
Bounded Verification of Petri Nets and EOSs using Telingo:
an Experience Report
Francesco Di Cosmo1, Tephilla Prince2

1Free University of Bozen-Bolzano, Bolzano, Italy
2IIT Dharwad, Dharwad, India

Abstract
We report our preliminary results in implementing a tool to simulate and analyze Petri Nets and Elementary
Object Systems from nets-within-net using the temporal ASP solver Telingo.

Keywords
Nets-within-nets, Verification, Temporal Equilibrium Logic

1. Introduction

Petri Nets (PNs) are a standard model of concurrent computation, introduced by Adam Petri in 1962 as a
generalization of Finite State Automata [1]. At their barebones, they consist of a finite number of places
hosting black tokens and a finite set of transitions that remove, add, and move the tokens on the places.
Nowadays, several generalizations of PNs are available, which introduce additional features interesting
for modeling. These range from simple inhibitory rules for the transitions [2] to sophisticated tokens
carrying data items or additional structures. A notable example are nets-within-nets, a paradigm in
which tokens can in turn carry a full-fledged PN, possibly obtaining several levels of nesting [3]. The
simplest type of nets-within-nets are arguably Elementary Object Systems (EOSs), where the nesting
is restricted to only two levels. Even if relatively simple, EOSs are appealing for modeling complex
scenarios and multi-agent systems (MAS). In fact, the tokens at the higher level naturally represent
agents, with their own internal state represented by the carried PN.
Recent works proposed EOS as a natural model to study robustness of MAS against spontaneous

agent break-downs [4]. Under the let-it-crash perspective (as popularized by the Erlang language [5]),
any perturbation results in completely breaking the functionalities of the agent, which stops performing
actions of any kind. This is captured by inducing a deadlock of the carried PN, specifically by removing
at once all its tokens. This approach is reminiscent of lossy PNs, i.e., PNs which, on top of to the
standard dynamics, may non-deterministically loose some (possibly all) of their tokens [6]. Lossy PNs
are less expressive than standard PNs and, in fact, enjoy easier verification problems. In our recent
work1 we applied the concept of PN lossiness to EOS, so as to capture less disruptive perturbations
possibly resulting in a just partial degradation of the agent. In this setting, one can analyze EOS runs
suffering of at most a fixed amount of losses (possibly unboundedly many) and attempt to check, e.g.,
reachability/coverability problems over lossy-runs. These problems are useful to determine whether a
bad configuration cannot be reached as long as the number of perturbations is limited. Unfortunately,
there is a lack of tools dedicated to (lossy) EOS. Our aim is to bridge this gap.
In this short paper, we report about our ongoing experience in implementing a prototype for the

simulation and analysis of lossy-PNs and lossy-EOSs based on Answer Set Programming (ASP) tech-
nologies. Specifically, we aim at simulating and analyzing bounded lossy-EOS runs using Telingo [7], a
specialization of the ASP system Clingo [8] to temporal domains. Implementations of PN variants in
Clingo are [9] and [10]. However, none of them takes lossy PNs and EOSs in consideration and does

CILC’24: 39th Italian Conference on Computational Logic, June 26-28, 2024, Rome, Italy
Envelope-Open francesco.dicosmo@unibz.it (F. D. Cosmo); tephilla.prince.18@iitdh.ac.in (T. Prince)
Orcid 0000-0002-5692-5681 (F. D. Cosmo); 0000-0002-1045-3033 (T. Prince)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1Under review at an international workshop.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:francesco.dicosmo@unibz.it
mailto:tephilla.prince.18@iitdh.ac.in
https://orcid.org/0000-0002-5692-5681
https://orcid.org/0000-0002-1045-3033
https://creativecommons.org/licenses/by/4.0/deed.en

2𝑝0 5𝑝1
𝑡1

𝑝2

Figure 1: The PN with initial marking in Ex. 1.

base fieldcharge

⟨charge1⟩⟨charge2⟩

takeOff ⟨move⟩

land ⟨move⟩Sy
st
em

ne
t

𝑁
charge1

charge2

move
batt1

••
batt2

O
bject

net
drone

2

2

Figure 2: EOS in Example 2 with marking {{⟨drone, {{batt1, batt1}}⟩}}. The idle transitions are omitted.

not experiment with the temporal features of Telingo. In fact, the most appealing feature of Telingo is
its support in constraints of Temporal Equilibrium Logic over finite traces (TEL𝑓) formulas, which we
expect to be an excellent tool to flexibly control the amount of lossiness in the simulated runs.

2. Preliminaries

2.1. EOSs

A PN (see [11]) is a tuple 𝑁 = (𝑃𝑁, 𝑇𝑁, 𝐹𝑁) where 𝑃𝑁 is a finite place set, 𝑇𝑁 is a finite transition
set (disjoint from 𝑃𝑁), and 𝐹𝑁 ∶ (𝑃𝑁 × 𝑇𝑁) ∪ (𝑇𝑁 × 𝑃𝑁) ⟶ ℕ is a flow function. Where useful, we
equivalently interpret 𝐹𝑁 via the functions pre𝑁 ∶ 𝑇𝑁 → (𝑃𝑁 → ℕ) where pre𝑁(𝑡)(𝑝) = 𝐹(𝑝, 𝑡) and
post𝑁 ∶ 𝑇𝑁 → (𝑃𝑁 → ℕ) where post𝑁(𝑡)(𝑝) = 𝐹(𝑡, 𝑝). PN configurations are called markings, i.e.,
(finite) multisets 𝜇 ∶ 𝑃 ⟶ ℕ of places. We denote markings in set notation between {{ and }}, possibly
by prefixing the places with their multiplicity.

Example 1. Fig. 1 depicts the PN ({𝑝0, 𝑝1, 𝑝2}, {𝑡1}, 𝐹) where 𝐹(𝑝0, 𝑡1) = 𝐹(𝑝1, 𝑡1) = 𝐹(𝑡1, 𝑝2) = 1 and
𝐹(𝑡1, 𝑝0) = 𝐹(𝑡1, 𝑝1) = 𝐹(𝑝2, 𝑡1), with initial marking 𝜇0 = {{2𝑝0, 5𝑝1}}. The net reaches 𝜇1 = {{3𝑝0, 2𝑝2}},
covers 𝜇2 = {{}}, reaches a deadlock after two steps, and is not 1-safe.

An EOS (see [12]) is, intuitively, a system PN �̂� = ⟨ ̂𝑃 , ̂𝑇 , ̂𝐹 ⟩, whose tokens carry an internal PN
taken from a fixed finite set 𝒩 of disjoint object PNs 𝑁 = (𝑃𝑁, 𝑇𝑁, 𝐹𝑁). 𝒩 contains the special object
■ = (∅, ∅, ∅). Each system net place can hold a single type of object net, according to a typing function
𝑑 ∶ ̂𝑃 ⟶ 𝒩. EOSs fire events ⟨ ̂𝜏 , 𝜃⟩, where ̂𝜏 ∈ ̂𝑇 and 𝜃 maps each 𝑁 ∈ 𝒩 to a multiset of transitions of
𝑁 itself. We denote by 𝜃(𝑁) the sum of all 𝑡 ∈ supp(𝜃) such that 𝑡 ∈ 𝑇𝑁, counting multiplicities. EOS
tokens are nested, i.e., each token at a system place ̂𝑝 ∈ ̂𝑃 carries a PN marking 𝜇 for the object net 𝑑(𝑝).
Such a token is denoted by ⟨ ̂𝑝, 𝜇⟩. The nested token is graphically represented by connecting, via a
dashed line, ̂𝑝 with a representation of 𝑑(𝑝) marked by 𝜇. EOS markings, also called nested markings,
are finite multisets of nested tokens. With a slight abuse of notation, we denote markings omitting
double curly brackets from multiset notation and, if needed, concatenate tokens using +.

Example 2. Fig. 2 depicts the system net �̂� (the idle transitions are omitted) and object net
drone of an EOS 𝔈 = ⟨�̂� , 𝒩 , 𝑑, Θ⟩ modeling a drone that (1) moves between a base and
a field, (2) has two batteries, (3) consumes one charge-unit per battery per movement, and
(4) charges its batteries by multiples of two charge-units when at base. Technically, 𝒩 =
{drone,■} (even if ■ is unused), 𝑑(base) = 𝑑(field) = drone, and Θ synchronizes takeOff
and land (respectively charge) in �̂� with move (charge1 and charge2) in drone. Formally, Θ =
{⟨takeOff, {{move}}⟩, ⟨land, {{move}}⟩, ⟨charge, {{charge1}}⟩, ⟨charge, {{charge2}}⟩}. The marking 𝜇 =
⟨drone, {{batt1, batt1}}⟩ represents a single partially charged drone at base, with two charge units in
the first battery.

Given two markings 𝜆 and 𝜇, we say: 𝜆 ≤𝑠 𝜇 if 𝜇 contains more tokens than 𝜆 at the system level;
𝜆 ≤𝑜 𝜇 if it is possible to injectively map each nested token ⟨ ̂𝑝, 𝑀⟩ of 𝜆 to a nested token ⟨ ̂𝑝, 𝑀′⟩ of 𝜇

where 𝑀 ≤ 𝑀′; finally, 𝜆 ≤𝑓 𝜇 if there is some 𝜆′ such that 𝜆 ≤𝑠 𝜆′ ≤𝑜 𝜇 or, equivalently 𝜆 ≤𝑜 𝜆′ ≤𝑠 𝜇.
Given a nested marking 𝜇, Π1(𝜇) is the PN marking for the system net obtained by retaining only the
system net tokens. Given also an object net 𝑁 ∈ 𝒩, Π2

𝑁(𝜇) is the PN marking for the object 𝑁 obtained
by merging all markings carried by tokens at places 𝑝 of type 𝑑(𝑝) = 𝑁.

When an event 𝑒 = ⟨ ̂𝜏 , 𝜃⟩ fires, ̂𝜏 consumes nested tokens at the system level in the standard way. For
each object net, the carried markings of the consumed tokens are merged and the transitions in 𝜃 are fired,
obtaining PN markings 𝜋𝑁 for each 𝑁 ∈ 𝒩. Nested tokens with empty carried markings are produced at
the system level according to the post-conditions of ̂𝜏. Finally, the markings 𝜇𝑁 are non-deterministically
distributed on the new nested marking, according to the typing function. This process can happen only
if 𝑒 is enabled on 𝜇 under a mode (𝜆, 𝜌), i.e., a pair of nested markings. This happens iff 𝜆 ≤𝑠 𝜇, Π1(𝜆) =
pre(̂𝜏), Π2

𝑁(𝜆) ≥ pre𝑁(𝜃(𝑁)), Π1(𝜌) = post(̂𝜏), and Π2
𝑁(𝜌) = Π2

𝑁(𝜆) − pre𝑁(𝜃(𝑁)) + post𝑁(𝜃(𝑁)), for
each 𝑁 ∈ 𝒩.

2.2. Telingo

Telingo specializes the ASP solver Clingo to temporal domains and uses a logic program to specify
finite runs. The program can use the scopes: initial,dynamic,always,final, which are evaluated at
the first, each except first, each, and last step, respectively. Rule bodies can refer to the extension of
the previous configuration by prefixing the literals with a prime. Finite-, linear-time formulas can
appear in the dedicated atom &tel in constraints and behind default negation. For example, the
constraint :- &tel{>?(a>a)} filters out all runs that eventually reach (>? stands for eventually reach)
a configuration 𝐶 with successor 𝐶′ (> stands for next) where a is true on both. Telingo can be called
setting the option --imax to a number of maximal step to be simulated. In the standard configuration,
Telingo stops as soon as it finds a finite run satisfying the program or exceeds --imax.

3. PNs in Telingo

3.1. PNs in Logic Programs

The standard syntax for PNs is the PNML language [13]. For example, the input PNs provided by the
MCC [14] are provided in PNML syntax. The first task we faced was the translation of PNML files into
Logic Program (LP) files for Telingo. This required to fix a syntax to specify PNs in LP. Inspired by
previous works (see, e.g., [10, 9]), we used the following solutions:

• The number 𝑛 of places and 𝑚 of transitions are specified by two constants via the directives
#const numPlaces=n and #const numPlaces=m. The names of the places and transition is
abstracted away, i.e., they range in {0, … , 𝑛 − 1} and {0, … , 𝑚 − 1} respectively.

• Each pre-condition 𝐹(𝑝, 𝑡) = 𝑛 and post-condition 𝐹(𝑡, 𝑝) = 𝑛 is explicitly specified only if 𝑛 > 0
using the fact pre(p,t,n) and post(p,t,n), respectively. These facts must be available during
the whole computation and, thus, are put in the scope of the #program always directive.

• The file contains also the specification of the initial marking, which is represented as a function
from places to numbers. Specifically, for each place 𝑝 hosting 𝑛 ∈ ℕ tokens (possibly 𝑛 = 0), we
add the fact mark(p,n) to the scope of the #program initial directive. Finally, we clean the
Telingo output using the directive #show mark/2.

Example 3. The LP specification of the PN in Ex. 1 is:

1 #program always.
2 #const numPlaces=3.
3 #const numTransitions=1.

4 pre(0,0,1).
5 pre(1,0,1).
6 post(2,0,1).
7 #program initial.

8 mark(0,2).
9 mark(1,5).
10 mark(2,0).
11 #show mark/2.

Using ANTLR [15], we built an open source tool [16], implemented in C++, to produce LP specifica-
tions out of MCC benchmarks.

3.2. PN dynamics

The PN dynamics can be easily implemented in Telingo using the standard guess-and-checkmethodology
of ASP: at each step, we 1) sample a transition using a choice rule, 2) check whether it is enabled on
the previous marking using a constraint, and 3) deduce the facts encoding the new marking using a
couple of simple rules that take in consideration the sampled transition, its conditions, and the previous
marking. This last step is done using the rules

1 mark(P,K-N+M) :- pre(P,T,N), post(P,T,M),
'mark(P,K), fire(T).

2 mark(P,K+M) :- not pre(P,T,_), post(P,T,M),
'mark(P,K), fire(T).

3 mark(P,K-N) :- pre(P,T,N), not post(P,T,_),
'mark(P,K), fire(T).

4 mark(P,K) :- not pre(P,T,_), not post(P,T,_),
'mark(P,K), fire(T).

The lossy dynamics is supported by allowing Telingo to possibly sample, next to the transitions at
phase 1, also the lossy flag and, consequently, a sub-marking by firing the choice rule

1 {mark(P,1..N)}=1 :- 'mark(P,N),lossy.

Assuming that the dynamics is encoded in dynamic.lp, the simulation of the runs of maximum
length 𝑛 of a PN encoded in pn.lp can be executed as follows:

1 Telingo dynamic.lp pn.lp 0 --imax=n

3.3. PN Verification Problems

We considered several problems from the MCC. Since Telingo does not natively support branching
time formulas, we focused on linear paths namely reachability/coverability, deadlock detection, and
1-safeness. Since Telingo simulates runs incrementally, it is sufficient to check these properties just at
the last step of the finite run. In fact, reachability/coverability and deadlock detection are all eventuality
properties. Moreover, also the opposite of 1-safeness, i.e., whether a non-1-safe marking can be reached,
is of the same type.

Example 4. To check the reachability in Ex. 1 of the marking (1, 0, 2), we need the rules

1 #program final.
2 :- not mark(0,1).

3 :- not mark(1,0).
4 :- not mark(2,2).

Coverability can be similarly be specified using the rules

1 #program final.
2 :- mark(1,N), N<1.

3 :- mark(1,N), N<0.
4 :- mark(2,N), N<2.

Deadlock reachability requires to check the enabledness of all transitions and, so, requires their enu-
meration in a dedicated predicate.

1 #program final.
2 transition(0..numTransitions-1).
3 disabled(T) :- transition(T), pre(P,T,N),

mark(P,M), M<N.

4 enabled(T) :- not disabled(T), transition(T).
5 nonDeadlock :- enabled(T).
6 deadlock :- not nonDeadlock.
7 :- not deadlock.

Finally, (the opposite of) 1-safeness is specified by

1 #program final.
2 unsafe :- mark(P,N), N>1.
3 :- not unsafe.

By adding these rules, if no maximum number 𝑚 of steps is signaled, Telingo will return a finite run
witnessing the property, if it exists, or will never terminate, otherwise. If 𝑚 is provided, Telingo will
always terminate, but will return a witnessing run of at most 𝑚 steps.

For all these properties, we can seamlessly restrict the analysis to runs with at most ℓ ∈ ℕ ∪ {|ℕ|}
many lossy-steps for any ℓ ∈ ℕ. For example, the rules

problem lossiness –imax =5 (s) –imax =10 (s) –imax =20 (s) tapaal (s)
deadlock none UNSAT in 0.052 SAT in 0.622 SAT in 82.754 SAT in 5𝑒 − 6
deadlock any SAT in 0.009 SAT in 0.010 SAT in 0.009 NA
1-safeness none UNSAT in 0.010 UNSAT in 0.014 UNSAT in 0.027 UNSAT in 0
1-safeness any UNSAT in 0.013 UNSAT in 0.018 UNSAT in 0.032 NA

Table 1
Comparative Results with tapaal for the Eratosthenes-PT-010 PN from the MCC benchmarks [14].

1 #program initial.
2 :- &tel{>?(lossy >(>? lossy))}.

filter out all runs with at least two distinct lossy steps, so as to output only solutions witnessing the
existence of suitable runs with at most ℓ = 1 lossy step. The parameter ℓ can be controlled by nesting
the string >(>? lossy) appropriately.

3.4. PN experiments

In the running example above, we used a simple PN to illustrate the concepts. However, for our
experimentation, we considered several standard benchmarks taken from MCC [14]
which range across various industrial case studies and have different sizes of the PNs. We exper-

imented with the analysis of deadlock reachability and 1-safeness, for various maximal numbers of
steps (5, 10, and 20): these properties can be expressed without any expert knowledge on the PN
structure. We compared the output of our prototype for all benchmarks with the output provided,
on the same instances, by the state-of-the-art tool tapaal 3.9.3 [17]. The outputs match exactly; an
indication of the correctness of the results, thereby giving our prototype a tool confidence of 100%
(despite noncompetitive times). We analyzed the benchmarks for both runs without lossy steps and
with arbitrarily many lossy steps. A subset of our results and comparisons (for no loss) on a single PN
is reported in Tab. 1.

4. EOSs in Telingo

4.1. EOSs in Logic Programs

As for PNs, we started by fixing a syntax for EOS in LP. The major difference with PNs is the presence
of events and of nested tokens. Events ⟨ ̂𝜏 , 𝜃⟩ are specified by a name in a predicate event/1, a mapping
of the name to 𝜏 in a predicate eventSys/2, and a mapping of the name to each transition in 𝜃 with
multiplicity in a predicate eventObj/3

Example 5. The event takingOff = ⟨takeOff, {{move}}⟩ in Ex. 2 is specified by the facts
(1) event(takingOff), (2) eventSys(takingOff, takeOff), and (3) eventObj(takingOff1, move, 1).

We came up with two encoding of nested markings. The first aims at representing nested tokens
directly by linearizing the carried marking in a tuple. This requires to provide an order among the
places and the usage of functional symbols as well as external Python functions.

Example 6. 2 nested tokens ⟨base, {{2batt1}}⟩ for the EOS in Ex. 2 are specified by the fact
nM(2, base, (2, 0)) assuming the order batt1 ≤ batt2 for the object net drone.

The second representation employs a purely relational representation of each token in a relation
tok/3. It keeps track of a token id, the token place, and the parent token (i.e., the token at the system
level carrying it), if it exists (otherwise, a dummy constant _sys is put in its place). The choice of
identifiers is irrelevant as long as they form a primary key for tok.

Example 7. One nested token from Ex. 5 is equivalently captured by the facts (1) tok(0, base, _sys),
(2) tok(1, batt1, 0), and (3) tok(2, batt1, 1).

4.2. EOS dynamics

When compared to PNs, EOS dynamics has to take care of two main aspects: the choice of enabling
modes (𝜆, 𝜌) next to events 𝑒, and the manipulation of nested markings. While modes range, in principle,
over an infinite domain, we can restrict the choice over a finite set, by recalling that 𝜆 should be a
sub-marking of the current marking. After choosing a 𝜆 and checking its compatibility with the enabling
predicate for 𝑒, the PN markings Π1(𝜌) and Π2

𝑁(𝜌) are univocally determined, for each object net 𝑁 ∈ 𝒩.
To materialize these projection in a nested marking 𝜌, we make use of the relational representation of
tokens. This allows us to easily assign children tokens to their parents non-deterministically. Afterwards,
we convert 𝜌 in the nested token representation and update the marking. This solution requires the call
of external Python functions handle the tuples for internal markings. The preliminary simulations on
the EOS in Ex. 2 were not optimal. We are currently working on a better implementation.

4.3. EOS verification

We specify EOS properties analogously to Sec. 3.3, but taking into account nested tokens. For example,
the reachability of the target ⟨base, {{batt1, batt1}}⟩ is checked by the rules

1 #program final.
2 :- not nM(1,base,(2,0)).

3 :- nM(N,base,Tup), Tup != (2,0).
4 :- nM(N,field,Tup).

Its coverability at the system net level is specified by rules 1 and 2 above. Coverability at the object
level is specified by the rules

1 #program final.
2 covered :- nM(1,base,Tup), Tup <= (2,0).
3 :- not covered.

Full coverability is checked by

1 #program final.
2 covered :- nM(N,base,Tup), Tup <= (2,0).
3 :- not covered.

Even in this case, the specification of the amount of lossiness is orthogonal to that of the verification
property and is performed using the same constraints as shown in Sec. 3.3.

5. Conclusions

We explored the applicability of Telingo to the simulation and analysis of lossy PNs and EOSs. Our
approach is similar to [10, 9], but we additionally encoded lossiness, EOSs, and provided a translator from
PNML to LP syntax. We also conducted preliminary tests on the verification of deadlock reachability
and 1-safeness of lossy PNs on runs with zero or arbitrarily many lossy steps. When compared with
state-of-the-art tools like tapaal, we obtained sound results, yet with optimizable performances. On
the one hand, the specification of lossy runs was especially elegant and flexible in Telingo, e.g., when
compared to SMT-based PN verifiers [18]. Our approach addresses PNs in general and is applicable
to PNs with reset, transfer, and inhibitory arcs. On the other hand, tapaal does not natively support
the analysis of properties under lossiness, unless somehow encoded in the PN itself. As a byproduct
of our experiments, we provide a standalone utility [16] compatible with Linux to translate standard
PNML files to the PN LP syntax. We hope that this translator will provide ASP practitioners with a
convenient tool to approach PN benchmarks. The prototype for EOS needs further development before
tests can be meaningfully conducted. This task is challenging, since PN reachability is non-elementary
and several reachability problems for lossy EOSs are undecidable in general [19]. However, to the best
of our knowledge, there are no available tools dedicated to lossy EOSs.

References

[1] C. Petri, Communication with Automata, AD-630, RADC, 1966.

[2] C. Dufourd, et al., Reset nets between decidability and undecidability, in: ICALP, volume 1443 of
LNCS, Springer, 1998, pp. 103–115.

[3] R. Valk, Object Petri nets: Using the nets-within-nets paradigm, in: APN, volume 3098 of LNCS,
2003, pp. 819–848.

[4] M. Köhler-Bussmeier, L. Capra, Robustness: A natural definition based on nets-within-nets, in:
PNSE, 2023.

[5] F. Huch, Verification of Erlang programs using abstract interpretation and model checking, Ph.D.
thesis, RWTH Aachen, 2001.

[6] A. Bouajjani, R. Mayr, Model checking lossy vector addition systems, in: STACS, ’99.
[7] P. Cabalar, Temporal ASP: from logical foundations to practical use with telingo, in: Reasoning

Web. Declarative Artificial Intelligence, volume 13100 of LNCS, 2021, pp. 94–114.
[8] M. Gebser, et al., Multi-shot ASP solving with clingo, Theory Pract. Log. Program. 19 (2019) 27–82.
[9] S. Anwar, et al., Encoding higher level extensions of Petri nets in answer set programming, in:

LPNMR, volume 8148 of LNCS, 2013, pp. 116–121.
[10] Y. Dimopoulos, et al., Encoding reversing Petri nets in answer set programming, in: RC, volume

12227 of LNCS, 2020, pp. 264–271.
[11] T. Murata, Petri nets: Properties, analysis and applications, IEEE 77 (1989) 541–580.
[12] M. Köhler-Bußmeier, A survey of decidability results for elementary object systems, Fundamenta

Informaticae 130 (2014) 99–123.
[13] L. Hillah, et al., Extending pnml scope: A framework to combine Petri nets types, TOPNOC 6

(2012) 46–70.
[14] F. Kordon, et al., Complete Results for the Model Checking Contest, https://mcc.lip6.fr/2023/re-

sults.php, 2023.
[15] T. J. Parr, R. W. Quong, ANTLR: A predicated- LL(k) parser generator, Softw. Pract. Exp. 25 (1995)

789–810.
[16] T. Prince, F. Di Cosmo, Nets within nets Telingo analyser, 2024. URL: https://doi.org/10.5281/

zenodo.11401876.
[17] J. F. Jensen, et al., TAPAAL and reachability analysis of P/T nets, TOPNOC 11 (2016) 307–318.
[18] T. Prince, DCModelChecker 2.0: A BMC tool for Unbounded PN, 2022. URL: https://doi.org/10.

5281/zenodo.7352391.
[19] F. Di Cosmo, et al., Deciding reachability and coverability in lossy EOS, in: PNSE, 2024. To appear.

https://doi.org/10.5281/zenodo.11401876
https://doi.org/10.5281/zenodo.11401876
https://doi.org/10.5281/zenodo.7352391
https://doi.org/10.5281/zenodo.7352391

	1 Introduction
	2 Preliminaries
	2.1 EOSs
	2.2 Telingo

	3 PNs in Telingo
	3.1 PNs in Logic Programs
	3.2 PN dynamics
	3.3 PN Verification Problems
	3.4 PN experiments

	4 EOSs in Telingo
	4.1 EOSs in Logic Programs
	4.2 EOS dynamics
	4.3 EOS verification

	5 Conclusions

