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Abstract 
A tunnel cable fault detection method based on deep learning and global-local features is 
proposed to meet the requirements of tunnel cable inspection and improve the safety of cable 
operation. First, a method based on color uniqueness and compactness is provided to highlight 
the salient foreground regions in the inspection image. Then, according to the relationship 
between the global spatial scenario distribution and local information, a global context model and 
a local fine detection model are established to deeply and accurately compute the salient features 
of the image. A cyclic structure network is used to weigh the position of each feature map. Next, 
a cyclic connection is then established by feeding the output of each block model back to the input. 
Repeated iteration and noise filtering reduce the influence of background information. Finally, 
the advantages of the proposed scheme in terms of training time and recognition accuracy were 
verified by comparing it with four classical target recognition algorithms in the case study. 
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1. Introduction 

With the gradual improvement of urban underground distribution networks, the 
construction and maintenance of cable tunnels play an increasingly important role in the 
development process of new power systems. However, the natural geographical 
environment of cable tunnels leads to problems such as water seepage, moisture, cable 
aging, and equipment corrosion and damage [1,2]. At present, the maintenance of cables 
and their supporting equipment in tunnels mainly relies on manual work. The large amount 
of thick smoke, harmful gases, high-voltage cable leakage, and cable tunnel collapse may 
pose a threat to the safety of workers. 

Owing to the rapid development of robotics and image recognition technology, using 
inspection robots to detect the internal situation of cable tunnels has gradually become an 
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effective solution. In recent years, many domestic and foreign companies and research 
institutions have developed tunnel inspection robots for different application fields. The 
water tunnel robot developed in [3] can effectively repair the inner wall of the tunnel, 
improving construction efficiency and work safety. Ref. [4] developed an underground cable 
detection robot called "Patrol", which can enter the underground and crawl along the cable 
to find the fault location. At present, most researchers focus on improving the structure of 
tunnel robots and researching their path planning and obstacle avoidance, with relatively 
little research on the intelligent functions of robots. Specifically, under the complex and 
humid internal environment of cable tunnels, a device fault identification scheme for cable 
tunnel inspection robots not only has significant significance for the construction and 
maintenance of the tunnel but also plays a good role in ensuring the safety of maintenance 
personnel inside the tunnel. 

In recent years, deep learning has been increasingly widely applied in the field of image 
recognition. Ref. [5] trains two deep neural networks to calculate pixel features and global 
recommendations respectively, and comprehensively judges the salient regions of the 
image. Ref. [6] proposes dense and sparse reconstruction (DSR), which first uses a 
significance calculation model for reconstruction errors, calculates the entropy and sparsity 
of each region of the image to reconstruct errors, and uses the K-Means algorithm to obtain 
the significance of reconstruction error clustering. Ref. [7] obtained more accurate saliency 
map inference by combining prior knowledge of saliency. Ref. [8] proposed a multi-task 
deep learning algorithm that applies the Laplacian nonlinear model to a significantly 
enhanced regression model, which is more commonly used in semantic segmentation and 
multi-object task detection. Ref. [9] proposes a bidirectional learning framework to 
aggregate multi-level convolutional features of salient object detection (SOD) models and 
improve the robustness and accuracy of saliency detection. 

Based on the above research, this paper proposes a cable tunnel defect detection method 
based on deep learning and global-local features, fully considering the relationship between 
local fine features and global spatial scene distribution, to improve the accuracy of salient 
feature map detection. A cyclic structure network module was proposed to continuously 
collect contextual information and iteratively improve convolutional features. The 
proposed method can effectively identify three common faults of tunnel cable insulation air 
gaps, insulation scratches, and insulation surface impurities. The implementation of the 
proposed tunnel cable defect detection method provides a scalable intelligent application 
model for tunnel inspection robot systems, thus laying the foundation for the further 
development and implementation of other related applications. 

2. Composition of robot system 

Power cables are increasingly favored by governments and power departments in urban 
power lines, therefore, the application of laying power cables as a power supply method in 
power construction is becoming more and more common. But high-voltage power cables 
are installed in underground passages (pipe galleries or tunnels), and cable tunnels refer to 
corridors or tunnel like structures used to accommodate a large number of cables, which 
can provide sufficient protection for the cables. China's cable tunnel technology began in the 



1980s and has undergone decades of development. Currently, complex urban cable tunnel 
networks are built in major cities in China. Many cable tunnels face problems such as 
collapse, seepage, water accumulation, fire, cable smoldering, aging and rusting of power 
supporting facilities, animal invasion, and accumulation of toxic and combustible gases on 
the front. To ensure the safety of cables inside the tunnel and maintain the stable operation 
of the entire power grid, it is necessary for staff to regularly inspect the cable tunnel. 
However, due to the long history of construction and the harsh environment inside old-
fashioned cable tunnels, inspectors not only need to face the harsh environment of high 
temperature and humidity, but also constantly face the threat of landslides and toxic gases 
during the inspection process. All of these factors pose a serious threat to the life safety of 
cable tunnel inspectors. At present, there are many online monitoring devices or track type 
inspection robots installed in cable tunnels. The online monitoring devices in tunnels mostly 
use wired communication connections, which makes construction difficult before or during 
the technical transformation process of the tunnel. For example, distributed fiber optic 
temperature measurement requires laying fiber optic cables along the entire length of the 
cable body, while other monitoring methods only set monitoring equipment at the 
attachment, which is low in cost-effectiveness and difficult to ensure monitoring accuracy; 
Orbital robots need to carry out track construction inside tunnels, which is costly, requires 
a long construction period, poses a great threat to personnel in harsh environments, and is 
prone to damage to tunnel structures. 

The working system of the cable tunnel inspection robot includes an algorithm 
workstation, a ground station, a cable tunnel inspection robot, and a camera and sensor 
mounted on it, as shown in Fig. 1. The equipment carried by the robot includes visible light 
cameras, thermal imaging cameras, gas sensors, relay boards, WiFi boards, gimbals, and 
lithium batteries. To eliminate the problem of limited wireless signal transmission in the 
complex environment of cable tunnels, this system converts the local area network at the 
bottom of the cable tunnel into high-power 5.8GHz WiFi to communicate with ground 
stations. 
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Ground station Cable tunnel cover plate
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Inspection robot
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Figure 1: Composition of cable inspection robot system. 



3. Cable defect detection combining deep learning and global-local 
features 

This article first uses color uniqueness and color compactness to calculate the salient 
foreground region of an image, to preserve the structural information of salient regions and 
the contours of salient objects. Then, based on a convolutional neural network (CNN), a 
saliency detection network is proposed within the same deep learning framework fully 
considering the relationship between local fine features and global spatial scene 
distribution. Using a module with contextual relationships to weigh the position of each 
feature map, the proposed method detects local features of salient objects and improves the 
salient feature map, based on the relationship between each pixel and adjacent regions. 
Finally, a cyclic structure network module is provided by feeding the output of each block 
back to the input to establish a cyclic connection, and iteratively filtering out background 
noise to obtain salient objects. 

3.1 Detection for significant foreground features 

According to the basic principles of the human visual attention system, using visual cues 
such as color uniqueness and color compactness can better perform saliency detection. 
Color uniqueness, as a measure of contrast, mainly describes the differences in color and 
brightness between different regions. Color compactness, as a spatial distribution feature, 
typically results in a compact spatial distribution of salient objects, while the background 
area is more widely distributed throughout the entire image. 

This article combines color uniqueness and color compactness to calculate foreground 
salient features. Firstly, given image I, a unique mapping SU is obtained based on center 
priors through positional information. The compactness feature can be decomposed into 
images using a Gaussian mixture model (GMM), and then the saliency map SC can be 
obtained through feature clustering calculation. Unlike the method of selecting the best 
function from uniqueness [10,11], this paper uses a simple multiplication of SC and SU to 
obtain a composite salient foreground region. 

FG C US S S= ⋅  (1) 
3.2 Global Context Detection Model 

Firstly, the 256×256×3 sized image after superpixel segmentation is taken as input, where 
the three dimensions represent width, height, and channel, respectively. The algorithm in 
this article consists of 5 convolutional layers and 2 fully connected layers. Conv represents 
the convolutional layer, the pool represents the pooling layer, and fc represents the fully 
connected layer. The conv layer and the fc layer are composed of linear transformations, and 
the relu layer has a non-linear correction unit function. Only the conv layer and the fc layer 
have learnable parameters. For the transformation layer, the size of the feature map is 
defined as width×height×depth, where the first two dimensions describe the spatial size 
and depth refers to the number of channels. The last layer of the network structure has two 



neurons, which use the Softmax function as the output to represent the probability that the 
detected superpixels belong to the background or belong to salient objects. 

3.3 Local fine detection model 

The upper branch calculates the approximate salient region based on global contextual 
relationships, while the lower branch is used to detect local details of salient objects. The 
local fine detection model adopts inputs similar to the global context detection model, which 
are then normalized to 227×227×3 sized images. The upper and lower branch models share 
the same deep structure and have independent parameters [12]. By estimating the 
significance probability score, the output window is predicted. The calculation formula is: 

( ) ( )score gc lc gc lc 1, 1 , ;S x x P y x x θ= =  (2) 
where xgc and xlc represent the output of the global context detection model and the 

second to last layer of the local fine detection model. y represents the significance prediction 
of superpixels, where y=1 when superpixels are salient regions and y=0 when superpixels 
are background. 

This article uses the minimum result and the maximum loss between segmentation 
labels in the last network layer to classify salient and background features, as shown in (3). 
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The parameters in the algorithm can be decomposed into several parts. In Eq. (2), 
θj={wgc,j, wlc,j, α, β}. wgc,j and wlc,j represent the last layer parameters of the global context 
and local fine detection model, respectively. α, β is the proportion of global and local 
modeling weights. Label probability is calculated via (4). 
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where μ represents the significant probability of modeling the global background and 

local environment, i.e., ( ) ( )T T
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The corresponding non-standardized significance prediction score function is 
represented as: 

( ) ( )T T T
gc lc gc,1 gc u gc, gc lc, lc, , j j jf x x x f x xµθ α β= + +w w w  (5) 
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. ( )T
u gc, gcjf xα β+w  is the range of saliency detection 

results obtained from multiple global context detection models. The range of T
gc, gcj xα β+w  

in (5) is (−∞,0]∪[1,+∞]. ( )T
u gc, gcjf xα β+w  has high confidence in saliency in the global 

model. It is assumed that in the local fine detection model, Eq. (6) contains non-zero 
processing. 

( )T T
u gc, gc lc, lcj jf x xα β+w w  (6) 

3.4 Circular network design 

CNN can detect from low-level visual features to high-level features, so the simple 
combination of convolutional features can allow noise to propagate to the prediction layer 
without limitation, or may lead to the loss of some information during the information 
propagation process. Convolutional recurrent structures can better explore and process 
environmental information [13,14]. 

This article proposes a reweighting mechanism based on the initial architecture to adjust 
the transmitted features, using a cyclic structure to perceive situational information and 
connecting the output of each block to the input. By using the same cyclic connection and 
sharing weights multiple times in each layer, the new architecture can increase the depth of 
traditional CNN layers without significantly increasing the total parameters. Connect the 
calculated salient region to the first input module in the loop structure, and the 
downsampling layer after the feature map f k is generated by the k-th block. A convolutional 
layer of kernel size m is used to slide on the local feature space window of m×m. Normalize 
the L2 layer and finally connect the activation layer to form features. The detailed steps are 
as follows. 

Firstly, to calculate the weighted mapping map Mk, convolution operations need to be 
performed on the subsequent output channels, where W represents the kernel, and b 
represents the bias parameter. Each value in the obtained weighted mapping determines 
the importance of each spatial position. 

Then, the Softmax operation is applied spatially to Mk to obtain the final weighted 
mapping via (7). 
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where λk(x,y) represents the normalized response value at (x,y). k is the number of blocks. 
If pixel i is significant at position (x,y), then assign higher significance values to the relevant 
regions of that pixel in the weighted map. 

Finally, the weighted mapping is upsampled to obtain the features ( ) ( )V 1
k k k

t tf c f cλ −= ×  

where c represents the number of feature channels. V
kλ  is shared across all channels in k

tf . 



4. Simulation analysis 

To verify the advantages of the proposed scheme in terms of training speed and recognition 
accuracy, four classic object detection and recognition algorithms, i.e., the classic CNN 
algorithm [15], SVM algorithm [16], BPNN algorithm [17], and ELM algorithm [18], are 
provided for comparison. These methods are respectively applied to defect recognition of 
internal equipment in cable tunnels in a city in China. The main comparative indicators of 
the simulation include network training time and algorithm recognition accuracy. 

4.1 Network training time 

Train the images collected in cable tunnels using 5 different algorithms mentioned above. 
To minimize the impact of network parameters on the training speed of the five methods, 
the small batch gradient descent method was used during the training process, and the 
learning rate was uniformly set to 0.1. Meanwhile, the number and resolution of images in 
all training datasets remain consistent. Specifically, due to the instability during the training 
process, which may result in a deviation in the required time for each training session, the 
average of 10 training sessions for 5 algorithms is taken as the final result. The specific 
training time comparison is shown in Fig. 2. 

 
Figure 2: Comparison of network training time for 5 methods 

As shown in Fig. 2, the proposed algorithm has a significant reduction in network 
training time compared to CNN, SVM, and BPNN algorithms. This is because the 
convolutional neural network has obtained ideal weights and biases through pre-training, 
making it easier for the network to converge during secondary training. The ELM method 
has the shortest training time because it only needs to update the weights between the 



hidden layer and the output layer. The entire training process is the process of solving the 
MP generalized inverse matrix, which is easier to implement compared to the network 
training process in other methods. 

4.2 Algorithm recognition accuracy 

Using 5 algorithms to identify defects in 100 images collected in cable tunnels, the 
recognition results include 4 possibilities, i.e., defects in the image that were correctly 
identified, defects in the image that were not detected, defects in the image that were not 
detected, defects in the image that were not detected, and defects in the image that were not 
detected but were mistakenly identified. The first two situations indicate accurate 
recognition, while the latter two situations indicate the presence of misidentification. The 
mathematical expression for recognition accuracy is the quotient of the number of correctly 
recognized images and the total number of images, as shown in Table 1. 

It is worth noting that due to the uncertainty of all five methods mentioned above, the 
results of identification accuracy in Table 1 are the average of 20 experiments. Based on the 
statistical data in the table, the five methods have higher recognition accuracy for insulation 
scratches, and the specific reason may be related to the collected internal images of the cable 
tunnel itself. Because the calibrated training and testing image dataset contains more cable 
equipment images, the characteristics of cable insulation scratch images are easier to detect 
and collect. In addition, compared to the four traditional recognition algorithms, the 
algorithm proposed in this paper shows higher recognition accuracy. This is because the 
method fully considers the relationship between local fine features and global spatial scene 
distribution, achieving accurate calculation of significant image features, and thus achieving 
higher recognition accuracy in the final cable tunnel defect recognition application. 

In summary, although the proposed algorithm is not as fast as the ELM algorithm in 
network training, its recognition accuracy is the highest. Moreover, after the network 
training is completed, the network can be encapsulated, and the subsequent recognition 
process can be carried out through the trained network encapsulation. Therefore, the speed 
of network training has little impact on the subsequent recognition process. 

Table 1 
Comparison of recognition accuracy of 5 algorithms 

Fault Type 
Recognition accuracy/% 

proposed 
method CNN SVM BPNN ELM 

Insulation air gap 95.6 94.7 91.7 93.2 88.2 
Scratches on 

insulation 97.3 95.5 92.3 94.3 87.3 

Insulation surface 
impurities 94.8 92.6 88.9 89.7 85.9 

Total 95.9 94.3 91.0 92.4 87.1 



5. Conclusion 

This article proposes a cable tunnel defect detection method based on deep learning and 
global-local features, which fully considers the relationship between local fine features and 
global spatial scene distribution, and improves the accuracy of salient feature map detection. 
A cyclic structure network module was proposed to continuously collect context 
information and iteratively improve convolutional features. Compared to the classic 
recognition algorithms, the proposed method outperforms CNN, SVM, and BPNN in terms 
of network training time. Compared to ELM algorithm, although the network training speed 
of the proposed method is lower than that of ELM, the final recognition rate (95.9%) is 
higher than ELM algorithm (87.1%). In addition, the trained network can be encapsulated 
and directly used for defect recognition in cable tunnel inspection robots, greatly improving 
the engineering applicability. 
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