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Abstract
Integration of robots in society implies the need to design systems with adaptive behavior, especially in
social domains like cultural heritage, healthcare, and education. This study examines user satisfaction
when interacting with a robot guided by a computational cognitive model that incorporates Adjustable
Social Autonomy principles. We conducted a within-subjects experiment in the Cultural Heritage domain,
where museum visitors interacted with the humanoid robot Nao. The robot’s task was to recommend
a museum exhibition to visit, exercising different degrees of autonomy based on its capability to have
a theory of mind. The findings showed that as the robot’s autonomy in task adoption increased, user
satisfaction with the robot decreased, while satisfaction with the tour itself improved. These results
underscore the potential of adjustable social autonomy for developing autonomous adaptive social robots
that enhance user experiences in Cultural Heritage scenarios like museums.
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1. Introduction

To foster the acceptance of robots in society, it is crucial to deploy systems capable of adapting
their behavior both to the environment and the needs of interacting users [1]. This is challenging
across multiple social domains, including cultural heritage [2, 3], elderly assistance [4], and
tourism [5, 6], among others. Despite significant advancements in adaptivity within Human–
Robot Interaction (HRI) [7] and Social Robotics [8], research overlooked the critical role of
analyzing the robot’s cognitive processes and their implications for intelligent interaction, such
as adaptive behavior [7], personalization, trust [9, 10] and so on. Therefore, it is essential to
explore alternative interaction methodologies that facilitate the design of robots aligning with
human expectations, capabilities, and limitations within specific contexts. The starting point is
to identify the priority needs that humans expect to satisfy during effective interactions with
their peers and, consequently, to shift our focus to HRI scenarios. Humans need to i) pursue
their own goals, i.e., the state of affairs the user wants to achieve; ii) consider broader interests
or active goals, i.e., the state of affairs that the user, with a specific profile and set of mental
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states, could be interested in or has already planned to achieve. The first consideration implies
achieving goals in the context of the ongoing interaction. In HRI, this determines building
robots capable of understanding these goals and selecting an appropriate strategy (e.g., plan) to
accomplish them. The level of user satisfaction will depend on the plan the robot intends to
execute and the boundary conditions it employs. The second consideration arises whenever
humans have interests and goals that extend beyond the current interaction. To be an effective
collaborator, a robot should comprehend these implicit interests and goals and work towards
their achievement or protection. For instance, a task delegated by a human could be part of
a much more complex goal, or the same task might conflict with other goals that the human
has not consciously considered. In both scenarios, the robot’s role goes beyond simple task
execution and requires a more complex assessment of the human’s mental states (e.g., intentions,
beliefs, motivations, interests); the robot must select a plan that aligns with those mental states.
This can imply a mismatch between the task delegated and the one adopted [11].

The present study investigates human user satisfaction when interacting with a robot whose
decision-making process is guided by a computational cognitive model [2] integrating the
principles of adjustable social autonomy [12]. We designed a within-subjects experiment
in cultural heritage, where museum visitors interacted with the humanoid robot Nao [13].
The robot’s task was to provide the user with a museum exhibition to visit. The rest of the paper
is organized as follows: Section 2 provides a theoretical background on the approach exploited
in the present work; Section 2.1 gives an overview of the state of the art in adaptivity in HRI
and in the specific domain of museums; Section 3 presents the experimental methods applied in
our experiment with the Nao robot; in Section 4, we describe the statystical analysis exploited
for analyzing the results; furthermore we presents the experimental findings; in Section 5 we
discuss the results obtained; Section 6 is dedicated to conclusions and future work.

2. Background and Related Works

The theoretical models mentioned in the introduction have been applied to create a cognitive
computational model [14, 2], defining the behavior of the robot in this experiment. Without go-
ing into detail, the proposed cognitive model defines a task-oriented, belief–desire–intention
(BDI) [15, 16] robot that performs effective reasoning within dynamic interaction with other
cognitive agents, typically humans. The robot adopts a delegated task 𝜏 and exerts some degree
of discretion, which corresponds to various levels of autonomy in 𝜏 adoption. The capability to
expand the decision and action space concerning 𝜏 shows the adaptability to the user’s mental
states as a criterion. In fact, this adaptability is possible thanks to the robot’s capability to have
a ToM, enabling it to attribute mental states beyond those explicitly declared (we defined them
as active goals). The user’s model is built following a human profiling phase, during which
the robot extracts relevant user features via verbal and non-verbal communication. After that,
the robot elicits an internal negotiation process in which it mediates𝜏 adoption considering
constraints imposed by the ongoing interaction context (e.g., level of crowding in a room, other
agents’ mental states). Finally, the cognitive model gives the robot the capability to explain the
reasons that led it to adopt 𝜏 at a specific level of autonomy.

According to this cognitive model and Adjustable Social Autonomy theory, the robot possesses



the capacity to adopt delegated tasks at various autonomy levels. For instance, the robot can
execute the exact task delegated by the user, providing literal help. Otherwise, it can modify the
user’s plan, considering additional user interests or active goals. This results in the adoption of
a more complex form of assistance, such as critical help or over help. Sub-help, on the other
hand, occurs every time the robot fails to accomplish the task adopted in literal help, but still
manages to achieve a sub-goal related to the task.

2.1. Adaptive Social Robots in Museum Settings

Cultural heritage sites such as museums represent a complex scenario, suitable for robots
that are able to assist and interact with people in a natural manner. Different pioneering
work [17, 18, 19, 20, 21] has been proposed, with the goal of designing robots able to be deployed
in a museum and to integrate different HRI capabilities. Despite their pioneering and remarkable
work in autonomous social navigation and interaction with humans, these approaches do not
realize a real behavior adaptation [22] to the user experience. Multiple works [23] proposed
technical methods to integrate social navigation, user perception, and verbal and non-verbal
communication in order to adopt different behaviors on the basis of the users involved in the
interaction. Recent works [24, 25, 26] tried to implement a much more effective and personalized
user experience by designing robots that are able to exploit their perceptive and decision-making
skills to establish much deeper interactions with visitors. Our approach is to try to achieve a
real user’s adaptation, where the robot engages in reasoning based on the task delegated by
the user. This reasoning process is grounded in complex models of both the interacting user
(theory of mind) and the interaction mode, as described in the introduction of this work.

3. Methodology

To assess the impact of the adjustable social autonomy paradigm on HRI, we conducted an
experiment in a real museum. The present experiment involved interactions between human
users (museum visitors) and the humanoid robot Nao, acting as a museum assistant. During the
experiment, Nao provided museum visitors the option to embark on a virtual museum tour
through a computer monitor at the museum’s exit. The user-assigned task to the robot was to
provide assistance by offering a guided museum tour that showcased artworks from an explicitly
preferred artistic period. Notably, the artworks featured in the virtual tour were unrelated to
those in the actual museum exhibition. Nao’s primary goal was to assist visitors in selecting
the museum exhibition to visit. Subsequently, Nao guided users through the selected tour. The
present experiment focused on analyzing the impact of intelligent help on visitor satisfaction
and the level of surprise as indicators of the robot’s ability to intercept the visitors’ needs, even
when not explicitly declared. In particular, we investigated the visitors’ satisfaction with (1) the
suggested tour (adoption results) and (2) the robot’s behavior (adoption strategy).

As mentioned earlier, the robot employed different levels of task adoption in order to offer
optimal support to the user. Specifically, two types of help were exploited in this experiment:
literal help and critical help. When the robot opted for literal help, it constructed the tour
by selecting the most relevant artworks from the artistic period explicitly indicated by the
user. Conversely, with critical help, the tour was crafted based on broader criteria, considering



additional user profile information such as tolerance for room crowding or disinterest in specific
artistic periods. The robot considered the potential user’s interest in highly relevant artworks
within the virtual museum, not necessarily belonging to the artistic period specified in the
task delegation; this aspect was implicitly inferred by the robot and not explicitly stated by
the user. Specifically, the robot aimed to optimize the correlation between the relevance of the
artworks and the simulated room crowding where they were placed. The strength of this form
of assistance lies precisely in the robot’s ability to go beyond the goals declared by the user
and address other needs and interests that the user may not immediately consider. However,
it is crucial to note that this type of assistance is susceptible to potentially erroneous robot
interpretations and could be met with reluctance from the user regarding a tutoring role played
by the robot, which was not directly requested. We aimed to verify the following research
hypotheses:

• 𝐻1: user satisfaction regarding the quality of the tour suggested by the robot was higher
when the robot provided critical help, as opposed to literal help;

• 𝐻2: users exhibited greater satisfaction with the robot’s behavior when the robot operated
in critical help, rather than providing literal help;

• 𝐻3: users experienced a higher level of surprise with the robot’s selection when it
performed critical help compared to literal help

Although 𝐻1 specifically pertains to satisfaction regarding the robot’s performance (suggested
tour), 𝐻2 aims to investigate participant satisfaction with the robot’s behavior. This behavior
is intended as the decision-making process that led to the adoption of the task by performing
either literal help or critical help. The participants precisely evaluated how the robot operated
concerning the task initially delegated to it, regardless of the satisfaction linked to the outcome
obtained following its behavior.

We recruited 84 participants for the purpose of this study. In order to reduce ecological
concerns, the experiment was conducted in an authentic museum setting, namely the Palazzo
delle Esposizioni [27], located in Rome. The user sample consisted of 49 men and 35 women. A
total of 28 of the participants ranged between 18 and 35 years old, 54 between 36 and 65 years
old, and 2 were older than 65 years old. Participants reported their level of expertise in the
artistic domain using a 5-item Likert scale ranging from lower expertise to maximum expertise
(M = 2.655, SD = 0.857). Prior to their participation in this study, each participant approved an
informed consent. We conducted a human-participant experimental study in a within-subject
fashion. We implemented two experimental conditions in a counterbalanced order: in the control
condition (LH), the robot provided literal help to the user. During the experimental condition
(CH) the robot performed critical help (see Section 3 for literal help/critical help definitions).

Figure 1 illustrates the scenario’s design, which was specifically created in a dedicated room
of the Palazzo delle Esposizioni. After visiting the exhibitions available in the building, each
user had free access to this section in order to participate in the experiment. As the figure
shows, the robot is in front of the user, near a screen displaying a web interface. Through
this interface, the user can respond to questions about her artistic preferences posed by the
robot and explore the virtual tour (Figure 2). The virtual tour consists of a selection of artworks,
selected by the robot, according to the criteria exposed in Section 3. In addition to guiding the
user through various phases of the experiment, the robot describes (via speech) each artwork,



Figure 1: Experimental scenario representation. Not an actual participant.

Figure 2: The figure shows an example of how an artwork is exposed to the user. (Image credits: Galleria
Borghese/photo Luciano Romano).

providing different levels of detail depending on the user’s initial preferences. During the visit,
the user may encounter noisy conditions, similar to those experienced during a real museum
visit. For instance, artworks may be corrupted by simulated noise to mimic the presence of
other users viewing the same artwork (Figure 3). Additionally, the robot’s descriptions of
the artworks may be superimposed on background noise of varying intensity, simulating the



Figure 3: Noise simulation in the artwork. (Image credits: Galleria Borghese/photo Luciano Romano).

crowded environment of the room where the user is viewing the artwork.
The investigation of user satisfaction and their level of surprise involved the following

experimental phases:

1. Starting Interaction: the robot started the interaction by introducing itself to the user,
providing an overview of its role and the virtual museum it managed;

2. User Profiling: The robot investigated the user’s artistic preferences in terms of favored
and less favored artistic periods. Subsequently, the robot asked the user about the desired
level of detail in the artwork descriptions as an indicator of the user’s intended level of
engagement. Lastly, the robot asked the user to specify her tolerance level regarding the
number of people present in a room while viewing an artwork (crowding index).

3. First Tour presentation: After finalizing the user’s profile, the tour composition was
determined by the condition the robot randomly decided to implement (LH or CH). Once
the selection was complete, the robot activated the corresponding tour and left the control
to the user, allowing her the virtual tour.

4. First Tour evaluation: at the conclusion of the first virtual tour, the robot administrated a
questionnaire to assess the user satisfaction and surprise level with the completed visit.

5. Second Tour presentation: subsequently, the robot offered an alternative tour, implementing
the opposite type of help compared to the one randomly selected in the first tour.

6. Second Tour evaluation: after the completion of the second tour, the robot administrates
the user with a new satisfaction/surprise questionnaire.

For the robot’s decision-making system, we utilized an agent-oriented programming (AOP)
software known as Jason [28, 29], a widely adopted tool for programming artificial agents.
The computational model underlying the robot’s decision-making process is detailed in [2].
To develop the web application (i.e., virtual museum), we opted for the Java-based Spring
Boot framework [30]. Furthermore, the robot employed in this study is the humanoid Nao



robot [13], extensively used in HRI scenarios. The Nao robot operates on a specialized Linux-
based operating system known as NAOqi, which powers the robot’s multimedia capabilities.
These capabilities include four microphones for voice recognition and sound localization, two
speakers for multilingual text-to-speech synthesis, and two HD cameras for computer vision
tasks such as facial and shape recognition. We collected a mySQL database of 344 artworks,
organized in artistic periods in such a way that it covers the entire body of the history of art.
The categorization of the history of art periods is based on the work of one of the most important
art historians of the 20th century, Giulio Carlo Argan [31]. Artworks are evenly distributed
among all artistic periods. All the employed images had a creative commons license and could
be uses for any purpose.

Participants responded to a questionnaire administered at the conclusion of both control and
experimental conditions. Through this questionnaire, we aimed to measure the following vari-
ables:

1. Tour Satisfaction: User satisfaction with the presented tour was measured using the
following question: “How satisfied are you with the quality of the visit that the robot
offered you?” Participants responded using a 5-item Likert scale ranging from not satisfied
at all (1) to completely satisfied (5);

2. Robot Behavior Satisfaction: For assessing user satisfaction with the robot’s behavior,
participants were asked the following question: “How satisfied are you with the choice of
robot compared to the artistic habits you expressed at the beginning of the interaction?”
Participant satisfaction was investigated the same as with Tour Satisfaction;

3. Surprise: For assessing the users’ surprise about the type of help provided by the robot, we
exploited the question “How surprised are you by the choices made by the robot?” Partic-
ipants responded using an 11-item Likert scale. A rating of 5 indicated a strong negative
surprise, 0 represented no surprise at all, and 5 signified complete positive surprise.

4. Results

The statistical analyses were carried out with IBM SPSS 27.0 [32] and R through Jamovi [33].
A significance level of 𝛼 = 0.05 was selected for all analyses and p-values were reported.
When significant effects were identified, the results include the unstandardized estimate (𝛽),
the 95% Confidence Intervals (CI), and the standard error of the estimate (SE). Before running
the analyses, we assessed the normality of the model-dependent variables (i.e., Tour Satisfaction)
using the Shapiro–Wilk test. The results highlighted statistical significance (all p-values < 0.001),
suggesting a substantial deviation from normality. More specifically, both Tour Satisfaction and
Robot Performance Satisfaction were negatively skewed (Skewness = −0.24;−0.09). For these
reasons, we employed Generalized Mixed Effect Models [34]. In the case of skewed positive
values, GLMM analysis was executed using the GAMLj module [35] using a Gamma distribution
with a log link function [36]. These models reported the best Akaike’s and Bayesian Information
criteria (AIC and BIC) as compared with GLMM built using identity and inverse link functions.
Lastly, all the models included participants’ intercepts and slopes as random effects. This
approach accounted for the inherent variations wherein participants could exhibit diverse



Table 1
Descriptive statistics of the main dependent variables.

Literal Help Critical Help

N Mean SD N Mean SD

Tour Satisfaction 84 3.17 1.00 84 3.52 1.11

Robot Performance Satisfaction 84 3.82 1.04 84 3.48 0.94

Surprise 84 3.25 0.83 84 3.49 0.88

baseline levels of Satisfaction and could show singular changes in Satisfaction as a function of
the Help Type. The main descriptive statistics are summarized in Table 1.
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Figure 4: Tour Satisfaction as a function of Help Type and Presentation Order. *** 𝑝 < 0.001; NS, Not
Significant.

To assess the influence of Help Type (literal help or critical help) on users’ self-reported
Tour Satisfaction (𝐻1), we conducted a Generalized Linear Mixed Model (GLMM) with a
Gamma distribution and a logarithmic link function (see Figure 4). Help Type and Pre-
sentation Order (i.e., literal help first or critical help first) were modeled as fixed factors,
whereas the Robot Behavior Satisfaction score was included as a covariate. Additionally,
we incorporated individual variability by including participants’ intercepts and slopes as ran-
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Figure 5: Robot Behavior Satisfaction as a function of Help Type. The violin plot visualizes the
distribution curve. The horizontal dashed lines represent the median values. *** 𝑝 < 0.001.

dom factors. In our model, Help Type exhibited a positive impact (𝛽 = 0.11, 𝑆𝐸 = 0.03,
95%𝐶𝐼[0.05, 0.17], 𝑝 < 0.001) on Tour Satisfaction, indicating that a specific robot strategy
(critical help) positively influenced satisfaction levels. Similarly, Robot Behavior Satisfaction had
a significant positive effect (𝛽 = 0.16, 𝑆𝐸 = 0.02, 95%𝐶𝐼[0.12, 0.21], 𝑝 < 0.001), suggesting
that greater satisfaction with the robot’s behavior during the visit predicted a higher Tour
Satisfaction. In contrast, the main effect of Presentation Order was not significant (𝑝 = 0.91).
However, we detected a significant interaction effect between Help Type and Presentation
Order (𝛽 = 0.17, 𝑆𝐸 = 0.05, 95%𝐶𝐼[0.06, 0.03], 𝑝 = 0.003), indicating that the impact of
Help Type on Tour Satisfaction depended on the order in which it was presented during the
visit experience. Subsequent Bonferroni-corrected post hoc analyses revealed a statistically
significant increase in Tour Satisfaction exclusively among participants who received critical
help followed by literal help (𝑝 < 0.001), compared to those who received literal help followed
by critical help (𝑝 = 1.00) (Figure 4).

Secondly, to investigate the impact of Help Type on Robot Behavior Satisfaction (𝐻2), we
conducted a GLMM using a Gamma distribution and a logarithmic link function (see Fig-
ure 5). This analysis also included Presentation Order and the Help Type × Presentation
Order interaction as fixed factors. The analysis revealed a significant effect for Help Type
(𝛽 = −0.09, 𝑆𝐸 = 0.03, 95%𝐶𝐼[−0.15,−0.04], 𝑝 < 0.001), indicating that the critical Help
Type had a negative effect on Robot Behavior Satisfaction compared to the literal help type.
Conversely, both the main effect of Presentation Order and the interaction effect were not
statistically significant (𝑝 = 0.149; 𝑝 = 0.242).
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Figure 6: Surprise as a function of Help Type. The violin plot visualizes the distribution curve. The hori-
zontal dashed lines represent the median values. *** 𝑝 < 0.001.

Finally, to examine the surprise levels after receiving different types of help (𝐻3), we per-
formed a Generalized Linear Mixed Model (GLMM) (see Figure 6). In this analysis, Help
Type and Presentation Order were treated as fixed factors, and Robot’s Performance Satis-
faction was included as a covariate. As in the previous models, participants’ intercepts and
slopes were considered random factors. Firstly, Robot Performance Satisfaction, representing
the perceived satisfaction for the robot’s suggestions during the visit, exhibited a significant
positive effect (𝛽 = 0.88, 𝑆𝐸 = 0.20, 95%𝐶𝐼[0.49, 1.26], 𝑝 < 0.001) on the participants’
surprise. This finding suggests that greater satisfaction with the robot’s performance was
associated with higher levels of surprise. Additionally, Help Type reported a significant pos-
itive effect (𝛽 = 0.76, 𝑆𝐸 = 0.29, 95%𝐶𝐼[0.21, 1.33], 𝑝 = 0.009), proving that participants
who received critical help reported experiencing more surprise compared to those who re-
ceived literal help. Furthermore, Presentation Order displayed a significant negative effect
(𝛽 = −0.92, 𝑆𝐸 = 0.36, 95%𝐶𝐼[−1.63,−0.21], 𝑝 = 0.013). This suggests that the sequence
in which the interaction occurred (between critical and literal help) influenced surprise levels,
with lower levels of surprise observed when critical help preceded the literal one. Lastly, the in-
teraction effect between Help Type and Presentation Order did not reach statistical significance
(𝑝 = 0.140). In summary, this analysis unveiled distinct effects on participants’ levels of surprise.
Specifically, higher levels of Robot’s Performance Satisfaction and receiving critical help were
associated with increased levels of surprise, whereas receiving critical help at the beginning of
the experiment reduced surprise scores.



5. Discussion

As exposed in the hypotheses defined in Section 3, our main research interest was to understand
the effect of a robot employing its critical autonomous capacity in interactions with humans. In
this paper, our investigation mainly focused on two key dimensions:

1. The effect on user satisfaction: we aimed to discern how the introduction of critical
capacity affects user satisfaction (𝐻1 and 𝐻2);

2. The level of surprise: we sought to determine the extent of surprise elicited in humans by
this type of robot behavior (𝐻3).

Our findings confirmed 𝐻1: user satisfaction with the quality of the proposed tour was greater
when the robot developed a non-trivially literal solution, thereby introducing what we have
defined as critical help, compared to a delegation aligned with the user’s artistic preferences;
namely, literal help. This finding was independent of the order in which the type of help
was provided.

Hypothesis 𝐻2 focused on user satisfaction with the robot’s performance in two types of
task adoption: literal and critical help. Contrary to our expectations, the results revealed a
preference towards the robot when it provided literal help rather than critical help, regardless
of the order in which these levels of task adoption were introduced. It is essential to consider
the following factors: (i) the average scores of user satisfaction for both literal and critical help
were relatively high, even though the literal help received a higher rating; (ii) these results
were not affected by the explanation that the robot provides after the interaction. The potential
impact of these explanations will be further examined in a future study.

Regarding hypothesis 𝐻3, which concerned the level of user surprise in response to the
robot’s adoption strategies, results showed that users exhibited a relatively high level of surprise
in both instances of literal and critical help. However, hypothesis 𝐻3 was confirmed as users
showed greater surprise when they received critical help from the robot. The high degree of
surprise even in the case of literal help likely stems from the intrinsic nature of the Human–Robot
Interaction and the unexpectedly positive outcome arising from the robot’s ability to select
artworks based on the user’s artistic preferences. This could also be explained by the fact that
higher levels of satisfaction with the robot’s behavior were associated with increased surprise.

Our results, taken as a whole, represent initial experimental evidence of the impact of the ad-
justable social autonomy model in HRI scenarios. The robot’s capacity to attribute mental states
to the user allows it to dynamically adapt the task delegated to the user’s unexpressed needs.
This is suggested by the fact that user satisfaction increases when they receive a type of museum
tour that not only considers the artworks belonging to their preferred period, but also includes
relevant works from other similar periods that were selected based on the user noise tolerance
level. This represents an initial confirmation of the importance of introducing autonomous
robots in terms of cognitive agents, namely agents possessing propositional attitudes, assuming
an intentional stance, and having a representation of the other agent’s mind. An autonomous
robot that adapts its behavior may not be able to tailor it to a user’s needs but may instead
adopt other criteria, such as considering only the resources available in the physical world.
This could lead the robot to make choices that potentially may have nothing to do with the
user’s expectations. This would result in user dissatisfaction with the outcome achieved by the



robot. What we observed in our experiment is that a robot capable of adapting its behavior
to the user’s needs, including implicit mental states, can adopt a task in a way that does not
decrease user satisfaction compared to the result obtained. Assistance that goes beyond literal
interpretation satisfies the user more than a kind of help that merely considers what the user
has explicitly expressed. These data represent further confirmation of the adjustable social
autonomy model: robots that adopt tasks at different levels of autonomy change their role from
being systems capable of executing even complex tasks to becoming collaborators (i.e., agents
who take the initiative to provide unexpected behavior that diverge from the delegated task,
either by proposing or directly executing different actions.

A higher satisfaction with the robot’s behavior when it provides literal help can be attributed
to the inherent risks associated with assistance that goes beyond explicit delegation, as it can
generate misunderstandings, doubts, susceptibility, and refusals. This observation is corrobo-
rated by the finding that users are much more satisfied when the robot provides literal help.
This confirms the potentially conflictual nature of collaboration when the robot adjusts its
level of task adoption. This might also generate the perception of uncertainty regarding the
endorsement of an autonomous robot’s behavior. In this sense, it is relevant for the robot to
evaluate the risks of conflicts that could arise due to inappropriate initiatives. Nevertheless,
the tour satisfaction is higher in critical help than in literal help. In other words, the user
exhibits higher satisfaction with the final result proposed by the robot when the robot adopts
autonomy criteria in its collaborative efforts. However, the user may experience some degree of
perplexity when assessing a robot that chooses to collaborate with a certain level of autonomy.
Another confirmation of the positive yet equally conflicting impact of critical help lies in the
fact that users are positively surprised by critical help.

6. Conclusions and Future Works

This paper describes how adjustable social autonomy can be used to systematically characterize
the behavior of a robot when it adopts a task explicitly delegated by a human. The core of
this approach is the robot’s capability to attribute mental states to the delegating user and
execute the task at various levels of autonomy. This is achieved by considering the user’s
mental states (goals, beliefs, expectations, and so on) that go beyond what is explicitly delegated.
We tested the impact of this approach on user satisfaction and surprise, and although there
are limitations to this experiment, the results are promising, demonstrating how this type of
interaction can be both highly satisfying and surprising for the user. However, it is important
to note that it can also lead to collaborative conflicts that may affect user satisfaction with
the robot’s behavior. These collaborative conflicts can be mitigated using various strategies.
Results and their discussion point out the potential of exploiting adjustable social autonomy as
a paradigm for developing computational cognitive models for adaptive social robots that can
improve user experiences in multiple HRI real domains. Certainly, experiments of this nature
should be conducted in various domains of social robotics to validate the robustness of this type
of interaction across different application domains. This aspect will be one of the points that
we will need to address in future work.
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