
XAI-LAW Towards a logic programming tool for taking
and explaining legal decisions⋆

Agostino Dovier1,2, Talissa Dreossi1,2 and Andrea Formisano1,2

1Dip. di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, 33100 Udine, Italy
2GNCS-INdAM, Gruppo Nazionale per il Calcolo Scientifico.

Abstract
In this paper we present an overview of a research project aiming at producing a semi-automated tool for legal
reasoning in the Italian criminal system during the criminal trial stage.

Parts of the Italian Criminal Law are modeled in ASP; the model obtained is tested on a set of previous
statements on the crimes, and, if needed, refined. Decisions on a new case can be suggested by the system and
explained using a tool that exploits “supportedness” of stable models. In the same way, the decision of a judge
can be input in the system and automatically explained. Using a system of inductive logic programming for ASP,
the tool can evolve by analyzing new statements and performing model revision, by learning exceptions, and by
applying rule generalization. To study feasibility of the approach we analyzed the crimes of theft, robbery, and
personal injuries. Further crimes will be considered in the future development of the project.

Keywords
Automated Reasoning, Non Monotonic Reasoning, Legal reasoning, Logical Learning

1. Introduction

The desire of delegating legal decisions to an automated formal system can be traced back (at least) to
Leibniz’s dream. In spite of Gödel incompleteness results, holding in a more general context, several
efforts have been posed in this direction since the birth of artificial intelligence, earlier expert systems,
and logic programming. Allen [1] in the Fifties moved the first steps towards the interpretation of
legal documents in symbolic logic. In this seminal work he also pointed out which are the main logical
connectives needed for this purpose and how using them. Thirty years later Allen, with Saxon [2]
explained in details two features of legal rules that require attention in logical encoding. One of them is
related to the inherent ambiguity of natural language —often exploited by smart lawyers— that allows
one multiple semantic interpretation of the same sentence. To address this aspect, various efforts have
been made by researchers that led to the proposal of Logical English (LE) for law (and education) [3].
The second issue concerns law rule applicability: sometimes rules are applied even if their preconditions
have not been completely proved, or rules admit commonsense exceptions, and so on. This was really
an issue for expert systems in the Eighties but it is, instead, a feature in reasoners based on stable model
semantics.

Kowalski and Sergot [4] in the same years classified (legal) rules into definitional, normative, and
case law and succeeded in representing in logic programming a significant portion of several British
laws in Horn clause form and various of its extensions (and, in particular, a significant portion of the 1981
British Nationality Act). This approach proved that logic programming can be used for modeling legal
rules and reasoning. Even if the reasoning modules at that time were not suited for a not stratified use
of default negation in modeling.

Golshani [5] stated that: Unlike ordinary expert systems, an automated legal reasoning system does
not aim to provide an answer. Its objective should be to provide, for any given case, a well-constructed

CILC 2024: 39th Italian Conference on Computational Logic, June 26-28, 2024, Rome, Italy
⋆

Research partially supported by Interdepartment Project on AI (Strategic Plan of UniUD–2022-25), by MaPSART-FAIR project,
and by GNCS 2024 project LCXAI: Logica Computazionale per eXplainable Artificial Intelligence.
$ agostino.dovier@uniud.it (A. Dovier); talissa.dreossi@uniud.it (T. Dreossi); andrea.formisano@uniud.it (A. Formisano)
� 0000-0003-2052-8593 (A. Dovier); 0009-0007-1746-6500 (T. Dreossi); 000-0002-6755-9314 (A. Formisano)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:agostino.dovier@uniud.it
mailto:talissa.dreossi@uniud.it
mailto:andrea.formisano@uniud.it
https://orcid.org/0000-0003-2052-8593
https://orcid.org/0009-0007-1746-6500
https://orcid.org/000-0002-6755-9314
https://creativecommons.org/licenses/by/4.0

argument (or preferably several of them) rather than a definitive answer. The judge needs to be the one
that takes the decision. But She/He might accept hypotheses to be analyzed.

Modern systems based on ASP can generate several scenarios (i.e., stable models). Moreover, each of
them, being supported models, can explain the reasons of the presence of atoms in the model.

In some countries (e.g., UK) law is mostly based upon previous cases. Precedents have no legal
authority, but are considered for the sake of consistency and fairness. This view seems to encourage
machine learning approaches. However, these approaches cannot learn the logic behind the reasons for
the choices. Moreover, in other countries (e.g., Italy) cases are used only in presence of ambiguity of
the interpretation of the law that, instead, is formally written in codes. Cases can be used for learning
exceptions.

This leads towards a logic approach that exploits the modern computation capability of Conflict
Driven Clause Learning (CDCL) bottom-up ASP solvers. The learning capability, which is surely
important, can be retrieved by making use of modern tools based on inductive logic programming
and tailored for ASP, such as ILASP [6]. Handling exceptions is one of the main features of systems
developed for non-monotonic reasoning.

The recent contribution of [7] proves that the use of Logical English as an intermediate language,
helps in encoding laws into ASP programs. The authors of [7] use the top-down ASP solvers s(CASP)
since it is equipped with an explanation tool (acting top-down it just computes the paths that lead to
the solution, instead of a complete model of the ASP encoding). Top-down approaches to ASP solving
have two main drawbacks. The first is scalability since they cannot exploit the CDCL technique for
pruning the search tree. The second is more subtle, namely they can return a consequence even in case
of inconsistent programs (namely, those not admitting any stable model). To detect inconsistency, other
portions of the program should be analyzed.

In our project we will use ASP encoding of immutable legal rules, bottom-up CDCL ASP solvers,
and tools for explainability of the stable models. Dynamic refinement of the model by cases, either by
hand or automatically with ILASP, is used for a continuous improvement of our proposal. The overall
system will be capable of computing scenarios of plausible decisions, each of them endowed with a
detailed explanation, that can be analyzed by a judge for taking her/his decision, or it can be used to
find a logical explanation of a decision autonomously taken by a judge. Although, in principle, the
system could be used for autonomous decision-making, the authors would suggest its use as a decision
support system.

2. System Description

We assume the reader is aware of the basic terminology of logic programming, in particular in the
context of non monotonic reasoning with stable model semantics. We briefly describe the main tasks of
the project we are presenting:

Criminal law encoding. This stage is carried on, currently, by humans. The proponents and their
collaborators are encoding various parts of the Italian Criminal Code (ICC)1 in ASP. If a rule could be
open to exceptions (even if not explicitly written in the law), this should be reflected in the definition.

As an instance, the rule “if you subtract an object owned by another person you are guilty of theft” can
be encoded in ASP as follows:

guilty_theft(R) :-
subtract(R,C), own(V,C), subtracted_obj(C),
not extraordinary(R,C,V).

The last literal in the body is added to permit exceptions. For instance, it can be the case that R was
claimed to be owned by V, but the reality is that it was just stolen by V to another person, and R is a
policewoman. Unless it turns out later that R was Eva Kant dressed as a policewoman.
1https://www.gazzettaufficiale.it/sommario/codici/codicePenale

https://www.gazzettaufficiale.it/sommario/codici/codicePenale

Exception predicates can be defined since the beginning and extended in subsequent stages when
new information is known by previous court rulings.

Vagueness handling. In this stage -actually closely related to the previous one- vague concepts can
be dealt with by exploiting non-deterministic choices. For instance, as presented in [8], the difference
between robbery and snatch theft (e.g., in stealing a handbag) lays in the level of adhesion of the object
to the body of the victim. However, in the ICC there is no quantitative information (e.g., amount of
distance) for determining whether there is adhesion or not. One could express this using an ASP rule of
the form

{adherence(V,C)} :-
unknown_adherence(V,C), subtracted_obj(C), victim(V).

Or, using a finer granularity level:

1{adherence(V,C,L): level(L)}1 :-
unknown_adherence(V,C), subtracted_obj(C), victim(V).

With these non-deterministic rules, more alternative hypotheses are considered by the ASP solver.
During the procedural trial it can be used also for explaining the motivations made (independently) by
a judge; new information can be used to remove some of them by adding denials. For instance, if there
is a picture showing that there is enough room between the handbag and waist of the victim, one can
add the ASP constraint:

:- adherence(V,C,L), level(L), L < 2, subtracted_obj(C), victim(V).

Model verification and static refining. As outcome of the previous two stages, we obtain an
ASP program 𝑃𝑙𝑎𝑤 modeling some juridical knowledge/principles. We can perform a refining step
aimed at improving the quality of the model. A set of known criminal cases, taken from two main
databases (Foroplus and DeJure2), are then analyzed and encoded by hand in a set of facts 𝐶1, . . . , 𝐶𝑘.
For 𝑖 = 1, . . . , 𝑘, the ASP program 𝑃𝑙𝑎𝑤 ∪ 𝐶𝑖 is processed to compute its stable models. If it is does not
admit any stable model, the issue is analyzed and the 𝑃𝑙𝑎𝑤 should be refined (rules were probably too
strong).

If it admits a stable model, then let ¬𝐶𝑖 be the set of denials

:- not atom.

for every true atom in 𝐶𝑖. Then, one can try to find the stable models of 𝑃𝑙𝑎𝑤 with ¬𝐶𝑖 to check if the
desired model is obtained. If not, 𝑃𝑙𝑎𝑤 should be refined (some rules were probably too weak).

When everything works, it is interesting to verify whether, assuming a subset of 𝐶𝑖 facts hold, models
different from 𝐶𝑖 are generated. Exceptions extending 𝑃𝑙𝑎𝑤 might emerge in this stage, as well.

Model explanation. This is the first stage that can be implemented automatically. Given the program
𝑃𝑙𝑎𝑤 and a sentence 𝐶 , after run the ASP solver on 𝑃𝑙𝑎𝑤 and ¬𝐶 , one can analyze the relevant set
of atoms in the stable model; Then, the rules explaining why these atoms are in the stable model are
emphasized (e.g., with a specialization of the approach presented by Alviano et al [9]).

Thus, the tool can be used also for explaining the motivations made (independently) by a judge. But
in a second moment it can be used by a judge (or by the lawyers involved in the procedural venue)
to generate some possible scenarios, each of them endowed with an explanation (“motivazioni della
sentenza” in Italian).

For instance, consider the following (real) judgment (Cassazione penale sez. II, 21/02/2019, n.16899):
"Case in which the Court deemed correct the qualification as robbery of the actions committed by the

2https://www.foroplus.it/home, https://dejure.it/#/home

https://www.foroplus.it/home
https://dejure.it/#/home

defendant who, approaching the elderly victims from behind, grabbed their heads and immobilized them
with a compression maneuver, ensuring the necessary immobility to remove earrings from the victims’
earlobes". This situation can be encoded as outlined below (names of reo and victim are fictitious):

own("Veronica", "earrings").
subtract("Giulio", "earrings").
snatch("Giulio", "earrings").
take_possession("Giulio", "earrings").

Moreover, it can be assumed that the adherence of the object is tight since earrings are locked to the
earlobes. This is encoded as: adherence("Veronica", “earrings”, 4). Running the solver will
end in: robbery(“Giulio”, “Veronica”). The explanation is shown in Figure 1. The rounded
pink boxes contain the facts, what actually happened, while the green ones contain the deduced facts.
The light blue boxes display the rules used to make these deductions. Arrows have different colors just
for readability.

Furthermore, as part of our ongoing work, we are modeling two additional articles of the Italian
legal code: Article 581 and Article 582, which deal with beatings and personal injuries. The following
example illustrates the progress we have made this far. Given:

harmful_intention("Giulio").
damage("Giulio", "Veronica").
derive("Veronica", "Ferita").

where derive means that the victim derives an illness from the damage caused by the attacker, the
solver is able to infer: personal_injuries("Giulio","Veronica","Ferita").

Dynamic Model refining. A second stage that can be automated or at least semi-automated is a
continuous, successive refining of the tool when new sentences on the crimes are known and added
to 𝑃𝑙𝑎𝑤 In this case, the issue is the one of translating the -rather technical- legal text explaining a
sentence, in ASP facts and (sometimes) rules. The work done in the previous stages should have shown
which are the main predicates that can be affected by program revision. This information is an input for
ILASP, the Inductive Logic Programming System for ASP [6] that can be run to create an extended 𝑃𝑙𝑎𝑤

program where new rules are added and, sometimes, other rules are removed by generalization. Results
on experiments of ILASP learning capability can be found in the last edition of the CILC conference [10].
A human check can be required here if some flag is raised (e.g., when partial or total model inconsistency
with previously tested sentences is detected).

Dealing with second and third justice levels. The Italian criminal law systems is based on three
levels (1. primo grado, 2. appello, 3. cassazione). In principle, higher degree might change the results of
the previous levels.

However, the three trials are not equal. We cannot be exhaustive here in classifying the differences.
Just as an example, consider that the second level might change the decisions of the first level if there is
evidence of some fact not available before (that therefore change completely the deduced stable models
and the explanation) or it might underline the inadequacy of the reasoning made by the first judge.
The last case could be interesting from out point of view since it would be a statement against the fact
that the stable model is supported. This kind of evidence can be made by our system against first level
sentences.

Reasons for invalidating sentences at the third level are more related to errors of using the judicial
process rules. This is not directly related to the 𝑃𝑙𝑎𝑤 program. For instance the document that proves
the guilty for some privacy reasons could not be used as a legal proof.

Fi
gu

re
1:

Ex
pl

an
at

io
n

of
ju

dg
m

en
t

3. Conclusions

In this short contribution we described the main tasks composing a research activity we are currently
developing. The main themes of the project focus on the automation of analysis, learning, and reasoning
about juridical knowledge (juridical cases, laws, judgments, trials processes, etc), by exploiting inductive
logic programming techniques and tools. The main advantage in adopting logic programming, compared
to, for example, using ML-based techniques, is the immediate explainability properties of the system.
As an example, we mention a recent approach exploiting ASP to model and mechanize steps of the
investigative process described in, e.g., [11]. Actually, approaches such as the one of [11] can be
combined with the framework that is expected as product of our project. Focusing on the criminal trial
stage, as mentioned, first attempts have been described in [8, 12]. The choice of ILASP as inference
engine opens further lines of research. For instance, we intend to apply to the ILASP solver the ASP-
technology developed in parallelizing ASP-solvers (cf., [13, 14, 15, 16]) in order to improve ILASP
efficiency and scalability. As far as the explainability issues we will relate our results to those produced
by argumentation-based approaches (e.g., [17]).

Acknowledgments

The authors would like to thank all other colleagues and students involved in the project. In particular:

• Alessandra Russo and Mark Law, for introducing us to ILASP and its variants and for their
kindness and guidance when TD visited Imperial College

• Luca Baron, Manuele Dozzi, and Federico Costantini, for sharing their insights of the world of
Italian criminal law reasoning allowing the starting of a real interdisciplinary project

• Benedetta Strizzolo and Lorenzo Cian, for their hard and clever work (hoping that it is just the
beginning of a long and fruitful collaboration).

References

[1] L. E. Allen, Symbolic logic: A razor-edged tool for drafting and interpreting legal documents, The
Yale Law Journal 66 (1957) 933–879.

[2] L. E. Allen, C. S. Saxon, Some problems in designing expert systems to aid legal reasoning, in:
Proceedings of the First International Conference on Artificial Intelligence and Law, ICAIL ’87,
Boston, MA, USA, May 27-29, 1987, ACM, 1987, pp. 94–103. URL: https://doi.org/10.1145/41735.
41747. doi:10.1145/41735.41747.

[3] R. A. Kowalski, J. A. Dávila, G. Sartor, M. Calejo, Logical english for law and education, in: D. S.
Warren, V. Dahl, T. Eiter, M. V. Hermenegildo, R. A. Kowalski, F. Rossi (Eds.), Prolog: The Next
50 Years, volume 13900 of Lecture Notes in Computer Science, Springer, 2023, pp. 287–299. URL:
https://doi.org/10.1007/978-3-031-35254-6_24. doi:10.1007/978-3-031-35254-6_24.

[4] R. A. Kowalski, M. J. Sergot, Computer representation of the law, in: A. K. Joshi (Ed.), Proceedings of
the 9th International Joint Conference on Artificial Intelligence. Los Angeles, CA, USA, August 1985,
Morgan Kaufmann, 1985, pp. 1269–1270. URL: http://ijcai.org/Proceedings/85-2/Papers/114.pdf.

[5] F. Golshani, Automated construction of legal arguments, Int. J. Intell. Syst. 6 (1991) 673–685. URL:
https://doi.org/10.1002/int.4550060605. doi:10.1002/INT.4550060605.

[6] M. Law, Inductive learning of answer set programs, Ph.D. thesis, Imperial College London, 2018.
[7] G. Sartor, J. A. Dávila, M. Billi, G. Contissa, G. Pisano, R. A. Kowalski, Integration of logical English

and s(CASP), in: J. Arias, R. Calegari, L. Dickens, W. Faber, J. Fandinno, G. Gupta, M. Hecher,
D. Inclezan, E. LeBlanc, M. Morak, E. Salazar, J. Zangari (Eds.), Proceedings of the International Con-
ference on Logic Programming 2022 Workshops co-located with the 38th International Conference
on Logic Programming (ICLP) 2022, Haifa, Israel, July 31st - August 1st, 2022, volume 3193 of CEUR
Workshop Proceedings, CEUR-WS.org, 2022. URL: https://ceur-ws.org/Vol-3193/paper5GDE.pdf.

https://doi.org/10.1145/41735.41747
https://doi.org/10.1145/41735.41747
http://dx.doi.org/10.1145/41735.41747
https://doi.org/10.1007/978-3-031-35254-6_24
http://dx.doi.org/10.1007/978-3-031-35254-6_24
http://ijcai.org/Proceedings/85-2/Papers/114.pdf
https://doi.org/10.1002/int.4550060605
http://dx.doi.org/10.1002/INT.4550060605
https://ceur-ws.org/Vol-3193/paper5GDE.pdf

[8] M. Dozzi, T. Dreossi, F. Costantini, A. Dovier, A. Formisano, Semi-automatic knowledge represen-
tation and reasoning on vagueness crime concepts, in: ALP2023, JURIX 2023 workshop on AI, law
and philosophy, Maastricht, Netherlands, 2023.

[9] M. Alviano, L. L. T. Trieu, T. C. Son, M. Balduccini, Advancements in xASP, an XAI system
for answer set programming, in: A. Dovier, A. Formisano (Eds.), Proceedings of the 38th Italian
Conference on Computational Logic, Udine, Italy, June 21-23, 2023, volume 3428 of CEUR Workshop
Proceedings, CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3428/paper2.pdf.

[10] T. Dreossi, Exploring ILASP through logic puzzles modelling, in: A. Dovier, A. Formisano (Eds.),
Proc. of CILC-23, volume 3428 of CEUR Workshop Proceedings, CEUR-WS.org, 2023.

[11] S. Costantini, G. D. Gasperis, R. Olivieri, Digital forensics and investigations meet artificial intelli-
gence, Ann. Math. Artif. Intell. 86 (2019) 193–229. URL: https://doi.org/10.1007/s10472-019-09632-y.
doi:10.1007/S10472-019-09632-Y.

[12] M. Dozzi, T. Dreossi, L. Baron, F. Costantini, A. Dovier, A. Formisano, Semi-automatic knowledge
representation and reasoning on vague crime concepts, in: Workshop DigForASP, colocated in
15th European Symposium on Computational Intelligence and Mathematics, Krakow, Poland,
2024.

[13] A. Dovier, A. Formisano, E. Pontelli, F. Vella, A GPU implementation of the ASP computation,
in: M. Gavanelli, J. H. Reppy (Eds.), Proc. of PADL 2016, volume 9585 of LNCS, Springer, 2016, pp.
30–47. DOI:10.1007/978-3-319-28228-2_3.

[14] A. Dovier, A. Formisano, E. Pontelli, Parallel answer set programming, in: Y. Hamadi, L. Sais
(Eds.), Handbook of Parallel Constraint Reasoning, Springer, 2018, pp. 237–282. DOI:10.1007/978-3-
319-63516-3_7.

[15] A. Dovier, A. Formisano, F. Vella, GPU-based parallelism for ASP-solving, in: P. Hofstedt, S. Abreu,
U. John, H. Kuchen, D. Seipel (Eds.), Declarative Programming and Knowledge Management
- DECLARE 2019, Revised Selected Papers, volume 12057 of LNCS, Springer, 2019, pp. 3–23.
DOI:10.1007/978-3-030-46714-2_1.

[16] A. Dovier, A. Formisano, G. Gupta, M. V. Hermenegildo, E. Pontelli, R. Rocha, Parallel logic
programming: A sequel, Theory Pract. Log. Program. 22 (2022) 905–973. URL: https://doi.org/10.
1017/S1471068422000059. doi:10.1017/S1471068422000059.

[17] H. Prakken, G. Sartor, Law and logic: A review from an argumentation perspective, Artif. Intell.
227 (2015) 214–245. URL: https://doi.org/10.1016/j.artint.2015.06.005. doi:10.1016/J.ARTINT.
2015.06.005.

https://ceur-ws.org/Vol-3428/paper2.pdf
https://doi.org/10.1007/s10472-019-09632-y
http://dx.doi.org/10.1007/S10472-019-09632-Y
https://doi.org/10.1017/S1471068422000059
https://doi.org/10.1017/S1471068422000059
http://dx.doi.org/10.1017/S1471068422000059
https://doi.org/10.1016/j.artint.2015.06.005
http://dx.doi.org/10.1016/J.ARTINT.2015.06.005
http://dx.doi.org/10.1016/J.ARTINT.2015.06.005

	1 Introduction
	2 System Description
	3 Conclusions

