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Abstract 
Graph learning methods are becoming increasingly popular in solving problems related to 
social networks, biological networks, and other real-world applications. With the rapid 
development of large language models (LLMs), they are also being used for graph-related tasks 
and combined with traditional graph neural network (GNN)-based approaches to improve the 
ability to process graphs associated with text and graph-structured data. In this paper, we 
provide a review and analyse existing approaches. Firstly, we propose a new taxonomy that 
classifies existing methods into three categories based on LLMs and GNNs who serve as the final 
task solving component. Based on this, representative models among them are summarised for 
each category. Finally, we analyse the limitations of the existing methods and provide an 
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outlook on future research directions in this area. 
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1. Introduction 

Graph data, found in diverse forms such as the Internet, traffic networks, social networks, 
and biological networks, can be effectively represented through graphs. The analysis and 
mining of this data have become pivotal areas of research. Graph neural networks based 
on deep learning graph modeling methods have become a new field developed in recent 
years based on traditional neural networks. These networks are able to better overcome 
the limitations imposed by traditional deep neural network learning by defining suitable 
neural network models on graph data and applying the deep learning approach to graph 
data. 

However, in the real world, more and more nodes or connecting edges of graphs are 
associated with attributes in the form of text. Yet some existing graph neural network 
methods still have some limitations in dealing with textual attributes of nodes in graph 
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data. Traditional graph neural network methods mainly model the inputs or outputs 
consisting of nodes and edges on a graph, but ignore the textual attributes contained in the 
nodes themselves and are unable to model the original textual information. 

The advent of Large Language Models (LLMs) has brought new perspectives to this 
challenge. Large-scale language models, capable of harnessing vast amounts of data, offer 
strong language understanding and generalization capabilities. As a deep learning-based 
natural language processing model, LLMs are trained on extensive corpora, enabling them 
to handle a variety of linguistic tasks. The launch of GPT-3 in 2020 garnered significant 
attention from scholars towards LLMs, sparking the question: Can Large Language Models 
leverage their potential in graph learning to overcome the limitations of traditional graph 
neural network approaches? Although this question has been studied and explored by 
scholars, systematic research reviews examining the impact of large language models on 
graph learning remain sparse. 

Liu et al. [1], inspired by the foundational roles of LLMs in natural language processing 
and GNNs in graph data processing, proposed the concept of 'graph foundation models' 
and provided a definition. Li et al. [2] investigated the advancements and potential future 
directions of large language models in graph-related tasks. This article aims to explore and 
summarize the rapidly evolving field, offering an overview of the influence of language 
models on graph learning for those interested in pursuing research in this area. 

Contributions. The main contributions of this paper are summarised as follows.(1) We 
present the findings of research in the field through a structured taxonomy, which 
categorizes the existing studies into three distinct classes. (2) Systematic methodological 
review. For different classification methods, we summarise representative models, 
describe each model in more detail, and summarise their strengths and weaknesses as 
well as limitations. (3) Future directions. We provide an in-depth discussion of the 
limitations of the current work and suggest possible directions for future development in 
the field. 

2. Preliminarys 

In this section, we introduce the definition of a correlation graph and formalise the 
concepts and definitions related to the two key areas of large language models and graph 
neural networks and their development. 

2.1 Definition 

 Definition 1(Graph). 
A graph is a collection of nodes and edges. A graph is denoted by 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where is the 
set of nodes and is the set of edges. In an undirected graph, edges can be viewed as 
unordered pairs connecting two nodes; in a directed graph, edges can be viewed as 
ordered pairs connecting a start node and an end node. 
 Definition 2(Text Attribute Graph (TAG)). 

For a textual attribute graph, each node is associated with a contiguous textual feature 
(sentence). the form of the TAG can be represented as 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝐷𝐷), where each 𝜈𝜈𝑖𝑖 ∈ 𝑉𝑉 is 
associated with some textual information 𝑑𝑑𝑣𝑣𝑖𝑖 ∈ 𝐷𝐷. 



2.2 Graph Neural Networks 

Graph Neural Networks are neural network architectures designed to solve tasks related 
on graph-structured data. The basic idea is to iteratively update the representation of a 
node by combining the representations of its neighbours and the node's own 
representation. Graph data is modelled and inferred by learning the interactions between 
nodes and the global structure of the graph.GNNs perform well in many graph related 
tasks such as node classification, link prediction and graph generation. 

A typical graph neural network consists of multiple graph neural network layers, each 
of which consists of two main steps: information aggregation and feature update. Below is 
a simplified formulation of a graph neural network layer. 

Information Aggregation Aggregation: 
ℎ𝑖𝑖

(𝑙𝑙) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸(𝑙𝑙) ��ℎ𝑗𝑗
(𝑙𝑙−𝑙𝑙),∀𝑗𝑗 ∈ Ne(𝑖𝑖)�� denotes the hidden state of the node at 

layer i. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸(𝑙𝑙) is an aggregation function that aggregates the hidden states ℎ𝑗𝑗
(𝑙𝑙−𝑙𝑙) 

of the neighbours of node i, node j. Ne(𝑖𝑖) denotes the set of neighbouring nodes connected 
to node i. 

Feature Update (Update): 
ℎi

(1) = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐸𝐸(1) �ℎi
(1−1),ℎi

(1)� is an update function that combines the hidden state 

ℎi
(1−1) of the previous layer of node i and the hidden state ℎi

(1) of the current layer,to 
generate a new node representation. 

By stacking multiple graph neural network layers, information can be propagated layer 
by layer from neighbouring nodes and capture relationships between nodes further away. 
Eventually, the graph neural network produces a final representation of each node that 
can be used for different graph-related tasks.  

It is important to note that the above formulation is just a simple example, and there 
are many variants and improvements of graph neural network models in practice, such as 
GraphSAGE [21], GCN [22], GAT [23], etc., which may use different aggregation and 
updating functions, as well as other techniques to process graph data 

2.3 Large Language Models 

In recent years, researchers have paid more and more attention to the evolution and 
development of language models, by expanding the amount of pre-trained language 
models and the amount of data, Large language model can not only improve the effect of 
task processing, and can show many special capabilities that small models do not have. 

The underlying layer of large language model basically adopts the Transformer 
structure. Currently, the common large language models are BERT [19], GPT [20]. BERT 
model adopts the bi-directional encoding layer in the 12-layer Transformer structure to 
represent the network, but it only adopts the encoding layer of the Transformer as the 
theme framework, which makes it more difficult to solve the tasks of text generation such 
as article continuation, translation, etc. GPT adopts the decoding layer of the Transformer 
as the theme framework, which makes it more difficult to solve the tasks of text generation 
such as article continuation and translation. GPT adopts the decoding layer of Transformer 



as the main structure of the network for modelling, so it is very effective in text generation 
tasks, compared with the BERT model, GPT does not care much about the understanding 
of the current language representation, and focuses on how to continue to generate the 
rest of the text. 

Large language models also include other components and techniques such as 
positional coding, multilayer stacking, pre-training and fine-tuning. By pre-training on 
large-scale textual data, these models can learn rich linguistic knowledge and show strong 
performance capabilities in various natural language processing tasks. 

2.4 Proposed Taxonomy 

Depending on the final solution component for solving graph-related problems, we classify 
the combined LLM and GNN approach into three categories:(1) GNN as the final 
component for task solving. In this case, LLM functions as a text encoder, processing the 
input textual information to aid the GNN in task-solving. (2) LLM as the final component of 
task solving. In this category. In this type, there are two scenarios; one involves using 
GNNs to encode graph structures, thereby assisting the LLM in capturing graph structure 
information. The other involves transforming the graph structure into a sequence 
understandable by the LLM or adapting the transformer architecture to concurrently 
handle textual and graph structure information, thus eliminating the need for GNNs. (3) 
Collaborative solving of LLM and GNN. In this category, LLM and GNN co-solving can be 
done in two ways, either by co-training and sharing features, or by aligning the two 
through the latent space. In the next section, we will investigate and summarise each of 
these three categories individually. A model classification diagram and a representative 
example are given as shown in Fig. 1. 

 



Figure 1: Classification and representative examples of models for solving graph-related 
tasks with the help of large language models (LLMs) 

3. Fine Tuning 

3.1 GNN as the final component of task solving 

GNN performs well in areas such as processing graph-structured data, but has limitations 
in processing graphs with text, whereas LLM possesses a better ability to understand 
textual information. In this category, LLM acts as a related device for text feature 
extraction, providing initial node feature vectors to the GNN, which later generates node 
and edge representations and predictions through the GNN. In the next section, we will 
discuss the techniques related to these models. 

GNNs excel in processing graph-structured data but often struggle with graphs 
containing textual elements. Conversely, LLMs demonstrate superior capabilities in 
understanding text. In this integration, the LLM serves as an auxiliary tool for text feature 
extraction, providing initial node feature vectors. These vectors are then further refined by 
the GNN, which generates comprehensive node and edge representations and predictions. 
The subsequent section will discuss the techniques related to these models in more detail. 

LM-GNN [3] exemplifies the joint training of Large Language Models and Graph Neural 
Networks. Here, a graph-aware transformer functions as a semantic encoder, later fine-
tuned in conjunction with a GNN encoder for predicting links in heterogeneous graphs. 
Meng et al. [4] introduced GNN-LM, a language modeling approach that enhances 
traditional neural network language models. It does so by referencing similar contexts 
across the entire training corpus, utilizing a high-dimensional tagged representation to 
retrieve the k-nearest neighbors of the input context as references. For each input context, 
a directed isomorphic graph is constructed, with nodes representing tokens from the input 
context or retrieved neighboring contexts and edges signifying connections between these 
tokens. A GNN then aggregates information from these contexts to decode the subsequent 
token. This methodology facilitates the retrieval of pertinent contexts as references, 
thereby improving the model's ability to predict forthcoming words in language modeling 
tasks.The LLM-to-LM [5] framework first wraps the textual attributes associated with each 
node in a custom prompt, and then uses the large language model to query and generate a 
list of predictions and explanations. Next, the raw text, predictions, and interpretations are 
used to fine-tune the language model and turned into vector node features. Finally, these 
node features can be used in a downstream graph neural network to predict the classes of 
unknown nodes. 

TextGNN [6] integrates a text encoder with a Graph Neural Network (GNN), showcasing 
robust performance in tasks such as advertisement relevance. This model capitalizes on 
the text encoder's natural language understanding capabilities and enhances its 
performance by incorporating information from graph-type data, outperforming 
approaches that rely solely on semantic information. TextGNN employs an end-to-end 
framework that synergizes text encoders with Graph Neural Networks for training and 
optimization. Within this framework, the text encoder processes textual input, capturing 
its semantic essence, while the Graph Neural Network handles graph data, extracting 



graph relationships and contextual insights. Xie et al. [7] proposed a framework model for 
graph corpora, in which the framework LM+GNN consists mainly of one or more LMs are 
responsible for encoding textual information, while GNN aggregators are used for 
information aggregation. Given a graph corpus as input, LM+GNN uses one or more LMs as 
text encoders for the nodes. The embeddings generated through these LMs are added to 
the topology of the graph and fused with other information in the graph. Finally, the 
output is supervised by a task-specific decoder. 

In comparison to Graph Neural Networks (GNNs), which often depend on high-quality 
labeling, Large Language Models (LLMs) boast an extensive knowledge base and exhibit 
remarkable zero-shot and few-shot learning capabilities. This is particularly evident in 
node classification tasks involving graphs with textual attributes. The integration of an 
LLM enables the model to effectively handle node classification tasks even with limited 
samples. Traditional GNNs typically require a substantial number of labeled samples to 
perform well, posing a challenge in scenarios with limited training data. However, LLMs, 
with their extensive pre-training and rich linguistic knowledge acquired from large-scale 
textual data, can mitigate this issue. When combined with a GNN, The LLM comprehends 
the semantic and contextual nuances of the text, facilitating the generation of high-quality 
node representations. LLM-GNN [8] is an unlabelled node classification method. The 
method combines the advantages of graph neural networks and large language models by 
using LLM to annotate a small number of nodes and training the GNN on the annotations 
of the large language model to predict the majority of unlabelled nodes. Yu et al. [9] 
proposed a method to enhance class-level information using Large Language Models to 
improve the quality of node representations, which was used to solve the problem of node 
classification tasks under a small number of samples. Semantic information is extracted 
from the labels using LLM and samples with labels are generated, whereas the structural 
information in the original dataset is later captured using an edge predictor and the newly 
generated samples are integrated into the original graph. Finally, the entire dataset is 
trained by graph neural network and the results of node classification are obtained. OFA 
[24] describes different graph data through natural language and introduces the concept 
of nodes of interest, uses a single task to standardise different tasks, and converts all 
inputs embedded in llm into cued graphs containing both graph and task information 
through a graphical cueing paradigm, thus allowing adaptive downstream prediction. 
Experimentally, OFA was found to be capable of under-shooting and zero-shooting 
learning on different graph domains. 

3.2 LLM as the final component of task solving 

The core concept of this category centers on employing Large Language Models (LLMs) as 
the primary architectural framework to acquire both graph structure and textual 
information. Given that graphs vary in structure and feature different forms of definitions, 
transforming graph data directly into text is not straightforward, posing a significant 
challenge for the application of LLMs to graph-related tasks. This category can be further 
subdivided based on whether Graph Neural Networks (GNNs) are involved in the task-
solving process. Accordingly, this section is divided into two subcategories: GNN-free 
method and GNN-based methods  



3.2.1 GNN-free methods 

This type of approach uses LLM directly to obtain textual information and graph structure 
without GNN involvement. Traditional LLMs use transformers for natural language 
encoding, but have limited ability to model graph structure information. Therefore, this 
type of approach obtains node and edge representations by converting the graph structure 
into textual information or by designing the LLM as an advanced modelling structure 
capable of processing textual information and encoding it graphically. GPT4Graph [12] 
converts graph data into a graphical Description Language. GRAPHTEXT [13] encodes 
graph information into text sequences. InstructGLM [26] uses natural language to describe 
the geometric structure and node characteristics of graphs, and enables LLM to solve 
graph-related problems by tuning it with instructions. The above method enables LLM to 
process graph data directly by converting graph data into textual descriptions, but LLM 
needs to identify the implicit graph structure from sequential text in the process, and 
compared with traditional graph learning methods, LLM may face inefficiencies in graph 
learning based on sequential graph descriptions, and is still insufficient for representing 
multidimensional and correlated graph data. 

GraphLLM [25] is an end-to-end approach that synergistically integrates a graph 
learning model (graph converter) with an LLM into a single system, with a framework that 
consists of three main steps: node understanding, structural understanding, and LLM-
oriented prefix tuning for graph enhancement. Compared to methods that convert graph 
data to text, GraphLLM is able to improve on graph reasoning tasks by exploiting synergy 
with graph converters and leveraging the strengths of both. 

3.2.2 GNN-based method 

The ability of GNNs to capture hidden representations of structural information between 
nodes when processing structured data provides a powerful representation learning 
capability. This has led to the utilisation of GNNs in a number of approaches to study LLMs 
when processing graph data to enhance the performance of LLMs. 

DGTL [10] utilises large language models to provide prediction and achieve 
interpretability for text-attributed graph related tasks, the framework combines a 
disentangled graph learning The framework combines the method of untangled graph 
learning to generate text embeddings by computing the average of the last layer of 
features in the upstream DGTL, capturing the contextual and semantic information of the 
text associated with each node, and then using the untangled graph learning to learn 
embeddings with different domain information, and then finally injecting the learnt 
features with domain information into the downstream DGTL.The LLM and GNN in the 
Graph-ToolFormer [27] framework are individually pre-trained, and then the LLM calls 
the pre-trained GNN model to complete the task. That is, LLM is used as a unified common 
interface for graph inference tasks. 

GraphGPT [11] enhances the understanding and adaptation of graph structures by 
aligning them to the natural language space and through graph instruction tuning. In 
addition, in order to improve the stepwise reasoning ability of large language models, 
GraphGPT also integrates thought chain distillation into the framework, which makes the 



whole model show stronger ability in stepwise reasoning and handling distributed 
transfer.ReLM [29] makes use of LM and GNN for chemical reaction prediction, using pre-
trained GNNs to generate candidate answers and context examples from a pool of 
candidates, which are then analysed in a multiple-choice format using LM. 

Zou et al. [28] proposed a new pre-training framework for topology perception by 
jointly optimising LM and graph neural networks to predict the nodes involved in the 
context graph. In addition, based on the situation that some nodes are rich in textual 
information while others have less textual information, an enhancement strategy is 
designed to enrich the nodes with text from neighbouring nodes with insufficient textual 
information. After finishing the pre-training, only the LM is applied to the downstream 
task and the auxiliary role of the GNN is abandoned. PATTON [31] utilises textual 
information and network structure to enhance and consolidate the LM's ability to 
comprehend tokens and documents. The GNN nested Transformer architecture 
GraphFormers proposed by Yang et al. [32] is used in the framework, while two pre-
training strategies are later employed to help the LM capture the intrinsic dependencies 
that exist between textual attributes and network structures. 

3.3 Collaborative solving of LLM and GNN 

These studies combine GNN for graph structure coding and LLM for textual information 
coding for co-training and mutual enhancement.The GNN component can provide 
structural information to the whole framework and provide it to LLM, and LLM can 
provide textual analysing capability to the whole framework and provide textual signals to 
GNN. Depending on how the two combine and learn from each other, we divide this 
category into two types: the LLM and GNN predictive alignment, and the LLM and GNN 
alignment in potential space. 

3.3.1 LLM and GNN Predictive Alignment 

GLEM [14] makes use of the relevant definitions of the Variational EM framework, where 
the large language model uses the textual information of each node to predict its labels 
and to model the distribution of labels based on local textual attributes. While graph 
neural networks use the text and label information of the surrounding nodes to make label 
predictions and represent the label distribution under global conditions.GLEM makes the 
language model and graph neural networks collaborate with each other by alternating the 
optimisation of the E-step and the M-step. Specifically, in the E-step, the graph neural 
network is fixed and the language model is made to mimic the label inference of the GNN 
in order to transfer the global knowledge learnt by the GNN to the LM.In the M-step, the 
LM is fixed and the node representations learnt by the LM are used as features for label 
prediction by optimising the GNN. The alternating training of the two steps enables the 
GNN to effectively capture the global correlation of nodes and thus achieve accurate label 
prediction. 

Zhang et al. [15] propose a co-training approach that enables classification and pseudo-
labelling of textual attribute maps by combining a text analysis module and a network 



learning module. The framework models both the original text and the network structure, 
and enhances both modules by co-training and feature sharing. 

3.3.2 LLM and GNN aligned in potential space 

ConGraT [16] jointly learns graph nodes and text representations by using two 
independent encoders that are aligned in a common latent space and training. This 
approach receives inspiration from previous work in the area of joint text and image 
coding, and extends the training objective to take into account node similarity and 
reasonably guessed information. 

The G2P2 [17] methodology study utilises a converter-based text encoder and a GNN-
based graphical encoder to improve text classification performance. In this case, the 
converter is used as a text encoder and on the other hand, the GNN serves as a graph 
encoder taking the graph kernel node features as input and generating node embedding 
vectors for each node. By combining the coding capabilities of the converter and the GNN, 
the framework is able to provide more comprehensive node representations, and these 
node embedding vectors contain both textual information and information about the 
graph structure, thus better capturing the semantic and associative relationships between 
nodes. 

Grenade [18] optimises self-supervised learning algorithms in graphs to capture both 
textual semantic and structural contextual information. Grenade exploits the synergistic 
effects of pre-trained language models and graph neural networks, and jointly optimises 
two self-supervised learning algorithms, graph-centric comparison learning and graph-
centric knowledge alignment. 

GraD [30] encodes graph structures into LMs for fast inference without graphs, and 
joint training of teacher GNNs and students without graphs through shared LMs allows the 
two models to learn from each other and improve overall performance. 

4. Challenges and future directions 

While the preceding sections have outlined the current landscape of using language 
models in graph learning, there remains significant potential for further research in this 
domain. In this section, we briefly examine some limitations of language models when 
applied to graph learning and suggest potential directions for future research. 

Lack of effective pre-training algorithms. most current language models are based on 
self-supervised pre-training, but this approach is not effective in graph learning. Therefore, 
it remains a challenge to effectively pre-train on large-scale graph data. Exploring pre-
training methods on graphs is a valuable research direction. 

Insufficient ability to represent structural information. since the training is mainly 
based on textual data, language models lack in grasping the complexity of graph structural 
information, and generating topology-based supervised signals using language models is a 
challenging problem. A way to address this problem could be by designing specific pre-
training goals to guide the language model to learn the representation of topological 
structures. 



5. Conclusion 

The application of Large Language Models (LLMs) to graph-related tasks has emerged as a 
vital research area in recent years. To classify and provide a comprehensive overview of 
this field, we propose a novel classification method. This method categorizes techniques 
involving graphs and textual information into three distinct categories:LLMs as the final 
component of task solving, GNNs as the final component of task solving, and collaborative 
solving of LLM and GNN. Based on this categorisation, we systematically review 
representative studies and discuss some limitations and future research directions in this 
direction. It is hoped that this comprehensive review will reveal the potential of LLM in 
the field of graph learning, as well as the advances and challenges made, and provide 
insights for further developments in the field. 
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