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Abstract 
Abnormal data often exist in the internal inspection data of natural gas gathering and 
transmission pipelines, which has a significant impact on the internal corrosion assessment of 
pipelines. However, there are many different algorithms for identifying abnormal data, and their 
recognition effects are also different. Therefore, firstly, the abnormal data in the internal 
detection data of natural gas gathering and transmission pipelines was analyzed. Secondly, 
several widely used anomaly data recognition algorithms were selected for comparison, namely: 
Box plot, k-Nearest Neighbor (KNN), Local Outlier Factor (LOF), and Isolation Forest (IForest). 
These algorithms were applied to identify abnormal data within the internal detection datasets 
of natural gas gathering and transmission pipelines. A comparative analysis was conducted to 
determine the optimal recognition performance exhibited by each algorithm, aiming to identify 
the most effective method for detecting anomalies in this specific domain. The results show that 
for nearly 80,000 sets of pipeline internal inspection data, the KNN algorithm had the best 
recognition effect, and was able to effectively identify discrete or abnormal data.  
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1. Introduction 

It is often necessary to analyze the inspection data in natural gas gathering and 
transportation pipelines to calculate the corrosion rate or distribution of corrosion defects 
in the pipeline, and to evaluate the corrosion situation in the pipeline. However, due to 
detection sensor failure, damage or human negligence, there will be abnormal data in the 
detection data in the natural gas gathering and transportation pipeline. The existence of 
abnormal data will inevitably lead to an increase in data analysis errors and have an 
important impact on the assessment of corrosion in pipelines. Therefore, how to identify 
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and remove abnormal data is the primary issue in assessing corrosion in natural gas 
gathering and transportation pipelines. 

Many scholars from various industries have applied various algorithms for identifying 
and removing abnormal data from sample datasets. Alhussein [1] used the DBSCAN 
algorithm to identify and detect abnormal data in airport terminals. Abid [2] used the 
DBSCAN algorithm to identify and detect outliers in sensor detection data. Gu [3] and Osman 
[4] applied box plots to identify abnormal data in sensor data. Mohiuddin [5] monitored 
abnormal values in daily stock trading information and found that the LOF algorithm 
performed the best. Li [6] and Mansoor [7] et al. used an improved SM-Iforest algorithm to 
identify and detect outliers in machine monitoring data and IoT sensor data. He [8] 
combined the Grubbs's criterion with the KNN algorithm and proposed a method for 
detecting network traffic outliers with high accuracy. 

The research of abnormal data in pipeline detection is also an active research field in the 
world, especially in the improvement and application of algorithms. For example, Smith [9] 
proposed an anomaly detection method based on reinforcement learning, which improved 
the accuracy and robustness of detection by adaptively adjusting the parameters of the 
detection model. Jones [10] applied big data analysis technology to process and analyze 
massive pipeline inspection data in real time, which significantly improved the speed and 
accuracy of outlier recognition. Mohamed [11] studied the anomaly detection method based 
on convolutional neural network (CNN) and applied it to industrial pipeline data, achieving 
good results. Garcia [12] combined genetic algorithm with fuzzy logic to propose a new 
abnormal data detection method, which effectively improved the sensitivity and specificity 
of detection. Zhang [13] proposed a novel anomaly detection model by introducing deep 
generative adversarial networks (GANs), which was successfully applied to actual pipeline 
monitoring systems. 

In general, there are various algorithms for identifying abnormal data, but their 
recognition effects are also different. To address this issue, firstly, the abnormal data in the 
internal inspection data of the pipeline were analyzed. Secondly, based on four algorithms: 
Box plot, KNN, LOF, and IForest, abnormal data in the internal detection data of natural gas 
gathering and transmission pipelines were identified, and the recognition effects of the four 
algorithms were compared. Finally, the abnormal data in the pipeline internal inspection 
data were identified and removed, effectively ensuring the accuracy of pipeline corrosion 
assessment. 

2. Abnormal data 

The magnetic flux leakage detector is used to detect the growth and distribution of 
corrosion defects in the pipeline. Magnetic flux leakage testing mainly utilizes the high 
permeability characteristics of ferromagnetic materials, as well as the fact that the 
permeability of ferromagnetic materials is greatly affected by material defects under 
magnetic saturation conditions. If the material is free of defects, the magnetic field lines only 
exist inside the material, otherwise there is a leakage magnetic field. Therefore, the size and 
shape of defects can be detected through the leakage magnetic field signal and the Hall effect 



 

of the sensor. Draw a magnetic flux leakage detection signal curve based on the internal 
magnetic flux leakage signal data of the pipeline, and this is expressed in Eqs. (1). 

y NDy Yn= +  (1) 
 

where N is the number of signal channels, Dy is the distance between two adjacent 
channels on the Y-axis, Yn is the data pulse value corresponding to a certain data point. The 
X-axis of the horizontal axis of the curve image is defined as the pipeline mileage axis, and 
the Y-axis is defined as the data pulse Value. 

  
Figure 1: Distribution of internal corrosion defects of pipeline. 

 
Figure 2: Corrosion defect signal curve of magnetic flux leakage detection. 

As shown in Table 1, based on the magnetic flux leakage detection signal curve, the length, 
width, clock orientation, and depth of corrosion defects in the pipeline are identified, with 
80,000 sets for each feature. These data may contain some abnormal data, which typically 
deviates from the main body of the dataset and appears in a discrete state. Compared with 
normal data, abnormal data is often difficult to identify and remove directly through manual 
observation. In addition, because of the abnormal data detected in the pipeline is usually 
caused by equipment failure, the existence of abnormal data will directly affect the 
authenticity of the statistical results of pipeline corrosion data. Based on the collected 
internal inspection data of the pipeline, scatter plots were generated for the distribution of 
corrosion defect depth percentage, length, width, and clock orientation data. 



 

Table 1 
Statistical Results of Corrosion Defects in Pipelines 

As shown in Figure 3 and Figure 4, it can be seen that there are obvious scattered 
abnormal data in the depth percentage, length, and width of corrosion defects, while the 
clock orientation data is evenly distributed. Therefore, it is necessary to adopt effective 
methods for identifying abnormal data to handle these outliers. 

  

Figure 3: Scatter plot of corrosion defect depth percentage data distribution (left) and 
scatter plot of corrosion defect length data distribution (right). 

  

Figure 4: Scatter plot of corrosion defect width data distribution (left) and scatter plot of 
corrosion defect clock orientation distribution (right). 

Pipe Materials Types of Natural Gas Number of Internal Corrosion 
Defects 

L360QB Sulfur-containing wet natural gas 7 
L245NCS Sulfur-containing wet natural gas 7 
L360QS Sulfur-containing wet natural gas 433 

L360 Sulfur-containing dry natural gas 871 
Sulfur-containing wet natural gas 59875 

20# Sulfur-containing dry natural gas 7126 
Sulfur-containing wet natural gas 10183 

Total 79149 



 

3. Selecting an algorithm for identifying abnormal data 

Different algorithms for identifying abnormal data have different applicable scopes: The 
pauta criterion [14] is suitable for single-dimensional data that follows a normal or 
approximately normal distribution; the Box plot [15] is suitable for single-dimensional data 
without requiring a normal or approximately normal distribution; LOF [16] is suitable for 
medium-to-high-dimensional datasets where the densities of different clusters are 
significantly diverse. In addition, six algorithms for identifying abnormal data were also 
studied, including the Median Absolute Deviation (MAD) [17], Grubbs's criterion [18], K-
means [19], DBSCAN [20], KNN [21], and IForest [22]. The applicability of most algorithms 
for identifying abnormal data can be classified into three categories: sample size, data 
dimension, and normality distribution. 

The sample size and data dimension of the data can be directly observed and determined. 
However, there are various methods for testing normality, such as the Kolmogorov-Smirnov 
test, Shapiro-Wilk test, D'Agostino and Pearson omnibus normality test, kurtosis and 
skewness distribution, Q-Q plot, P-P plot, histogram, etc. Among them, the Shapiro-Wilk test 
is suitable for small sample sizes, while the Kolmogorov-Smirnov test is suitable for large 
sample sizes. Since there is no clear boundary for sample size, here we use 1000 as the 
boundary to distinguish between small and large sample sizes. The above normality tests 
will ultimately return a p-value, and when p > 0.05, it indicates that the dataset follows a 
normal distribution. However, it is often difficult to achieve an absolute normal distribution, 
so when the skewness and kurtosis values of the data are within ±2 [23-25], it can be 
considered as approximately normally distributed. 

Therefore, a method for selecting an algorithm for identifying abnormal data is proposed, 
as shown in Figure 5, which selects the appropriate algorithm for identifying abnormal data 
in the sample data by determining the sample size, normality, and data dimension of the 
sample data. 

Sample data
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Multi-sample

Not 
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Figure 5: The process of selecting an algorithm for identifying abnormal data. 



 

4. Select the instance application of the process 

Based on observation, it can be inferred that the data type of the corrosion defect depth 
percentage, defect length, and width data is a large sample single-dimension dataset. Using 
the Kolmogorov-Smirnov test method and combining the skewness and kurtosis changes of 
the data, we can judge the normality of the data. The results are shown in Table 2. 

 
Table 2 
Sample Data Normality Test Results 

As shown in Table 2, the Kolmogorov-Smirnov test for the percentage of depth of 
corrosion defects in pipelines revealed a significant P value of 0.00, far below 0.05, with a 
skewness of 1.239 and a kurtosis of 2.620, both greater than 2.0, which is inconsistent with 
normal distribution. The significance P of the length data of corrosion defects in the pipeline 
is 0.00, which is much smaller than 0.05. The skewness is 14.208 and the kurtosis is 483.815, 
which is greater than 2.0, and does not conform to the normal distribution. The 
Kolmogorov-Smirnov test on the data of the width of corrosion defects in the pipeline shows 
that the significance P is 0.00, far less than 0.05, the skewness is 3.242, and the kurtosis is 
12.112, which is greater than 2.0, and does not conform to the normal distribution. 

In general, the data of the depth percentage, length, and width of the corrosion defects in 
the pipeline do not conform to the normal distribution, so the data type is large sample size, 
single dimension, and non-normal distribution data. Based on algorithm research, four 
abnormal data identification algorithms were qualitatively selected: Boxplot, KNN, LOF, and 
IForest. 

One such method is the Box plot algorithm, which relies on the interquartile range (IQR) 
to quantify the dispersion of data points. Another algorithm, KNN, classifies data by 
calculating the distances between distinct values, effectively grouping similar points 
together. The LOF algorithm, on the other hand, identifies outliers by assessing the density 
differences among data points, flagging those that deviate significantly from their neighbors. 
Lastly, the IForest algorithm identifies outliers based on both the numerical structure and 
the density of the data, utilizing an ensemble of isolation trees to efficiently separate 
anomalies from the rest of the dataset. 

 
 
 
 
 
 
 

Characteristics of Corrosion 
Defects 

Statistical Significance: P Skewness Kurtosis 

Depth percentage 0.00 1.236 2.620 
Length 0.00 14.208 483.815 
Width 0.00 3.242 12.112 



 

Table 3 
The Comparison of the Four Algorithms 

5. Identifying Abnormal Data Application Example 

There exist numerous algorithms aimed at identifying abnormal data, each employing 
unique techniques and approaches. Four abnormal data identification algorithms were used 
to identify the abnormal data in the depth percentage of corrosion defects, defect length, 
and width data inside the pipeline. The algorithm code for identifying abnormal data was 
then crafted based on Python, and the identification results of abnormal data in the 
percentage data of the depth of corrosion defects in the pipeline are shown in Figure 6. 

The Algorithms Advantages Disadvantages 
Box plot Simple to us, low 

computational cost. 
Not suitable for multidimensional 
data, and the effect of non-normal 
distribution data is not good. 

KNN 
(K-NearestNeighbor) 

Simple and intuitive, 
no need to assume 
data distribution. 

The calculation cost is high and 
sensitive to the choice of K value. 

LOF 
(Local Outlier Factor) 

Suitable for complex 
data sets and can 
handle regions with 
different densities. 

High computational cost, sensitive to 
parameters 

 

IForest 
(Isolation Forest) 

Efficient, suitable for 
large-scale data 
without setting 
parameters 

The effect of high-dimensional data is 
not good. The results are affected by 
randomness and need to be averaged 
by multiple runs. 

  
(a) LOF (b)IForest 



 

Figure 6: Abnormality identification results of corrosion defect depth percentage data in 
pipelines under four algorithms. 

As shown in Figure 7, LOF identified 58 abnormal data, IForest identified 71 abnormal 
data, KNN identified 64 abnormal data, and Box plot identified 2184 abnormal data. 
Similarly, as shown in Figure 7, the results of identifying abnormal data for the length data 
of corrosion defects in pipelines are similar, using the above four algorithms. LOF identified 
66 abnormal data, IForest identified 79 abnormal data, KNN identified 65 abnormal data, 
and Box plot identified 9443 abnormal data.When the above four algorithms were used to 
identify abnormal data of pipeline corrosion defect width data, LOF identified 67 abnormal 
data, IForest identified 80 abnormal data, KNN identified 52 abnormal data, and Box plot 
identified 8367 abnormal data. 

It can be clearly seen that KNN can effectively identify outliers that are far away from the 
main body of the dataset, while LOF and IForest have poor identification performance and 
did not effectively identify the abnormal data. At the same time, Box plot identified too many 
abnormal data, which is not suitable for the dataset of internal corrosion defect depth 
percentage. 

  
(a) LOF (b)IForest 

  
(c) KNN (d) Box plot 



 

  
(c) KNN (d) Box plot 

Figure 7: Abnormality identification results of corrosion defect length data in pipelines 
under four algorithms. 

  
(a) LOF (b)IForest 

 

  
(c) KNN (d) Box plot 

 
Figure 8: Abnormality identification results of corrosion defect width data in pipelines 
under four algorithms. 

In general, the KNN algorithm has a good effect on the identification of abnormal data in 
pipeline detection data, and the abnormal data finally identified is more consistent with the 
real situation. KNN algorithm is used to identify and remove abnormal data, as shown in 
Figure 9 to Figure 11. 



 

  
Figure 9: Before processing corrosion defect depth percentage data (left) and after 
processing corrosion defect depth percentage data (right). 

  
Figure 10: Before processing corrosion defect length data (left) and after processing 
corrosion defect depth percentage data (right). 

  
Figure 11: Before processing corrosion defect width data (left) and after processing 
corrosion defect depth percentage data (right). 

6. Conclusion 

Natural gas gathering pipeline inspection data includes four characteristics of corrosion 
defects, which are depth percentage data, length data, width data, and clock orientation data. 
If there are abnormal data in the data, it may have a significant impact on the corrosion 



 

assessment of the pipeline. Therefore, it is necessary to select suitable algorithms for 
identifying abnormal data and apply them to identify abnormal data in pipeline inspection 
data. The main conclusions are as follows: 

1. Nearly 80,000 sets of pipeline inspection data were collected. By plotting the 
distribution scatter plot of the depth percentage of corrosion defects, length, width, and 
clock orientation data, it was found that there are obvious scattered abnormal data in the 
depth percentage of corrosion defects, defect length, and width data. 

2. A method for selecting algorithms for identifying abnormal data based on the sample 
size, normality, and data dimension of the sample data is proposed. This method can select 
algorithms that are suitable for identifying abnormal data in the sample data. 

3. Based on pipeline inspection data, it is judged that the data type is large sample size, 
single dimension, and non-normal distribution data. Four algorithms for identifying 
abnormal data, including Box plot, KNN, LOF, and IForest, are selected. 

4. The selected algorithms are applied to pipeline inspection data, and it is found that the 
KNN algorithm has the best identification performance and can effectively identify scattered 
or abnormal data. 
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