
 
 

Survey of model and algorithms of host-to-host congestion 
control 

Pengtao Kang1, Tao Feng1,∗ and Xianming Gao1 

1 Systems Engineering Institute AMS PLA, Beijing 100039, China 
 

Abstract  
Host-to-host congestion control is an important technology that avoids network congestion and 
improves network transmission performance by controlling the transmission rate. However, it is 
difficult for host-to-host congestion control mechanisms to remain effective in dynamic networks 
due to factors such as imperfect feedback information, error-prone congestion detection, slow 
convergence control algorithm, etc. In order to provide a basis for the development of new 
mechanisms, this paper provides a comprehensive review of control models, congestion 
detection and control algorithms, as well as evaluation indicators and the main challenges 
associated with such networks. Furthermore, the paper discusses the potential of intelligent 
algorithms and edge-host cooperation in host-to-host congestion control. 
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1. Introduction 

Communication networks have seen a revolutionary shift in recent decades, largely due to 
soaring data consumption and the widespread adoption of connected devices [1]. As the 
number of devices and data usage surge, network congestion is emerging as a critical 
concern once again. Moreover, applications like live broadcasting and gaming, which are 
increasingly popular, demand stringent requirements for low latency, high bandwidth, and 
stable host-to-host communication [2, 3]. Consequently, refining the host-to-host 
congestion control mechanism has become an urgent practical matter. 

To furnish valuable references for researchers with a keen interest, we conduct a 
comprehensive review of host-to-host congestion control, focusing on model and 
algorithms. The primary contributions encompass three key aspects: 

 In this paper we efficiently categorize control models based on their workflow, 
offering an in-depth analysis of each category’s unique features.  

 The congestion control process is methodically broken down into two phases: 
detection and control. By examining commonly used algorithms in these stages 
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through network feedback signals, the paper effectively compares their strengths 
and weaknesses. 

 We highlight the main challenges in mechanism design, delving into how intelligent 
algorithm and edge computing technologies could address issues like hosts 
collaboration, feedback delay, and inaccuracy. 

The structure of the paper unfolds as follows: Section 2 classifies and compares control 
models, while Section 3 provides a summary of congestion detection. Section 4 delves into 
the analysis of control algorithms, and Section 5 introduces the evaluation indicators. 
Section 6 elucidates the main challenges faced in mechanism design. Section 7 discusses 
potential future directions, and the paper concludes in Section 8. 

2. Control model 

Host-to-host congestion control models can be categorized based on the involvement of 
switches into implicit feedback model and explicit feedback model. The implicit feedback 
model operates without direct communication from switches, whereas the explicit feedback 
model relies on direct signals or data from switches to manage congestion. This distinction 
is vital for understanding the underlying mechanisms and effectiveness of each approach in 
different network environments. 

2.1. Implicit feedback model 

 
Figure 1: Implicit feedback model 

The implicit feedback model is shown as Figure 1. This model is fundamentally composed 
of the sender and the receiver. The basic operation process can be outlined in the following 
steps:  



 
 

1. The sender initiates the process by transmitting packets at a predetermined rate. 
2. Upon receiving these packets, the receiver generates ACKs (acknowledge packets). 
3. The receiver then sends these ACKs back to the sender. 
4. The sender, upon receiving the ACKs, analyzes them to extract the network state. 
5. Based on the results of this congestion detection, the sender implements a control 

algorithm. 
6. The sender adjusts its packet sending rate according to the outputs of the control 

algorithm. 

The emergence of the implicit feedback model can be traced back to post-1986 
developments, driven by the early switches’ limitations in providing network status 
information to terminals. This led to the development of various host-to-host congestion 
control mechanisms based on this model, such as Tahoe [4], TCP Reno [5, 6], TCP NewReno 
[7], TCP BBR [8], and referenced in [9-12]. 

2.2. Explicit feedback model 

 
Figure 2: Explicit feedback model 

As illustrated in Figure 2, the explicit feedback model is composed of three key components: 
the sender, the switch, and the receiver. The operation process unfolds as follows: 

1. The sender starts by transmitting packets at a predetermined rate. 
2. As packets pass through, the switch embeds network status information into them. 
3. The receiver, upon receiving enhanced packets, adds network status information 

into ACKs. 
4. The receiver then sends these ACKs back to the sender. 
5. The sender analyzes the ACKs to extract network status information. 



 
 

6. Based on the congestion detection, the sender implements a specific control 
algorithm. 

7. The sender adjusts its transmission rate according to the results of the control 
algorithm. 

The explicit feedback model gained prominence following the introduction of ECN 
(Explicit Congestion Notification) in 2001, as per RFC 3168 [13]. This model has been 
further developed and refined in various mechanisms, including DCQCN [11], HPCC [14] and 
referenced in [15-21]. 

2.3. Comparative analysis 

Through the above analysis, the implicit feedback model is characterized by its 
straightforward structure, ease of implementation, and excellent scalability. However, it has 
a limitation in collecting detailed network feedback, such as queue size and link utilization. 

The explicit feedback model enhances the implicit model by providing more detailed link 
information, such as queue size and link utilization, for a deeper network understanding. 
However, it has scalability and deployment challenges due to higher network device 
capability requirements. 

Table 1 
Control Model Comparison 

Model Features, Advantages and Disadvantages 

Implicit Feedback model 

No switch involvement; 
Ease of implementation; 
Excellent scalability; 
Limited range of network feedback. 

Explicit Feedback model 
Switch involvement; 
More detailed link information; 
Poor deployment and scalability. 

3. Congestion Detection 

3.1. Network status collection 

Network status collection is crucial for detecting congestion effectively. Here’s a summary 
of the five primary methods for collecting network status information: 

1. Using Packet Transmission Status: This basic method uses sent packets and received 
ACKs to calculate RTT (round-trip time), infer available bandwidth from ACK rates, 
and detect packet loss from ACKs. It’s simple, but limited in the data it can collect. 

2. Using SDN Controller [22]: In SDN networks, the controller provides a full view, 
collecting data like queue size and delay from switches. For instance, TCCS 
mechanism [23] uses OpenFlow protocol to collect switch queue size for addressing 
TCP incast issues. However, larger networks and loads can affect the timeliness of 
data collection. 



 
 

3. Using In-band Network Telemetry (INT) Technology [24]: The INT framework 
combines packet forwarding with network measurement for real-time, selective 
switch info collection. For example, HPCC [14] employs INT to gather bottleneck link 
utilization for precise control. The downside is increased communication bandwidth 
usage with link length. 

4. Using the ECN Protocol [13]: ECN protocol facilitates active feedback collection from 
switches, like ECN marks. Mechanisms like DCTCP [25] use ECN-marked packets for 
active congestion control. Post-deployment dynamic control and flexibility are 
challenges of this method. 

5. Using Cross-Layer Information: This approach involves collecting link status 
information from various layers during packet transmission. In cellular networks, 
methods like CQIC [26] and PBE [27] use physical layer data to measure link 
bandwidth and enhance performance. However, its applicability is limited to specific 
network types, affecting its versatility. 

3.2. Congestion detection algorithms 

Congestion detection algorithms categorize the network into congested and uncongested 
states using network status information. The normalized representation can be described 
as follows: 


= otherwisefalse

condition1truefcongestion
 

(1) 

The condition1 denotes boundary conditions and its setting depends on the specific 
network feedback information. Congestion detection algorithms can be categorized into 
seven types based on the network status information they utilize. 

3.2.1. Loss-Based detection algorithm 

The Loss-Based detection algorithm uses packet loss as a key indicator of network 
congestion. Packet loss is typically identified by observing duplicate ACKs. Notable Loss-
Based congestion detection mechanisms include TCP Tahoe [28], TCP Reno [29], and TCP 
NewReno [7]. The formula for Loss-Based congestion detection [28] is: 



 ≥= otherwisefalse

3Ntruef iACK
congestion

 
(2) 

NACKi represents the number of times ACKi. 

3.2.2. RTT-Based detection algorithm 

The queue size measures network congestion, and RTT mirrors this by reflecting the time 
from packet send to ACK receipt. RTT fluctuates due to network queuing, with its average 
(𝑅𝑅𝑣𝑣𝑎𝑎𝑎𝑎) rising with queue size. The RTT range widens with network load 𝜌𝜌 (ratio of packet 
arrival to departure rate), given as (−(1− 𝜌𝜌) − 1𝛿𝛿𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 (1 − 𝜌𝜌) − 1𝛿𝛿𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎), where 𝛿𝛿 is 
a window factor. Thus, RTT serves to evaluate network congestion. The RTT is calculated 
using the following formula: 



 
 

σ−−= scc tttR )(  (3) 

Here 𝑡𝑡𝑠𝑠 denotes the sending time of packet i, 𝑡𝑡𝑐𝑐 represents the time when the sender 
receives ACKi, and 𝜎𝜎 stands for an error factor.  

There exist two types of congestion detection algorithms based on RTT: 

1. Instantaneous RTT-Based Congestion Detection 



 ≥= otherwisefalse

TRtruef high
congestion

 
(4) 

𝑅𝑅 represents the most recent measured value of RTT, and 𝑇𝑇ℎ𝑖𝑖𝑖𝑖ℎ is a threshold factor. 
There are congestion detection mechanisms grounded in instantaneous RTT, examples 
being TIMELY [10] and Swift [30]. 

2. Average RTT-Based Congestion Detection 



 ≥=−+= otherwisefalse
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(5) 

Similar to the instantaneous RTT approach, 𝑅𝑅𝑆𝑆 denotes the estimated value of RTT [28], 
the variable α represents a smoothing factor. Schemes based on average RTT include Vegas 
[31] and FAST TCP [32], among others. 

3.2.3. BDP-Based detection algorithm 

In the congestion control pipeline model, Figure 3 illustrates the interrelationships among 
RTT, delivery rate, and the amount of data in flight (i.e., data sent but not yet acknowledged) 
[8]. The blue line represents the stage where the queue size is zero, the green line represents 
the stage where the queue size grows, and the red line represents the stage where the 
packets exceed the buffer capacity.  

 
Figure 3: Delivery rate and RTT vs Inflight 

The Figure 3 shows that the optimal network transmission performance occurs where 
the blue and green lines intersect, indicating the lowest RTT and highest delivery rate. In 



 
 

the BDP-Based Detection Algorithm, the blue line’s region signifies no network congestion, 
while other areas suggest congestion. The Bandwidth-Delay Product (BDP) is calculated as 
the product of the minimum RTT and the maximum delivery rate, using statistical data for 
these values. The formula for the minimum RTT [8] is given by: 

[ ],tWtttRmintR R−∈∀= )),(()(α  (6) 
𝑅𝑅(𝑡𝑡) denotes the latest measured RTT, and 𝑊𝑊𝑅𝑅 represents a window factor.  
The formula for calculating the maximum delivery rate [8] is: 

[ ]tWtttRmaxtB Bd ,)),(()( −∈∀=  (7) 
𝑅𝑅𝑑𝑑(𝑡𝑡) = 𝑁𝑁𝑑𝑑/∆𝑡𝑡, where 𝑁𝑁𝑑𝑑  is the number of ACKs received during ∆𝑡𝑡. 𝑊𝑊𝐵𝐵 is a window 

factor.  
In accordance with the definition of BDP, the BDP-Based congestion detection formula is: 



 ⋅≥= otherwisefalse

BRNtruef flight
congestion
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(8) 

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑡𝑡 represents the amount of data in flight, 𝑅𝑅𝑎𝑎 is the minimum RTT, and 𝐵𝐵 is the 
maximum delivery rate. BDP-Based congestion detection mechanisms, such as BBR [8] and 
BBR-ACD [33], leverage these principles for effective congestion control. 

3.2.4. ECN-Based detection algorithm 

ECN is a mechanism that uses the last two bits of the DSCP (Differentiated Services Code 
Point) field in the IP header to signal congestion. When a switch’s queue size exceeds a set 
threshold, it marks subsequent packets with ECN. Upon receiving an ECN-marked packet, 
the receiver generates a Congestion Notification Packet (CNP) and forwards it to the sender. 
This process allows the detection of network congestion, and the formula is as follows: 


 == otherwisefalse

truegetCNPtruefcongestion
 

(9) 

ECN-Based congestion detection mechanisms, such as DCTCP [25] and D2TCP [34], 
utilize these principles to effectively detect and respond to network congestion. 

3.2.5. Link-Utilization-Based detection algorithm 

In the context of network congestion, link utilization serves as a direct indicator of the 
congestion level. The congestion detection formula based on link utilization is expressed as: 


 ≥= otherwisefalse

CRtruef sum
congestion
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(10) 

𝑅𝑅𝑠𝑠𝑢𝑢𝑢𝑢 represents the total traffic of the bottleneck link, 𝐶𝐶 represents the bandwidth of 
the bottleneck link, and 𝜑𝜑  is a threshold factor. Link-Utilization-Based congestion 
detection mechanisms, such as HPCC [14] and EagerCC [35], leverage these principles to 
effectively identify and respond to network congestion based on link utilization metrics. 



 
 

3.2.6. Equation-Based detection algorithm 

Equation-based congestion detection evaluates network state by constructing a utility 
function. The formula based on equations is expressed as: 



 ≥= otherwisefalse

TxxxFtruef highN
congestion

),...,,( 21

 
(11) 

𝐹𝐹 represents the utility function. 𝑥𝑥1,𝑥𝑥2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑁𝑁 represent network status. 𝑇𝑇ℎ𝑖𝑖𝑖𝑖ℎ is a 
threshold factor. Equation-based congestion detection mechanisms allow for customizable 
design to fit specific requirements. For instance, the network performance-oriented 
congestion control framework [36] assesses network status by constructing a utility 
function based on throughput, loss rate, and delay.  

3.2.7. Composite-Approach-Based detection algorithm 

Practical congestion control mechanisms often employ a combination of algorithms. The 
congestion detection formula based on composite approach is expressed as: 


 === otherwisefalse

truefortrueftruefcongestion
21

 
(12) 

𝑓𝑓1 and 𝑓𝑓2 represent the results of certain detection algorithms. Composite-Approach-
Based Detection mechanisms leverage these principles to combining the advantages of 
multiple detection methods. For example, TCP Africa [37] integrates both loss-based and 
RTT-based algorithms for effective congestion detection. 

3.2.8. Comparative analysis 

 Loss-Based Detection Algorithm: The Loss-Based detection algorithm operates on a 
simple principle and can be implemented in the implicit feedback model. It 
effectively determines network congestion, serving as the fundamental detection 
algorithm for TCP. However, it lacks the ability to differentiate between packet loss 
due to damage and congestion, performing poorly in high-error-rate networks like 
wireless networks. It exhibits low sensitivity in low congestion levels, leading to 
potential buffer overflow issues. 

 RTT-Based Detection Algorithm: The RTT-Based detection algorithm is 
implementable in the implicit feedback model, allowing the adaptation of congestion 
detection thresholds to different environments. Yet, its accuracy is influenced by the 
randomness of RTT, and it suffers from a feedback time delay problem. As 
congestion intensifies, the RTT feedback duration increases, resulting in delayed 
congestion control. 

 BDP-Based Detection Algorithm: Implementable in the implicit feedback model, the 
BDP-Based detection algorithm is insensitive to packet loss, avoiding misjudgments 
caused by damage-related losses in the Loss-Based detection. It effectively 
determines worsening congestion based on RTT sensitivity. However, it heavily 



 
 

relies on RTT and has a long detection period, leading to poor performance in highly 
dynamic environments, such as wireless networks. 

 ECN-Based and Link-Utilization-Based Detection Algorithms: Both ECN-Based and 
Link-Utilization-Based detection algorithms can only be implemented in the explicit 
feedback model. They accurately determine network congestion and proactively 
control congestion through factor settings. However, they require network devices 
to support corresponding protocols, resulting in poor scalability. 

 Equation-Based and Composite-Approach-Based Detection Algorithms: The 
Equation-Based detection algorithm establishes a mapping between network status 
information and congestion using complex functions, offering fine granularity. The 
Composite-Approach-Based detection algorithm combines the advantages of 
multiple detection methods to improve adaptability. However, these algorithms 
have high complexity, and their performance is challenging to guarantee in dynamic 
environments. 

Table 2 
Comparison of Major Congestion Detection Algorithms 

Algorithm Advantages Disadvantages 

Loss-Based Simple structure. Misjudgment during packet loss; 
Buffer overflow problems. 

RTT-Based 
Simple structure; 

Adaptive congestion 
thresholds. 

Limited accuracy due to delay; 
Feedback delay problem. 

BDP-Based 
Simple structure; 

Avoiding misjudgments from 
Loss-Based. 

Heavy reliance on RTT; 
Long detection period; 

Poor performance in dynamic 
environments. 

ECN-Based and 
Link-Utilization-

Based 

Accurate congestion 
detection; 

Active congestion control. 

Complex structure; 
Poor scalability. 

Equation-Based Flexible design approach; 
Fine granularity. 

High complexity; 
Unstable performance in 
dynamic environments. 

Composite-
Approach-Based 

Combining the advantages 
of multiple approaches. 

High complexity; 
Unstable performance in 
dynamic environments. 

4. Control Algorithm 

The control algorithm computes the new sending rate based on congestion detection. The 
basic strategy is to decrease the sending rate when congestion occurs and increase the 
sending rate when there is no congestion. Its normalized representation is 
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𝑅𝑅𝑛𝑛𝑒𝑒𝑒𝑒 represents the new sending rate. 𝑅𝑅𝑐𝑐 represents the current sending rate. 𝐴𝐴,𝐵𝐵,𝐶𝐶 
and 𝐷𝐷  are the control parameters whose values depend on the network feedback 
information. It should be noted that there is a corresponding linear relationship between 
the sending rate and the congestion window, and that adjusting the congestion window can 
be converted equivalently to adjusting the sending rate. According to the network feedback 
information and calculation rules, six typical control algorithms are selected to be analysed 
in this section. 

4.1. Loss-Based control algorithm: TCP Reno [38] 

4.1.1. Overview of the algorithm 

The TCP Reno algorithm encompasses several key components, including the slow start, 
congestion avoidance, timeout retransmit, fast retransmit, and fast recovery algorithms. 

1. Slow start algorithm 

When the congestion window (cwnd) is less than the slow-start threshold (ssthtesh), and 
a new ACK is received, cwnd is incremented by 1 (in MSS, Maximum Segment Size units). 

2. Congestion avoidance algorithm 

When cwnd ≥ ssthtesh, upon receiving a new ACK, cwnd=cwnd+1/cwnd. 

3. Timeout retransmission algorithm 

If RTT>RTO (the retransmission timeout), ssthtesh=max(2, cwnd/2), and cwnd=1, 
entering the slow-start state. 

4. Fast retransmit algorithm 

Upon receiving 3 duplicate ACKs, ssthtesh=max(2, cwnd/2), and cwnd=cwnd/2. This 
triggers the fast recovery state. 

5. Fast recovery algorithm 

In response to duplicate ACKs, cwnd=cwnd+1; upon receiving a new ACK, cwnd=ssthresh, 
transitioning into the congestion avoidance state. 

4.1.2 Fluid model 
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Table 3 
TCP Reno Model Equation Parameters 

𝑝𝑝 Packet loss probability 𝐶𝐶 Bandwidth of bottleneck link 
𝐾𝐾𝑚𝑚𝑖𝑖𝑖𝑖 Low threshold 𝑅𝑅𝑖𝑖 Sending rate of flow i 
𝐾𝐾𝑚𝑚𝑎𝑎𝑎𝑎 High threshold 𝜏𝜏𝑖𝑖 Round-trip time 
𝑃𝑃𝑚𝑚𝑎𝑎𝑎𝑎 Probability factor 𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  Propagation time 
𝑞𝑞 Queue size of bottleneck link 𝑊𝑊𝑖𝑖 Congestion window size 

4.1.3 Algorithm analysis 

1. Stability and Proof 

If the algorithm is stable, there must be a point where the sending rate of all flows 
remains constant. Assuming 𝑑𝑑𝑊𝑊𝑖𝑖

𝑑𝑑𝑑𝑑
= 0, the equations at the stable point can be derived as 

follows: 
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The equations with two unknowns have a unique solution. Furthermore, the unique 
solution satisfies𝑊𝑊1 = 𝑊𝑊2 = ⋯ = 𝑊𝑊𝑁𝑁, indicating the stability of the TCP Reno algorithm. 

2. Unfairness and Proof 

Assuming flow A and B share the same path, with 𝑊𝑊𝐴𝐴(𝑡𝑡) > 𝑊𝑊𝐵𝐵(𝑡𝑡), let 𝑓𝑓(𝑡𝑡) = 𝑊𝑊𝐴𝐴(𝑡𝑡) −
𝑊𝑊𝐵𝐵(𝑡𝑡). Utilizing equation (18), we can derive: 
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The decreasing function 𝑓𝑓(𝑡𝑡) leads to equal congestion windows 𝑊𝑊1 = 𝑊𝑊2 = ⋯ = 𝑊𝑊𝑁𝑁 
across flows, showing algorithm convergence. However, because 𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝑊𝑊𝑖𝑖(𝑡𝑡)/𝜏𝜏𝑖𝑖 , the 
algorithm does not ensure fair bandwidth sharing, lacking inherent fairness. 

4.2. RTT-Based control algorithm: Patched TIMELY [39] 

4.2.1. Overview of the algorithm 

Patched TIMELY algorithm consists of two parts: RTT algorithm and rate algorithm. 

1. RTT algorithm 
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𝑡𝑡𝑠𝑠 refers to the time when packet 𝑖𝑖 is sent, and 𝑡𝑡𝑐𝑐 indicates the time when the 𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖 
is received. NICrate denotes the bandwidth capacity of the Network Interface Card (NIC), 
while seg.size represents the size of an individual data burst. 

2. Rate algorithm 
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𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 represents the newly measured round-trip time. The 𝛿𝛿 acts as a step modifier 
in the algorithm. 𝑇𝑇𝑙𝑙𝑜𝑜𝑜𝑜  and 𝑇𝑇ℎ𝑖𝑖𝑖𝑖ℎ  are critical threshold factors that guide the rate 
adjustment. Additionally, error and weight function as regulatory factors in this context. The 
algorithm employs specific formulas, incorporating 𝛼𝛼  and 𝜏𝜏∗  as further regulatory 
elements. 

.
.

...
.

,*)()()(,/)(,







≥
<<−+

−≤
=

∆+−−==
−

=

2501
250250502

2500

1

g
gg

g
weight

RTTtrtrDtrg
T

TnewRTTerror minRTT
low

low ατα
 (23) 

4.2.2. Fluid model 
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Patched TIMELY Model Equation Parameters 
𝑅𝑅𝑖𝑖 Sending rate of flow 𝑖𝑖 𝐶𝐶 Bandwidth of 13 ottleneck link 
𝑔𝑔𝑖𝑖 RTT gradient of flow i 𝛽𝛽 Multiplicative decrease factor 
𝑞𝑞 Queue size of the bottleneck 𝛿𝛿 Additive increase step 
𝑡𝑡 Time 𝑇𝑇𝑙𝑙𝑜𝑜𝑜𝑜 Low threshold 
𝜏𝜏∗ Rate update interval 𝑇𝑇ℎ𝑖𝑖𝑖𝑖ℎ High threshold 
𝜏𝜏′ Round-trip time 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑀𝑀𝑀𝑀 Minimum RTT for normalization 
𝑁𝑁 Number of flows at bottleneck 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Propagation time 
𝛼𝛼 EWMA smoothing factor 𝑠𝑠𝑠𝑠𝑠𝑠 Burst size 
𝑤𝑤 EWMA smoothing factor 𝑀𝑀𝑀𝑀𝑀𝑀 Maximum Transmission Unit 

4.2.3. Algorithm analysis 

1. Stability and Proof 

Considering the characteristics of a constant transmission rate and a stable queue size at 
equilibrium, setting equation (24, 25) to zero leads to the following conclusion: 
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The unique solution implies that the algorithm demonstrates stability. 

2. Fairness and Proof 

In the scenario where flows A and B share a bottleneck link, with 𝑅𝑅𝐴𝐴(𝑡𝑡) > 𝑅𝑅𝐵𝐵(𝑡𝑡) and 
𝐶𝐶∗𝑇𝑇𝑙𝑙𝑜𝑜𝑜𝑜 < 𝑞𝑞𝑞𝑞 < 𝐶𝐶∗𝑇𝑇ℎ𝑖𝑖𝑖𝑖ℎ, The derivative of 𝑓𝑓(𝑡𝑡) = 𝑅𝑅𝐴𝐴(𝑡𝑡) − 𝑅𝑅𝐵𝐵(𝑡𝑡) is: 
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When 𝑅𝑅𝐴𝐴(𝑡𝑡) > 𝑅𝑅𝐵𝐵(𝑡𝑡) , the function 𝑓𝑓(𝑡𝑡)  decreases until 𝑅𝑅𝐴𝐴(𝑡𝑡) = 𝑅𝑅𝐵𝐵(𝑡𝑡) , leading to 
convergence. This ensures fair bandwidth sharing among flows in the Patched TIMELY 
algorithm model, reflecting its fairness characteristic. 

4.3 BDP-Based control algorithm: TCP BBR [8] 

4.3.1 Overview of the algorithm 

TCP BBR consists of four main algorithms: Start-up, Drain, ProbeBW, and ProbeRTT. For an 
in-depth understanding of the round-trip propagation time (𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and the methods used 
to measure the bottleneck bandwidth (BW), one should refer to Section 3.2.3. 

1. Start-up algorithm 

Start-up phase fills the network pipe and transitions to Drain when the bandwidth 
estimate stabilizes (no more than 1.25x increase over three assessments). During this phase, 



 
 

the sending rate (R) and congestion window (cwnd) are calculated with the following 
considerations: 
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2. Drain algorithm 

In Drain, once the inflight data falls beneath the BDP threshold, the algorithm transitions 
to the ProbeBW state. In this state, the calculations for rate and congestion window are as 
follows: 

)()(
ln

)(),(ln)( tDtBWtcwndtBWtR prop⋅⋅=⋅=
2

2
2

2
 

(33) 

3. ProbeBW algorithm 

ProbeBW algorithm regularly evaluates the bottleneck link’s bandwidth, typically every 
8 round-trip propagation times. If 𝐷𝐷𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 increases within a 10-second window, the 
algorithm moves to the ProbeRTT state. In ProbeBW, the rate and congestion window are 
calculated as follows: 
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4. ProbeRTT algorithm 

The ProbeRTT algorithm runs for a maximum of 200 milliseconds before transitioning. 
It switches back to Start-up or ProbeBW based on network load. During this state, the 
algorithm calculates rate and congestion window as follows: 
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4.3.2 Fluid model 
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Table 5 
TCP BBR Model Equation Parameters 

𝒒𝒒 Queue size of bottleneck link 𝑻𝑻𝒊𝒊 Round-trip time of flow i 



 
 

𝑪𝑪 Bandwidth of bottleneck link 𝑫𝑫𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝒊𝒊  Propagation time of flow i 

𝑹𝑹𝒊𝒊 Sending rate of flow i   

4.3.3 Algorithm analysis 

1. Stability and Proof 

Setting equation (38) to zero yields a specific result: 
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The result shows that the equations have multiple solutions, indicating that TCP BBR has 
numerous stable points and confirming its inherent stability. 

2. Unfairness and Proof 

Given 𝑅𝑅𝐴𝐴(𝑡𝑡) > 𝑅𝑅𝐵𝐵(𝑡𝑡) for flows A and B on the same path, the following observation can 
be made: 
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This leads to the conclusion that the rate difference between flows A and B is growing, 
suggesting that flow A continues to dominate bandwidth at the bottleneck. This behavior 
indicates a lack of fairness in the algorithm. 

4.4. ECN-Based control algorithm: DCQCN [11] 

4.4.1. Overview of the algorithm 

DCQCN consists of switch, receiver and sender algorithms. 

1. Switch algorithm 
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Here 𝑝𝑝  represents the marking probability. 𝐾𝐾𝑚𝑚𝑖𝑖𝑖𝑖  and 𝐾𝐾𝑚𝑚𝑎𝑎𝑎𝑎  define the minimum 
and maximum thresholds, respectively, and 𝑃𝑃𝑚𝑚𝑎𝑎𝑎𝑎 denotes the maximum probability limit. 

2. Receiver algorithm 

After receiving an ECN-marked packet, the receiver sends a CNP. Maximum one CNP can 
be sent per N microseconds. 



 
 

 
3. Sender algorithm 

The sender algorithm primarily governs the packet transmission rate (𝑅𝑅𝐶𝐶 ) utilizing 
factors such as α (initial value is 1), 𝜏𝜏′,𝑅𝑅𝑇𝑇 ,𝐹𝐹, Timer 𝑁𝑁𝑇𝑇 , and Byte counter𝑁𝑁𝐵𝐵𝐶𝐶 . When the 
sender receives a CNP, 

ggRRRR CCCT +−=−== ααα )(),/(, 121  (42) 
If sender gets no CNP for𝜏𝜏′, 

( )αα g−= 1  (43) 
If no CNP is received and max(NT, NBC) ≤ F occurs, 

2/)( CTC RRR +=  (44) 
If no CNP is received and min(NT, NBC) > F occurs, 

2BC /)(, TCCTAITT RRRNorNiiRRR +==+=  (45) 
In other cases, 

2/)(, TCCAITT RRRRRR +=+=  (46) 

4.4.2. Fluid model 
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Table 6 



 
 

DCQCN Model Equation Parameters 
𝑹𝑹𝑪𝑪 Current rate 𝑵𝑵 Number of flows at bottleneck 
𝑹𝑹𝑻𝑻 Target rate 𝑪𝑪 Bandwidth of bottlenck link 
𝜶𝜶 Decrease factor 𝑭𝑭 Fast recovery steps 
𝒒𝒒 Queue size of bottleneck link 𝑩𝑩 Byte counter for rate increase 
𝒕𝒕 Time 𝑻𝑻 Timer for rate increase 

𝑲𝑲𝒎𝒎𝒎𝒎𝒎𝒎 Low threshold 𝑹𝑹𝑨𝑨𝑨𝑨 Rate increase step 
𝑲𝑲𝒎𝒎𝒂𝒂𝒂𝒂 High threshold 𝝉𝝉 CNP generation timer 
𝑷𝑷𝒎𝒎𝒎𝒎𝒎𝒎 Probability factor 𝝉𝝉∗ Control loop delay 
𝒈𝒈 Decrease factor 𝝉𝝉′ Update Interval of α 

4.4.3. Algorithm analysis 

1. Stability and Proof 

Initially, if the bandwidth is underutilized, the sending rate increases. If it surpasses the 
bottleneck capacity, congestion occurs, and the sending rate decreases. Therefore, at the 
stable point, the bottleneck link bandwidth must be fully occupied and the queue size will 
remain constant. Assuming the queue size at stable time is 𝑞𝑞∗, the following equations can 
be obtained. 
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Combining equation (49-51), we see that 
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Here 𝛼𝛼(𝑖𝑖)∗, a, b, c, d, e is denoted as follows： 
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. When 𝑅𝑅𝐶𝐶(𝑖𝑖) > 0, 𝑓𝑓(0) = 0 and 𝑓𝑓(1) → +∞. According to 

the continuity principle, when 𝑅𝑅𝐶𝐶(𝑖𝑖) > 0, there exists 𝑝𝑝∗ such that 
*)(* )( i

CRpf = . Since all 

flows share 𝑝𝑝∗, it follows that NCRRR N
CCC /*)(*)2(*)1( ==⋅⋅⋅== . 

Based on the above analysis, the DCQCN algorithm has a unique stable point, where all 
flows have equal sending rates. Therefore, the DCQCN algorithm is stable. 



 
 

2. Fairness and Proof 

The DCQCN algorithm’s fairness isn’t directly discernible from equation (51) due to the 
interplay between RC and RT. To prove fairness, the paper uses a discrete method, 
examining RC changes between CNPs. Here, we first prove two theorems. 

Theorem 1. In DCQCN algorithm, the smaller the sending rate of flow i is, the more 
additive growth occurs between adjacent CNPs. 

Proof of Theorem 1. The switch algorithm estimates a flow collects CNPs at a rate of 
p*RC*∆t. When a CNP is collected, the average packet sending rate is 1/p packets. This 
means that the sending rates of adjacent CNPs for each flow are the same. DCQCN controls 
this rate via a timer and byte counter. For equal data sent, the increment of the byte counter 
is the same, but the timer increments more with smaller sending rates. Therefore, for flows 
with smaller sending rates, the additive growth between adjacent CNPs occurs more 
frequently. 

Theorem 2. In DCQCN algorithm, 𝛼𝛼𝑖𝑖(𝑡𝑡) is a converging function. 
Proof of Theorem 2. If the time interval between adjacent CNPs of flow i is ∆t, then 

)()()())()(()()( )()('/)('/)( ttggtggtt iititi αααα ττ <−<+−−=∆+ ∆+∆ 1111  (55) 
The function 𝛼𝛼𝑖𝑖(𝑡𝑡) is monotonically decreasing. Given that 𝛼𝛼𝑖𝑖(𝑡𝑡) > 0 and 0<g<1, it 

follows that 𝛼𝛼(𝑖𝑖)(𝑡𝑡 + ∆𝑡𝑡)>0. By induction, 𝛼𝛼𝑖𝑖(𝑡𝑡) >0 for all t>0. As 𝛼𝛼𝑖𝑖(𝑡𝑡) is monotonically 
decreasing with an upper bound, it must converge. 

Below, we study the changes between adjacent CNPs. Let the receiving times of adjacent 
CNPs be t and t+∆t, besides, the rate decreases at 𝑡𝑡 + 𝛿𝛿(𝛿𝛿 → 0)  and then experiences 
additive growth for 𝑁𝑁(𝑖𝑖) times.  

Let 𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡 + 𝛿𝛿) = (1 − 2−1𝛼𝛼(𝑖𝑖)(𝑡𝑡)𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡)  and 𝛼𝛼𝑖𝑖(𝑡𝑡) = 𝛼𝛼∗(𝛼𝛼∗ > 0) , according to the 
DCQCN algorithm and Theorem 2, we get that when the rate increase occurs 0 times, 
𝑅𝑅𝑇𝑇(𝑖𝑖)[0] = 𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡),𝑅𝑅𝐶𝐶(𝑖𝑖)[0] = 𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡+ 𝛿𝛿),∆𝑅𝑅 = 𝑅𝑅𝐶𝐶(𝑖𝑖)[0] − 𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡) = −2−1𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡)𝛼𝛼∗ .By 
induction, we can obtain that at t+∆t, after N(i) growth times, ∆𝑅𝑅 = �1 − 2−𝑁𝑁(𝑖𝑖)�𝑅𝑅𝐴𝐴𝐴𝐴 −
2−𝑁𝑁(𝑖𝑖)−1𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡)𝛼𝛼∗. 

Assuming the number of rate increases between adjacent CNPs at the stable point 
𝑅𝑅𝐶𝐶(𝑡𝑡) = 𝐶𝐶

𝑁𝑁
,∆𝑅𝑅 = 0 is 𝑁𝑁(𝑘𝑘). According to Theorem 1, if 𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡) > 𝐶𝐶/𝑁𝑁 for flow i, 𝑁𝑁(𝑖𝑖) <

𝑁𝑁(𝑘𝑘) . We can get that ∆𝑅𝑅(𝑖𝑖) = �1 − 2−𝑁𝑁(𝑖𝑖)�𝑅𝑅𝐴𝐴𝐴𝐴−2−𝑁𝑁(𝑖𝑖)−1𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡)𝛼𝛼∗ < ∆𝑅𝑅(𝑘𝑘) = 0 . So 
𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡) will converge to the stable point where𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡) = 𝐶𝐶/𝑁𝑁. When 𝑅𝑅𝐶𝐶(𝑖𝑖)(𝑡𝑡) < 𝐶𝐶/𝑁𝑁, the 
proof method is the same. 

In summary, in the DCQCN algorithm, all flows will share the bottleneck bandwidth. So 
the algorithm is fair. 

4.5. Link-Utilization-Based control algorithm: HPCC [14] 

4.5.1. Overview of the algorithm 

HPCC consists of bottleneck link utilization and congestion window algorithms. 

1. Bottlenck link utilization algorithm 
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U represents the bottleneck link utilization, 𝑎𝑎𝑐𝑐𝑐𝑐1 and 𝑎𝑎𝑐𝑐𝑐𝑐0 are two ACKs, T denotes 
the minimun RTT. For link 𝑗𝑗,𝑈𝑈𝐽𝐽 , 𝑞𝑞𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎. 𝑡𝑡𝑡𝑡𝑗𝑗  and 𝐶𝐶 represent the bandwidth 
utilization, queue size, sending rate, sending data volume, timestamp and bandwidth, 
respectively. 

2. Congestion window algorithm 
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𝑊𝑊𝐴𝐴𝐼𝐼 is a step factor, and η is generally set to 0.95. 

4.5.2. Fluid model 
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Table 7 
HPCC Model Equation Parameters 

𝑹𝑹𝒂𝒂 Sending rate of flow a 𝒊𝒊 flow at bottleneck link j 
𝑾𝑾𝒂𝒂 Congestion window size of flow a 𝑹𝑹𝒊𝒊 Sending rate of flow i 
𝝉𝝉 Control loop delay 𝜼𝜼 Threshold 
𝒋𝒋 Bottlenck link of flow a 𝑪𝑪 Bandwidth of bottlenck link 
𝑼𝑼𝒋𝒋 the utilization of link j 𝑾𝑾𝑨𝑨𝑨𝑨 Additive increase step 

4.5.3. Algorithm analysis 

1. Stability and Proof 

Let the left side of equation (58) be zero, then 
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For any 𝑈𝑈𝑗𝑗(𝑡𝑡−𝜏𝜏), 𝑊𝑊𝑎𝑎(𝑡𝑡) has a unique solution, so the algorithm is stable. 

2. Unfairness and Proof 



 
 

Assuming the algorithm is fair, for flows with different initial rates, the rate difference 
between them will decrease over time. If flows A and B have the same path and 𝑊𝑊𝒂𝒂(𝑡𝑡) >
𝑊𝑊𝐵𝐵(𝑡𝑡), 𝑈𝑈𝑗𝑗𝑡𝑡 < 𝜼𝜼. Let 𝑓𝑓(𝑡𝑡) = 𝑊𝑊𝒂𝒂(𝑡𝑡) > 𝑊𝑊𝐵𝐵(𝑡𝑡), then 
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The increasing function 𝑓𝑓(𝑡𝑡)  contradicts the fairness assumption. Thus, HPCC 
algorithm is unfair. 

4.6. Machine-Learning-Based control algorithm: TCP Drinc [40] 

TCP Drinc leverages deep reinforcement learning to regulate transmission rate. It defines 
event S as a series of states, represented as 𝑆𝑆 = [𝑠𝑠0, 𝑠𝑠1, . . . , 𝑠𝑠𝑁𝑁]. The state space is defined as 
𝑠𝑠𝑡𝑡 = [∆𝑤𝑤(𝑡𝑡), 𝜏𝜏𝑅𝑅𝑇𝑇𝑇𝑇(𝑡𝑡), 𝑣𝑣(𝑡𝑡), 𝛿𝛿(𝑡𝑡), 𝜏𝜏𝐴𝐴𝐶𝐶𝐶𝐶(𝑡𝑡)] . Here, ∆𝑤𝑤(𝑡𝑡)  indicates the variation in the 
congestion window size, 𝜏𝜏𝑅𝑅𝑇𝑇𝑇𝑇(𝑡𝑡)  signifies the round-trip time, 𝑣𝑣(𝑡𝑡)  is the ratio of 
propagation time to RTT, 𝛿𝛿(𝑡𝑡) highlights the disparity between RTT and propagation time, 
and 𝜏𝜏𝐴𝐴𝐶𝐶𝐶𝐶(𝑡𝑡) refers to the interval between successive ACKs. 

The action space is defined as 𝐴𝐴 = [𝑤𝑤 = 𝑤𝑤 + 1;  𝑤𝑤 = 𝑤𝑤 − 1;  𝑤𝑤 = 𝑤𝑤 + 𝑤𝑤−1;  𝑤𝑤 = 𝑤𝑤 −
𝑤𝑤−1;  𝑤𝑤 = 𝑤𝑤]. 𝑤𝑤 is the congestion widow size. 

The reward is defined as 𝑟𝑟(𝑡𝑡) = 𝑈𝑈(𝑡𝑡 + 𝜏𝜏𝑅𝑅𝑇𝑇𝑇𝑇(𝑡𝑡 + 𝜏𝜏𝑅𝑅𝑇𝑇𝑇𝑇(𝑡𝑡))) − 𝑈𝑈(𝑡𝑡). Related functions are 
listed below: 
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In the aforementioned equations, 𝑥𝑥(𝑡𝑡) symbolizes the network throughput at time 𝑡𝑡, 
which is derived from the congestion window and RTT. The variables 𝛼𝛼,𝛽𝛽, 𝜂𝜂 and 𝐿𝐿 are 
introduced as adjustment factors to fine-tune the algorithm. Importantly, this algorithm is 
characterized by a dynamic relationship between its inputs and outputs, precluding the 
formulation of a fluid model equation for analytical purposes. 

4.7. Comparative analysis 

From the standpoint of control models, algorithms based on packet loss, RTT, and 
Bandwidth-Delay Product (BDP) are straightforward in their approach, allowing 
implementation within an implicit feedback model. In contrast, algorithms reliant on ECN 
and link utilization necessitate an explicit feedback model, entailing more complex 
protocols. 

Regarding algorithm characteristics, the input-output relationship in the first five types 
of algorithms is typically fixed. Algorithms based on packet loss, RTT, BDP, and ECN struggle 
to calculate the ideal regulation rate, often resorting to heuristic strategies for incremental 
adjustments. This approach introduces a degree of latency. Conversely, algorithms focusing 



 
 

on link utilization avoid this drawback but demand significant network feedback data, thus 
incurring higher bandwidth and computational resource costs. 

Control algorithms integrating machine learning exhibit a dynamic control model 
contingent on specific network feedback signals. These algorithms excel in adapting to 
network environment changes, automatically adjusting relevant factors to optimize 
regulation strategies and enhance performance. However, the complexity of designing 
appropriate reward functions, ensuring swift convergence, and managing unpredictable 
outcomes makes them inherently complex. 

5. Evaluation Indicators 

The criteria for assessing host-to-host congestion control are derived from network 
performance metrics as outlined in [41]. Despite variations in emphasis among different 
schemes, four key indicators are universally recognized: Throughput, Delay, Packet Loss 
Rate, and Fairness Index, as referenced in [42]. 

1. Throughput 

Throughput is defined as the quantity of data successfully transmitted over a network 
per unit of time. This metric serves as a direct indicator of a control mechanism's efficacy. 
Generally, higher throughput equates to superior performance. The formula for calculating 
throughput is as follows: 

tNx ∆= /  (64) 
In this formula, ∆t represents the duration of the operational period, while N denotes the 

total amount of data successfully received by the receiver.  

2. Delay 

Delay is the total time for a packet's transmission and reception, including sending, 
transmission, processing, and queuing delays. Optimal network performance is 
characterized by low delay and its stability, which is often associated with higher 
throughput and stable transmission quality. For practical measurement, the smoothed RTT 
is commonly used. The formula is as follows: 

))(()()( stttTtT −−+= αα 1  (65) 
𝑡𝑡𝑠𝑠 is the send time for packet i, t is the 𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖 receipt time, and α is the smoothing factor. 

3. Packet Loss Rate 

Packet Loss Rate is the ratio of lost packets to the total packets sent over a period, key 
for analyzing data flows. Higher loss rates may signal network congestion and are critical 
for assessing congestion control. The lower the rate, the better the performance, ideally. The 
formula for Packet Loss Rate is as follows: 
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𝑁𝑁 is the amount of data successfully received by the receiver in time interval ∆𝑡𝑡, and 
Nsend is the amount of data sent by the sender in the same period. 

4. Fairness Index 

The Fairness Index serves as a measure of how equitably congestion control mechanisms 
distribute network resources under congested conditions, quantitatively assessing fairness 
in resource allocation. A common formula for calculating the Fairness Index [43] is as 
follows: 
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𝑋𝑋𝑖𝑖  represents the throughput for the flow 𝑖𝑖. The Fairness Index ranges from 0 to 1, with 
higher values indicating better fairness. Achieving a high Fairness Index is important for 
protocol coexistence on the Internet, making it a key metric for assessing congestion control 
protocols. 

6. Main Challenges 

A systematic analysis reveals three critical aspects of host-to-host congestion control: real-
time collection of network status, precise congestion detection, and efficient packet sending 
rate control. To address these aspects, host-to-host congestion control mechanisms 
encounter several challenges: 

1. Hosts Coordination 

Host-to-host congestion control operates as a distributed system without a central 
control authority. Each host independently executes control algorithms. Inconsistencies or 
conflicts in the behavior of different hosts can lead to uneven bandwidth allocation, creating 
fairness issues. This disparity can also trigger network congestion, adversely impacting 
network transmission performance. Thus, achieving effective coordination among hosts 
represents a significant challenge. 

2. Feedback Delay 

Host-to-host congestion control relies on a feedback mechanism, requiring hosts to 
gather network feedback and adjust their sending rates accordingly. This process inherently 
introduces a delay, especially during periods of network congestion, potentially hindering 
the timely acquisition of current network status. Such delays can result in suboptimal 
decision-making, affecting congestion control efficacy. Addressing feedback delay is, 
therefore, a pivotal challenge. 

3. Inaccurate Feedback 



 
 

Beyond the issues caused by feedback delay, the accuracy of feedback in host-to-host 
congestion control is also compromised by factors like network noise, packet loss, and 
inherent randomness (e.g., RTT variation). These elements can lead to erroneous 
congestion control decisions. Consequently, resolving the issue of inaccurate feedback is 
another crucial challenge. 

7. Future Directions 

Through the examination of existing research and considering the latest technological 
trends, we identify two key areas that hold significant potential for future exploration. 

1. Edge-host Collaboration Control Model 

Using the idea of edge computing, the Edge-host collaboration control model could 
offload some of the congestion detection and control functions to the edge switches. In 
terms of distribution, edge switches exhibit a more centralized nature compared to hosts, 
offering several advantages for congestion detection and control. Firstly, edge switches can 
aggregate information from multiple hosts, thereby providing more comprehensive data for 
congestion detection. Secondly, the feedback path can be shortened by leveraging edge 
switches. Thirdly, the utilization of edge switches can minimize the redundant collection of 
network state information, consequently reducing transmission overhead. Lastly, the 
integration of edge switches can effectively coordinate host behavior locally and address 
local fairness issues. Hence, the Edge-Host Collaboration Control Model signifies a 
promising research direction. 

2. Intelligent Congestion Detection and Control Algorithm 

Intelligent congestion detection and control algorithm has emerged as a prominent area 
of research in recent years, yielding substantial advancements. Innovative mechanisms like 
Orca [44] and Sage [45] employ deep reinforcement learning to craft intelligent algorithms, 
facilitating efficient data transmission in intricate network environments. This algorithm, 
rooted in mathematical and statistical principles, discerns the patterns of network 
congestion changes. Through logical reasoning, it calculates the optimal sending rate based 
on network feedback information, thereby enhancing congestion control performance. 

Despite current challenges in applying intelligent algorithms to congestion control—
such as intricate model training, complex reward function design, and slow convergence—
their successes in fields like computer vision, speech recognition, and AIGC underscore their 
capability to address complex issues. With ongoing technological progress, intelligent 
algorithms are poised to access more extensive network information and adeptly learn 
network characteristics and congestion control strategies. Consequently, the Intelligent 
Congestion Detection and Control Algorithm is set to significantly enhance its efficiency and 
adaptability, establishing itself as a pivotal area for future research. 



 
 

8. Conclusions 

Host-to-host congestion control, which is key for high-quality network transmission by 
managing data rates, must now focus on efficiency and adaptability. This paper reviews 
congestion control mechanisms across four areas: control models, detection methods, 
algorithms, and evaluation metrics. It analyzes the three main challenges in this domain and 
discusses the potential of machine learning and edge collaboration. It concludes that a 
systematic and comprehensive optimization of host-to-host congestion control is necessary 
to meet the demands of emerging networks. 
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