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Abstract 
Wind energy is an essential renewable energy. For Carbon Neutrality, wind power has received 
extensive attention around the world. However, short-term wind power time series are difficult 
to predict with complex characteristics such as non-stationary and nonlinear. Therefore, this 
paper proposes a short-term prediction method of wind power using the Long Short-term 
Memory (LSTM) model. In view of insufficient memory ability, gradient disappearance and 
explosion in traditional prediction methods, the strategy of "Data Processing - Autocorrelation 
Analysis - Model Prediction" is proposed. Firstly, test the outliers by Z-Score method, and 
linearly interpolate the missing values and outliers. Secondly, determine the model input length 
through autocorrelation and partial autocorrelation coefficients. Finally, predict each 
subsequence with the LSTM model. On the testing set, the root mean square error is 58.55 
(MW), mean absolute error is 79.60 (MW), and coefficient of determination is 0.86. In brief, 
using LSTM prediction model can obtain a higher accuracy of short-term wind power prediction. 
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1. Introduction 

Energy is an essential foundation for human beings. With global climate change, 
environmental pollutions and other issues becoming more and more prominent, the 
transformation of the energy structure is imminent. Recently, many countries have been 
vigorously developing new energy. Wind energy, as an important renewable energy 
source, has the advantages of a long history of research, many technological innovations 
and broad development prospects, and is crucial for promoting energy transformation. 
However, wind energy is characterized by intermittency, volatility, and randomness. The 
grid integration of wind power intensifies the pressure of peak regulation. In order to 
ensure national energy security, accurate short-term wind power prediction is an 
important challenge. 
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Many scholars conducted in-depth research on the wind power prediction and 
proposed many models and methods. According to the principal classification, they can be 
divided into physical methods based on numerical weather predictions and statistical 
methods with historical data [1]. The physical prediction method mainly predicts wind 
power by screening related physical quantities and establishing space-time physical 
equations. This method does not require historical wind power data, but is limited by the 
accuracy of measurement data, modeling errors and economic conditions of complex wind 
farms. It is mostly applied to new wind farms lacking historical data [2-4]. Statistical 
prediction methods mainly include Time-Series Analysis, Kalman filter, Artificial Neural 
Network, etc. [5-12], which is based on the learning of historical data and does not need to 
consider the complex physical calculation process. It has the characteristics of self-
adaptation, self-adjustment, and self-learning. The model structure is simple and suitable 
for wind farms with historical data. Many studies have shown that statistical prediction 
methods have higher applicability and accuracy in short-term wind power prediction [13]. 

As deep learning theories develop, the accuracy of wind power prediction has been 
continuously improved [14-16]. Long Short-Term Memory neural network is an 
improvement of traditional RNN. It retains important features through the gate function, 
and effectively alleviates the problems of insufficient long sequence memory capacity, 
gradient disappearance and explosion. For nonlinearly varying wind power time series, 
the accuracy of LSTM model is better. 

Summarily, according to the idea of "Data Processing - Autocorrelation Analysis - Model 
Prediction", this paper proposes a short-term prediction method of wind power based on 
LSTM model. Taking the annual hourly data of a power station in Qinghai Province as an 
example, the autocorrelation of wind power historical data is proved. The applicability and 
accuracy of the model are also analyzed and tested, and the overall idea is shown in Figure 
1. 

 
Figure 1: Framework of wind power prediction using LSTM model. 



2. Research Methods 

2.1 Data Processing 

For data-driven short-term prediction models, missing values and outliers in the historical 
data can seriously affect the accuracy. Therefore, data processing is required before the 
model forecasting. 

For missing values, this paper adopts the method of linear interpolation. It is assumed 
that the missing values can be represented by the data of its previous and next moments 
through a linear relationship, given by the formula: 

 
(1) 

In the equation,  is the missing value, ,  are the previous data and next data. 

 is the moment corresponding to missing value.  is the previous period and  is 
the next period. 

For outliers testing, this paper uses the Z-Score method, and the formula as: 

 
(2) 

In the equation,  is the Z-Score value. is the th data in the time series.  is the 

mean value of the time series. is the standard deviation of the time series. The threshold 

of Z-Score is taken as 3. When , the data value is considered to have a large 
difference with other values and is regarded as an outlier. For outliers, the treatment is the 
same as for missing values, with the linear interpolation method. 

2.2 Correlation Analysis 

The core of the predicted model with historical data is to find the patterns hidden in the 
time series and then predict the data of next period based on the discovered patterns. 
Therefore, before using such prediction models, it is necessary to ensure that the time 
series exhibit autocorrelation. To test the autocorrelation of historical wind power data, 
autocorrelation coefficient is introduced, like: 

 
(3) 

In the equation,  is the th autocorrelation coefficient, representing the correlation 

between data points separated by time units; is covariance; is variance; is the 

lag order; and are the observed values at time moments and . By using 
autocorrelation coefficients, a linear relationship between the perdiction point and the 
observed point is constructed as follows: 

 (4) 



In the equation,  represents the white noise error term. When , it indicates 
complete correlation between the prediction point and the observed point, meaning data 
at one time point can be entirely predicted by data at another time point; when , it 

indicates no correlation between and ; when , it indicates complete 

negative correlation between and , implying data at one time point can be entirely 
reversely predicted by data at another time point. 

Since time series are correlated, autocorrelation coefficients cannot represent the 
correlation between and without the influence of other time series. To eliminate 

interference from on the correlation between two points, partial 
autocorrelation coefficient is introduced as follows: 

 
(5) 

Where is the th partial autocorrelation coefficient, representing the correlation 

between data points separated by time while considering the situation of the previous 

time points; is the th term in the th order partial autocorrelation coefficient;

is the summation index; and is the order of autocorrelation and partial autocorrelation 
functions, representing the time interval to be calculated. Based on the definition of partial 
autocorrelation, a linear relationship between the and all observed points within the 

previous time units is constructed as follows: 

 (6) 
2.3 LSTM Model 

Long Short-Term Memory (LSTM) is an improvement of recurrent neural network (RNN). 
Compared to traditional neural networks, LSTM neural networks have more effective 
memory and forgetting patterns for long time series. By introducing gate mechanisms, 
LSTM can better capture long-term dependencies, effectively addressing issues like 
gradient disappearance and explosion. Additionally, for nonlinear system time series 
prediction, LSTM neural networks also have significant advantages[17]. 

The key components of LSTM neural networks include forget gate, input gate, cell state, 
and output gate, which together form the unique four-layer structure of LSTM, as shown in 
Figure 2. 

 



 
Figure 2: Structure of LSTM . 

According to the flow of information within neurons, the four-layer structure is 
explained as follows: 

1. Forget Gate: Distinguish and forget minor information. 

 (7) 

2. Input Gate: Determine and filter new information stored in the cell state. 

 
(8) 

3. Cell State: Update the cell state based on the previous cell state and input gate 
information. 

 (9) 

4. Output Gate: Select the information to be input to the next neuron. 

 
(10) 

Where 𝑤𝑤𝑓𝑓 , 𝑤𝑤𝑖𝑖  , 𝑤𝑤𝑐𝑐  , 𝑤𝑤𝑜𝑜  are weight matrices; 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖  , 𝑏𝑏𝑐𝑐  , 𝑏𝑏𝑜𝑜  are bias vectors; ℎ𝑡𝑡 , ℎ𝑡𝑡−1 
represent the input and output of previous neuron and current neuron; 𝐶𝐶𝑡𝑡, 𝐶𝐶𝑡𝑡−1represent 
the cell states of the previous neuron and the current neuron; �̃�𝐶𝑡𝑡 is the cell state of the 
input gate; is the sigmoid function. 

2.4 Performance Evaluation 

To quantitatively evaluate the prediction effectiveness, three evaluation metrics are 
selected, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and 
Coefficient of Determination ( ), defined as follows: 

 (11) 



 (12) 

 
(13) 

Where is the number of samples in the testing set; is the actual wind power; is 

the prediction value; and is the mean of the wind power historical sequence. 

3. Research Example 

This paper collects hourly data of wind power in Qinghai Province throughout the year. 
Through the detection of missing values and outliers, there are 5 missing values and 7 
outliers. With linear interpolation processing, 8785 normal data can be obtained. 

Due to the limitations of data and algorithms, the prediction model often has problems 
such as underfitting and overfitting. To improve accuracy, the data set needs to be divided 
into a training set and a testing set. The division of the data set and the amount of data are 
shown in Table 1. 

Table 1 
Experimental data sets 

Location of the 
wind farm Data type Time span Number of samples 

(strip) 

Qinghai Province 
All data Jan. 1 to Dec. 31 8785 

Training set Jan. 1 to Nov. 26 7902 
Testing set Nov. 26 to Dec. 31 883 

4. Results and Discussion 

4.1 Correlation Analysis 

Bring the 8,785 processed data sets into Eq. (1), and set the significance level . 
Draw the autocorrelation analysis diagram of historical data, as shown in Figure 3. The 
diagram shows that most of the observation points are outside the significance band. It 
proves that the historical data of wind power has strong autocorrelation and can be used 
as model inputs. With the increase of the time, the autocorrelation coefficient first 
decreases and then oscillates around the value of 0, indicating that the closer date to the 
prediction point are more likely to affect the prediction results, and wind power has a 
certain periodic pattern on the time scale. 



 
Figure 3: Autocorrelation analysis of wind power historical data. 

Bring the historical data into Eq (3), set the significance level , and draw the 
partial autocorrelation analysis diagram of historical data, as shown in Figure 4. The 
diagram shows that with the increase of time, the partial autocorrelation coefficient and 
autocorrelation coefficient change in a similar trend, but the partial autocorrelation 
coefficient decreases faster and the oscillation peak is smaller. This indicates that if only 
consider the partial autocorrelation coefficient between the two points, the prediction 
point is more correlated with the observation points in the first 2 time intervals. 

 
Figure 4: Partial autocorrelation analysis of wind power historical data. 

Considering the high accuracy and timeliness requirements of short-term prediction 
model, and the model inputs have a major influence on the short-term prediction accuracy, 



selecting the appropriate length of input data is an important prerequisite. Since the 
historical data input to the model is correlated with each other, the autocorrelation 
coefficient is mainly considered when selecting the length of input data. However, if the 
input data is too long, it will lead to error superposition. Therefore, considering the 
autocorrelation and partial autocorrelation coefficients comprehensively, model input 
length should not exceed 15 time series. 

4.2 Model Training and Prediction 

Taking the hourly wind power of Qinghai Province as an example, the predicted step size 
is 1, and brought it into LSTM neural network for manual parameter calibration. According 
to the above three evaluation indexes, the activation function is set as the "Relu" function, 
the time step is 10, the dimension of LSTM layer is 128, epoch=12, batch_size=32. The 
model prediction result under this parameter is shown in Figure 4, and the analysis of 
indexes is shown in Table 2. 

 
(a) Training Set 



 
(b) Testing Set 

Figure 5: Comparison of LSTM model prediction results for training set and testing set 

Table 2 
Calculation results of evaluation indexes 

    
Training Sets 65.72 55.15 0.79 
Testing Sets 58.55 79.60 0.86 

From Fig. 5 and Table 2, the LSTM prediction model with historical data has a better 
prediction accuracy of wind power. Therefore, when other information is missing and only 
historical time series are available, the LSTM prediction model has significant advantages 
of high accuracy and convenient calculation. 

For the power grid system implementing regulation, the higher the accuracy and the 
longer the forecast period, the greater the benefit. For better regulation of the “Wind - 
Light - Water” system, the prediction accuracy is still a work in progress. Based on the 
research in this paper, in-depth research, such as input data feature extraction, prediction 
model coupling, parameter optimization, can be promoted subsequently. 



5. Conclusion 

Accurate short-term wind power prediction is a prerequisite for implementing “Wind - 
Light - Water” complementary optimal scheduling. According to the idea of "Data 
Processing - Autocorrelation Analysis - Model Prediction", this paper constructs a LSTM 
prediction model based on historical data. Taking the annual hourly data of a power 
station in Qinghai Province as an example, this paper analyzes and tests the applicability 
and accuracy, and the following conclusions are obtained: 

(1) The historical data of wind power has autocorrelation and periodicity, making it 
suitable for use as input data in prediction models.. 

(2) If the interval between the predicted point and the observed point is smaller, the 
autocorrelation coefficient is larger and the autocorrelation is stronger. Therefore, several 
observation points close to the front of the prediction point should be selected for 
prediction. For each prediction point, the number of input observation points should not 
exceed 15. 

(3) When the available data is limited, the LSTM prediction model can obtain the single-
value prediction of wind power with high precision in a short time. 
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