve deeper into this phenomenon to understand the underlying
reasons. As the reader can see from the Figures mentioned before, condensed representations require
more execution time and memory due to the increase in new atoms to be derived to represent these
new patterns which increment the program size. Also in this case, as in various other contexts, it is
necessary to define a trade-off between what types of information are wanted and at what cost.

Closed Maximal
(a) iPRG_25_25, mincr = 3 (b) iPRG_25_25, mincr = 3
minsup | #pat | time | solv. t. | memory mincr | #pat | time | solv. t. | memory
10% 164 4.72 4.52 31.84 10% 115 13.01 12.73 34.35
20% 23 2.59 241 31.82 20% 23 9.09 8.77 39.13
30% 2 1.46 1.3 31.38 30% 2 5.58 5.26 38.5
40% 0 0.93 0.77 30.67 40% 0 3.01 2.7 34.7
50% 0 0.36 0.19 29.83 50% 0 1.29 0.94 30.86
(a) iPRG_100_100, mincr = 3 (b) iPRG_100_100, mincr = 3
minsup | #pat | time | solv. t. | memory mincr | #pat | time | solv.t. | memory
10% 536 | 75.48 74.46 96.69 10% 460 | 116.96 | 11591 88.4
20% 14 22.26 21.36 84.27 20% 14 30.37 29.22 82.51
30% 0 8.19 7.33 82.53 30% 0 15.54 14.65 84.4
40% 0 4.72 3.88 80.4 40% 0 10.92 9.98 83.43
50% 0 5.51 4.68 77.77 50% 0 7.14 6.24 82.55
(a) iPRG_500_500, mincr = 3 (b) iPRG_500_500, mincr = 3
minsup | #pat | time | solv.t. | memory mincr | #pat | time solv. t. | memory
10% 71 993.41 982.49 604.75 10% 28 T.O 3589.91 555.71
20% 12 554.70 543.17 600.45 20% 12 2167.71 | 2156.21 549.48
30% 0 246.49 235.8 600.45 30% 0 187.37 176.54 546.68
40% 0 1242.32 | 1231.62 579.17 40% 0 1523.46 | 1513.25 553.42
50% 0 1745.27 | 1735.21 585.21 50% 0 766.99 757.04 600.09
(a) iPRG_1000_1000, mincr = 3 (b) iPRG_1000_1000, mincr = 3
minsup | #pat | time | solv.t. | memory mincr | #pat | time solv. t. | memory
10% 14 TO 3560.14 1883.13 10% 11 T.O 3560.77 2787.54
20% 9 TO 3559.32 1875.15 20% 9 T.O 3557.44 1779.18
30% 0 736.96 694.01 1861.71 30% 0 T.O 3574.37 1773.29
40% 0 T.O 3559.38 1851.53 40% 0 2389.90 | 2342.93 1740.44
50% 0 3132.80 | 3093.54 3270.31 50% 0 T.O 3558.29 1729.63
Table 3

Number of closed and maximal patterns, runtime (seconds), solver time (seconds) and memory consumption
(MB) on all iPRG sub-datasets by varying minsup and leaving fixed mincr. T.O means timeout

4. Conclusions

Contrast Sequential Pattern Mining offers a powerful tool for exploring sequential data and discovering
meaningful patterns by highlighting differences between groups of sequences. It has applications
across various domains such as market analysis, healthcare research, fraud detection, and more where
understanding contrasts in sequential data is crucial for decision-making and problem-solving. Combi-
natorial explosion is typically involved in pattern mining. Condensed representation for patterns are the
solutions proposed in the literature to address this issue. We have reported the results of the evaluation
of closed/maximal contrast sequential patterns comparing with the basic CSPM representation in ASP.
We have used two datasets from two different domains for our evaluation. The experiments illustrate



#Patterns

800
700
600
500
400
300
200

100

—e— basic

closed

20
Minsup [%]

maximal

30

40

Figure 1: Comparison on number of basic, closed and maximal contrast sequential patterns extracted on

iPRG_25_25

600

#Patt
7

Minsup (%]

Runtime [s]

Minsup [%]

Memory [MB]

Figure 2: Number of basic, closed and maximal contrast sequential patterns extracted , runtime, and memory

consumption on iPRG_100_100

#Patterns

Memory [MB]

120

Minsup [%] Minsup [%] Minsup (%]

Figure 3: Runtime and memory consumption comparison on basic, closed, and maximal contrast sequential
patterns for UNIX_100_100

what are the advantages and weaknesses of condensed representations and in particular pros and cons
of closed and maximal patterns. On one hand, they reduce the number of patterns, on the other hand,
they tend to consume more computational resources. Overall, condensed representations for pattern
mining offers a valuable tool for extracting actionable insights from data by simplifying complex pattern
structures into concise yet informative summaries that facilitate better decision-making processes
across various domains such as market analysis, bioinformatics research, customer behavior prediction
among others where understanding underlying trends is crucial for making informed decisions.
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