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Abstract
Blockchain (BC) is increasingly applied to the Internet of Things (IoT) domains to realize decentralized
IoT environments where reliable and anonymous activities can be carried out. BCs exploit a distributed
ledger, which requires to be continuously synchronized and to maintain a high level of consistency. To
allow BCs applied to the IoT of maintaining high levels of reliability in the network and resilience against
malicious or fraudulent nodes, in the recent past has been proposed a Trust-based Optimum Neighbor
Selection (TONS) algorithm able to find the Minimum Spanning Tree of the agent network with the
purpose of selecting those agents which optimize communication and trustworthiness. In this paper, a
new version of TONS, named TONS2, has been conceived for agent-based IoT environments to improve
the overall efficiency of the TONS algorithm. The results ot the test we performed have confirmed that
in terms of consumed resources TONS2 is appreciably more efficient than TONS.
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1. Introduction

The great interest generated by the Internet of Things (IoT) comes from its ability to interconnect
heterogeneous devices providing attractive functionality across a wide horizon of domains. [1,
2, 3]. But the large data traffic that connected IoT devices can generate may compromise the
required the necessary levels of Quality of Service (QoS), due to bandwidth, storage capacity
and computation constraints [4, 5].

Recently, several IoT applications have exploited the blockchain [6] (BC) to realize decen-
tralized environments in which performing trusted and anonymous activities by providing the
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required robustness against malicious attacks. In the convergence between IoT and BC [7, 8] the
Distributed BC Ledgers (DLs) records transactions contemporary on more nodes without using
any central data repository or global administration nodes, since each DL node independently
processes, verifies and records each data item, creating a consensus on its validity. However,
several events can cause different readings and compromising the consistency of a DL [9], but
BCs adopt a mechanism able to warranty that data stored on the DL will remain synchronized
making it consistent.

In various types of blockchains the concept of "neighbors" is relevant, particularly in decen-
tralized and distributed ones. Nodes connect with each other as neighbors to share information,
validate transactions, and maintain the security and integrity of the network. The specific
terminology and role of nodes and neighbors (i.e., miners, endorsers, validators, voters, notaries,
etc.) may vary depending on the type of technology and network structure.

For example, the Bitcoin mining network is designed as a peer-to-peer overlay, in which
nodes, called miners, are randomly connected. Blocks are transmitted over this network using a
multi-hop transmission scheme. In other words, a block creator broadcasts its newly mined
block to all its neighbors [10]. Ethereum nodes randomly selecting some neighbor nodes to
forward messages to ensure that transactions and status updates are propagated through the
network [11]. In permissioned blockchains, where network access is restricted to pre-approved
participants, the concepts of neighbors can be even more specific. In Hyperledger Fabric, nodes
(peers) connect to each other within a communication channel. Validator nodes (endorsers) and
commit nodes consider themselves neighbors within their channel, sharing transactions and
status updates with each other [12]. Corda uses a network model where nodes interact directly
with each other to execute transactions, and nodes can consider themselves neighbors if they
are participating in the same transaction or contract [13]. Transactions are shared directly
among the relevant participants.

In such a scenario, it is known from the literature that a high level of consistency of a BC DL
will require a small number of neighbors per nodes and a low rate of delivery time between
neighbors [14, 15] and, depending from the specific BC, also from the absence of unreliable
malicious actors in the system. In this context, the Optimum Neighbor Selection (ONS) for a
connected network can be exploited to search its Minimum Spanning Tree (MST) but, to the best
of our knowledge, only [16] considered the presence of unreliable actors in an IoT environment.
To this purpose, in [16] a specific algorithm, called Trust-based ONS (TONS), enables nodes to
communicate with a globally optimized selection of the most reliable neighboring as possible,
recognizes the presence of misbehaving nodes and optimizes the neighbor selection of the
network based on their delivery time rates and reputation scores. TONS has been proposed
and validated on networks generated on the basis of both the models Barabási–Albert (BA) and
Erdős–Rényi (ER) [17, 18] and compared with the classical approach Random Neighbor Selection
(RNS) [19], often used to compute ONS in blockchain networks, outperforming both in efficiency
(time and number of exchanged messages to build ONS) and in effectiveness (percentage of
misbehaving nodes included in the ONS).

Given this premise, the contribution of this paper consists of proposing TONS2, an improved
version of the algorithm TONS described in [16], designed for agent-based IoT environments.
In detail, TONS consumes significant, precious computational, storage and power resources to
calculate the best set of neighbors in BC scenarios. To improve the overall efficiency of this



algorithm, TONS2 has been modified in the sense that it is not always necessary to select a new
set of neighbor agents for each new BC block to validate. We tested TONS2 through a session of
simulations, and the results revealed that TONS2 is more efficient than TONS, saving resources
without significant performance downgrading in terms of the quality of selected neighbors.

The rest of the paper is organized as follows. Section 2 presents some related work, the
Section 3 introduces the native algorithm TONS, while its evolution TONS2 is described in
Section 4. The experiments we have performed to evaluate the effectiveness and the efficiency
of TONS2 are presented and discussed in Section 4.1. Finally, some conclusions are drown in
Section 5.

2. Related Work

Our study rely on three main elements, namely:

• A BC implements a DL, on a peer-to-peer (P2P) architecture, structured in a chain of
data blocks [20], where a distributed consensus protocol enables the BC without trusted
third parties and in presence of unreliable actors. BCs properties are transparency,
immutability, capabilities of ensuring privacy and maintaining a complete and public
transaction history [21] However, BCs are considered resilient to attacks and threats,
although BCs have been tampered in the past [22].

• IoT devices have generally limited computational, storage and power capabilities, con-
versely IoT applications need of high level of connectivity and power to manage the large
volumes of data they could generate [23, 24].

• Trust and reputation systems enable qualified parties to interact and cooperate on the
basis of the history about their past behaviors [25, 26].

Synergistically, BCs can support trust (i.e., reputation) systems in managing IoT networks [27]
to provide them with resilience against a large variety of attacks made easier by device charac-
teristics. For example, TrustChain [28] provides resistance against sibyl-attacks in an online IoT
community by adopting a consensus mechanism that can determine the validity and integrity
of transactions instead of the more usual Proof-of-Work.

In dynamic federated social IoT environments, where IoT devices can migrate into different
environments populated by potential untrusted actors, the consequences of a bad partner
choice can result to be particularly risky. To mitigate this problem, in [29] multi-agent and BC
technologies exploit reputation scores (witnessed by a BC) to form groups of trusted agent-based
IoT devices in each federated environment. The authors of [30] designed a BC-based trust model
for IoT that dynamically aggregates information sources to compute certified reputation scores
for each entity in a decentralized manner by using a multilevel approach. In [31] a distributed
trust model for IoT, supported by a BC, based on connected trust domains to form end-to-end
trust relationships between devices is described.

With respect to the computation of the Minimum Spanning Tree (MST) search1, a number of
1A MST is a minimum-weight tree that in a graph, connected, and with undirected arcs, has only the subset of

arcs required to connect all vertices with each other by one and only one path.



centralized, semi-distributed or distributed MST algorithm have been proposed [32, 33, 34, 35],
also in scenarios including the presence of IoT devices and BCs. For instance, DONS [30]
(Dynamic and Optimized Neighboring Search) implements a hybrid architecture where the
network topology is managed by an elected peer (i.e., leader) exploiting the neighbor lists to
select the best neighbors for each peer by solving a MST based on the message propagation
delays. Delays of the broadcast messages can make critical the synchronization of miners
to add transaction blocks. In [36] an adaptive broadcasting approach is designed for BC’s
accounting services, authorization, and authentication combining transmission and data-check
times. In [37] the time gap between the propagation of a winning block and the next mining
competition is minimized; in particular a message propagation mechanism exploiting the closest
neighbors by using the message latency.

Finally, in IoT scenarios, in [38] edge computing is used to mitigate system latency and
bandwidth limitation, while edge computing security is provided by a BC that adopts a three-
tier network model, named BMEC, exploiting a solution utilizing neural networks. In this case,
the MST search is carried out on a weighted indirect graph consisting of edge-based blocks to
enhance the BC transaction speed, built based on predetermined priority rules, application type,
and past behaviors of edge devices.

3. The TONS algorithm

In this Section the original TONS algorithm will be summarized; however, a complete description
of this algorithm can be found in [29].

3.1. The BC Network

Let 𝑁𝐸𝑇 = ⟨𝑁,𝐴,𝑊 ⟩ be a BC network (an undirected, weighted and connected graph),
where:

(i) 𝑁 is a set of agent nodes in 𝑁𝐸𝑇 ;

(ii) 𝐴 is a set of arcs 𝑎𝑖,𝑗 , with 𝑖, 𝑗 ∈ 𝑁 representing bidirectional communication between
the agents, and associated with a weight 𝑤𝑖,𝑗 ;

(iii) 𝑊 is a set of weights, where 𝑤𝑖,𝑗 = ⟨𝑡𝑖,𝑗 , 𝜏𝑖,𝑗⟩ ∈ 𝑊 is a tupla consisting of 𝑡𝑖,𝑗 > 0,
named time-weight, that is the transmission time required to transmit 1 byte of data
from the agents 𝑖 and 𝑗, and 𝜏𝑖,𝑗 , named trust-weight, that is the mutual trustworthiness
between the agents 𝑖 and 𝑗.

Besides, let the positive value 𝑜𝑤𝑖,𝑗 = 𝑡𝑖,𝑗 · 𝜏𝑖,𝑗 (i.e., the product of the pair of weights above
described) be the overall weight of the arc 𝑎𝑖,𝑗 and, similarly, let 𝑔𝑜𝑤 be the global overall weight
(i.e., the sum of the weights of the arcs of the whole network 𝑁𝐸𝑇 ).

Furthermore, it is supposed that each agent 𝑖 ∈ 𝑁𝐸𝑇 knows its neighbors 𝜈𝑖 = (𝜈𝑖,1, .., 𝜈𝑖,𝑙)
and their associated weights. Therefore, in the adjacency matrix 𝐷 of size |𝑁 ×𝑁 | each its
element will be set to 𝑜𝑤𝑖,𝑗 if the arc 𝑎𝑖,𝑗 ∈ 𝑁𝐸𝑇 , while a sub-network of 𝑁𝐸𝑇 is an undirect
graph 𝑁𝐸𝑇 *(𝑁*, 𝐴*,𝑊 *), such that 𝑁* ⊆ 𝑁 , 𝐴* ⊆ 𝐴, and 𝑁𝐸𝑇 * (where 𝑁𝐸𝑇 * will inherit
the weights of 𝐷 for the graph 𝑁𝐸𝑇 ).



Finally, let a Spanning Tree 𝑆𝑇 of 𝑁𝐸𝑇 be a connected acyclic sub-graph of 𝑁𝐸𝑇 , with
𝑁* = 𝑁 and | 𝐴* |=| 𝐴 | −1, and let a Minimum Spanning Tree 𝑀𝑆𝑇 of 𝑁𝐸𝑇 be the unique
Spanning Tree having the minimum 𝑔𝑜𝑤 of 𝑀𝑆𝑇 among all the Spanning Trees of 𝑁𝐸𝑇 .

TONS has been developed to realize theOptimumNeighbor Selection (𝑂𝑁𝑆𝑖) finding the subset
ℎ𝑖 = (ℎ1, ..ℎ𝑛) ∈ 𝜈𝑖, ∀𝑖 ∈ 𝑁 underlying the BC network, such that 𝑎𝑖,ℎ ∈𝑀𝑆𝑇𝑁𝐸𝑇 , ∀ℎ ∈ ℎ𝑖.
It is executed periodically to maintain updated the list of the agents in 𝑁𝐸𝑇 by exploiting the
MST computations by one of agents (i.e., the leader, which is chosen by adopting approaches
like [15, 39]) on the behalf of other agents. Specifically, TONS adopts the same approach
described in [15], in which the leader collects all the agents’ local public views, solves both the
network graph MST and the network MST problems, and anonymously shares this information
into the network.

To implement our approach, we assume that each interaction occurring between agents (i.e.,
nodes) can be described from a short report, called proof. Moreover, in the BC construction we
assume also that in 𝑁𝐸𝑇 the agent 𝑎 can require to the agent 𝑏 data for this purpose. In such
a scenario, 𝑎 can either ask to a third node 𝑐 for a “recommendation” 𝑟 about 𝑏 (based on the
proofs about the past interactions of 𝑐 with 𝑏) or it can directly require from 𝑏 itself a statement
about its competence (both are expressed in the real domain [0, .., 1]).

Let 𝑍 be the “Assurance”, a real value ranging in [0, .., 1], evaluating the proofs that 𝑐 can
show to 𝑎 for assuring the reliability level of the 𝑟𝑐 provided. To represent the trust measure of
𝑟𝑐 sent by 𝑐 to the requester 𝑎 about 𝑏, the real value [0, .., 1]− 𝑍 is computed. The maximum
level of assurance (i.e., 1) will be reached when all the proofs produced by 𝑐 to generate its
recommendations about 𝑏 are traced through authentic and non-repudiable messages recorded
on the BC itself. Conversely, the minimum value of 𝑍 will be obtained when all transactions
will be without proof.

Finally, a “feedback” will by assigned from 𝑎 to 𝑏 if if 𝑎 will require data to 𝑏.

3.1.1. The Trust Model

Let 𝑇𝑖, 𝑅𝑒𝑝𝑖, 𝛽𝑖, and 𝑆𝑖 be four mappings associated with each agent 𝑖 ∈ 𝑁 in the BC network
𝑁𝐸𝑇 = ⟨𝑁,𝐴,𝑊 ⟩. Each mapping has an agent 𝑗 as input and a different trust measure
ranging in [0, .., 1] (with 0/1 the minimum/maximum trust value), as output assigned by 𝑖 to 𝑗.

In detail:

• 𝑇𝑖(𝑗) is the overall trust assigned by 𝑖 to its interactions with 𝑗.

• 𝑅𝑒𝑝𝑖(𝑗) is the measure of the reputation assigned by 𝑖 to 𝑗 on basis of recommendations
coming from the BC agents.

• 𝑡𝑤𝑖(𝑗) is the trust weight, i.e. the weight assigned by 𝑖 to the reliability of the reputation
communicated from 𝑗 to 𝑖. In other words, 𝑖 computes the overall trust score of 𝑗 by
considering both the trust 𝑇𝑖(𝑗) and the reputation 𝑅𝑒𝑝𝑖(𝑗). The percentage of relevance
assigned to trust versus reputation is given by 𝑡𝑤𝑖(𝑗), autonomously computed by 𝑖 based
on the level of assurance 𝑍 and the recommendations provided by the contacted agents.

• 𝑆𝑖(𝑗) is the overall “score” (preference) assigned to 𝑗 by 𝑖 based on its perceived reliability
and reputation of 𝑗.



Moreover, a further mapping 𝑅𝐶𝑖 has been defined to represent the recommendations received
by the agent 𝑖. Specifically, a recommendation is assumed to be a pair 𝑟 = ⟨𝑣, 𝑙⟩, with 𝑣 (called
recommendation value) and 𝑙 (called recommendation level of assurance) ranging in the real
domain [0, .., 1] (where 0/1 is the minimum/maximum value). Formally, 𝑅𝐶𝑖(𝑗, 𝑘) is a mapping
that in input receives two agents 𝑗 and 𝑘 and in output returns the recommendation 𝑅𝐶𝑖(𝑗, 𝑘)
that 𝑗 provides to 𝑖 about 𝑘, together with a measure of the level of assurance associated with
this recommendation.

3.1.2. The ONS Computation

Each node will update its mappings by means of the steps:

• Step 1: Reception of the Recommendations. The agent 𝑖 receives recommendations
(encoded in the 𝑅𝐶𝑖 mapping) from the other agents in response to previous recommen-
dation requests. Each recommendation provided by 𝑗 about the agent 𝑘 is stored in a
recommendation message 𝑚 consisting of a tuple ⟨𝑣, 𝑙⟩, whose elements are stored by 𝑖 in
its mapping 𝑅𝐶𝑖(𝑗, 𝑘).𝑣 and 𝑅𝐶𝑖(𝑗, 𝑘).𝑙, respectively.

• Step 2: Computing the T mapping. 𝑖 updates the mapping T for any agent 𝑗 with
which 𝑖 has interacted and, as a result, 𝑖 has issued one or more feedback for contributions
provided by 𝑗. These feedback, stored in the mapping 𝐹𝐸𝐸𝐷𝑘

𝑖 (𝑗), represent the quality
of the collaboration that 𝑗 provided to 𝑖 during the 𝑛-th by real values ranging in [0, 1]
(where 0/1 means the minimum/maximum “Quality of Service”). Based on these feedback,
𝑖 updates its mapping 𝑇𝑖 and calculates the current reliability shown by 𝑗 by averaging
all the feedback concerning it. By denoting with 𝑚 the number of recent interactions
between 𝑖 and 𝑗, the current trust 𝑇𝑖(𝑗) is computed as:

𝑇𝑖(𝑗) =
1

𝑚

𝑚∑︁
𝑘=1

𝐹𝐸𝐸𝐷𝑘
𝑖 (𝑗) (1)

At each step, 𝑇𝑖 is updated by averaging the value of 𝑇𝑖 at the previous step 𝑡− 1 and
that computed at the new step 𝑡, denoted by 𝑇 𝑡

𝑖 , as:

𝑇 𝑡
𝑖 (𝑗) = 𝛼 · 𝑇 (𝑡−1)

𝑖 (𝑗) + (1− 𝛼) · 𝑇𝑖(𝑗) (2)

where 𝛼 is a real value ranging in [0, 1] and meaning the relevance assigned by 𝑖 to the
past evaluations of 𝑇𝑖 with respect to the current one.

• Step 3: Computation of Rep and 𝛽. The recommendations in the mapping 𝑅𝐶𝑖

are used by the agent 𝑖 to compute the reputations of the other agents. In detail, the
reputation of an agent 𝑗 is computed by 𝑖 as a weighted mean of all the recommendations
received from the other nodes referred to 𝑗 (let 𝐴𝑆 be this set), where the weight of each
recommendation value is the corresponding level of assurance. Thus 𝑅𝑒𝑝𝑖(𝑗) is given
from:

𝑅𝑒𝑝𝑖(𝑗) =

∑︀
𝑘∈𝐴𝑆,𝑘 ̸=𝑖𝑅𝐶𝑖(𝑘, 𝑗).𝑣 ·𝑅𝐶𝑖(𝑘, 𝑗).𝑙∑︀

𝑘∈𝐴𝑆,𝑘 ̸=𝑖𝑅𝐶𝑖(𝑘, 𝑗).𝑙
(3)



where 𝑅𝐶𝑖(𝑘, 𝑗).𝑣 (resp., 𝑅𝐶𝑖(𝑘, 𝑗).𝑙) is the value (resp., the level of assurance) of the
recommendation that the agent 𝑘 returned to 𝑖 about the agent 𝑗, and 𝛽 is the coefficient
associated with 𝑖 in the mapping 𝛽𝑖. The computation of the average level of assurance
of the recommendations related to 𝑗, denoted by 𝛽𝑖(𝑗), is obtained by averaging the level
of assurance associated with all the recommendations related to 𝑗. Thus:

𝛽𝑖(𝑗) =

∑︀
𝑘∈𝐴𝑆,𝑘 ̸=𝑖𝑅𝐶𝑖(𝑘, 𝑗).𝑙

|𝐴𝑆| − 1
(4)

• Step 4: Computation of S. The agent 𝑖 computes the overall score 𝑆𝑖(𝑗) in the agent 𝑗
by considering both the trust 𝑇𝑖(𝑗) and the reputation 𝑅𝑒𝑝𝑖(𝑗), while the value of the
mapping 𝛽𝑖(𝑗) weights the relevance of the service reliability with respect to reputation:

𝑆𝑖(𝑗) = 𝛽𝑖(𝑗) · 𝑇𝑖(𝑗) + (1− 𝛽𝑖(𝑗)) ·𝑅𝑒𝑝𝑖(𝑗) (5)

• Step 5: Sending the mapping S to the leader. Each agent 𝑖 sends its mapping 𝑆𝑖 to the
leader 𝐿 of 𝑁𝐸𝑇 .

• Step 6: Computation of ONS. The leader L exploits Prim’s approach [40] to find
the 𝑀𝑆𝑇 by computing both the time-weight 𝑡𝑖,𝑗 and the trust-weight 𝜏𝑖,𝑗 of the arc
𝑎𝑖,𝑗 ∈ 𝐴, as the arithmetic mean between the 𝑆𝑖(𝑗) and 𝑆𝑗(𝑖). Finally, from the MST then
𝐿 computes its 𝑂𝑁𝑆 and sends it to the agents belonging to the ONS that, in turn, will
forward it to their neighbors.

At each step, the agent 𝑖 exploits the mapping 𝑆 to select the most suitable candidates to
require for collaboration. We highlight that the usage of TONS introduces the time cost required
from the computation of the trust measures, that is generated realized during the transactions
performed in the network.

4. The TONS2 algorithm

The TONS algorithm has been designed to compute the ONS from the MST, but it is an expensive
procedure in terms of computational, storage and power resources, which is an aspect relevant
in presence of IoT devices and, particularly, when they are light, and poorly equipped.

From the experiments carried out to test TONS, we observed that the set of best neighbor
agents was not subject to sudden changes in its composition. Consequently, an updated version
of this algorithm, called TONS2, was developed to reduce the computational, storage and power
costs required by TONS to the IoT devices, but without significantly impacting on the quality
of the neighbor selection process. To this purpose, in TONS2 an heuristic strategy has been
introduced to compute a new ONS only:

(i) after each 𝑝 consecutive blocks validated in the DL, with 𝑝 > 1, (we call “batch” this
sequence of blocks to validate);



(ii) when the overall score of each agent belonging to the agent set decreases more than a
fixed percentage;

(iii) when the communication time occurring between two agents increases more than a fixed
percentage;

(iv) when a time threshold, meaning the maximum time allowed to complete a batch, is
elapsed.

Therefore, let ∆𝑆 and ∆𝑡𝑖𝑚𝑒 be the thresholds defining the percentages of maximum loss of
score and communication quality respectively, and let 𝜏 be the maximum time imposed to
complete a batch.

It is evident as TONS2 could save IoT resources by confirming the agent set without modifying
the trust-based ONS search algorithm of TONS. In detail, for each batch the leader will execute
the algorithm of TONS with the first block to validate. Then for each subsequent block in the
batch to be validated, the leader will preemptively check whether the overall score and the
weight-time parameter (both referred to the previous process of block validation) will respect
the constraints imposed by ∆𝑆 and ∆𝑡𝑖𝑚𝑒, and the time 𝜉 is not elapsed. If the constraints are
met then the leader will initiate a new block validation process, otherwise it will proceed to
update all mappings (see below) and will perform the selection of a new set of agents.

Unfortunately, this procedure may cause a side effect on agent trust values due to the fact that
the same set of agents will validate multiple consecutive blocks in the DL. In fact, by choosing
the same set of agents several times, they will gain an important advantage over the rest of the
agent community, having more opportunities to increase their trustworthiness. This implies
more chances to be chosen for new block validation processes than the other agents.

Summarizing, the TONS2 strategy will be the following:

• Let 𝑥 be the loop counter of the batch ranging in [1, .., 𝑝]. For 𝑥 = 1 the mappings 𝑊 , 𝑇 ,
𝑅𝐶 , 𝑅𝑒𝑝, 𝐹𝐸𝐸𝐷 and 𝑆 are copied in 𝑊 *, 𝑇 *, 𝑅𝐶*, 𝑅𝑒𝑝*, 𝐹𝐸𝐸𝐷* and 𝑆*.

• After each other validation block process in the batch only 𝑊 *, 𝑇 *, 𝑅𝐶*, 𝑅𝑒𝑝*, 𝐹𝐸𝐸𝐷*

and 𝑆* will be updated as described in Section 3.1.2 and for each pair of agents 𝑖 and 𝑗,
belonging to the exploited agent set, then:

– If 𝑆𝑖(𝑗)
* >= (1−∆𝑆) ·𝑆𝑖(𝑗) && 𝜉 is not elapsed && 𝑥 < 𝑝, then a new interaction

in the batch will be performed and 𝑥 will be set to 𝑥+ 1;

– If 𝑆𝑖(𝑗)
* < (1 −∆𝑆) · 𝑆𝑖(𝑗) | | 𝜉 is elapsed | | 𝑥 = 𝑝, then the batch will end (i.e.,

will be completed) and a new ONS computation will be executed by the leader;

• When in the batch there are not new blocks to validate then the mapping 𝑇 , 𝑆 and 𝑊
will be updated as follows: 𝑇 = 𝑇 + (𝑇 − 𝑇 *)/𝑥; 𝑆 = 𝑆 + (𝑆 − 𝑆*)/𝑥; 𝑊 = 𝑊 *.

In terms of computational complexity, the batch procedure of TONS2 and TONS, for each
new iteration in the batch after the first block, have complexities of 𝑂(|𝑁 |2) and 𝑂(|𝑁 |3),
respectively. Therefore, each time that in a batch the ONS computation is not performed
because the agent set is confirmed, a significant amount of resources is saved.

The batch procedure above describes is formally presented as a pseudo-algorithm in Algo-
rithm 1.



Algorithm 1 The pseudocode of the Batch procedure of TONS2.
Require: 𝑊 , 𝑇 , 𝑅𝐶 , 𝑅𝑒𝑝, 𝐹𝐸𝐸𝐷, 𝑆, ∆𝑆 , ∆𝑡𝑖𝑚𝑒, 𝜉, 𝑝, 𝑡𝑏𝑎𝑡𝑐ℎ

1: 𝑊 * ←𝑊 , 𝑇+ ← 𝑇 , 𝑅𝐶* ← 𝑅𝐶 , 𝑅𝑒𝑝* ← 𝑅𝑒𝑝, 𝐹𝐸𝐸𝐷* ← 𝐹𝐸𝐸𝐷, 𝑆* ← 𝑆
2: 𝑥← 1
3: 𝑐𝑜𝑛𝑡𝑟𝑜𝑙← 𝑇𝑅𝑈𝐸
4: Computing MST
5: Computing OSN
6: while 𝑥 < 𝑝 && control do
7: Validation of a Block to add in the DL
8: Updating 𝑊 *, 𝑇 *, 𝑅𝐶*, 𝑅𝑒𝑝*, 𝐹𝐸𝐸𝐷*, 𝑆*

9: for 𝑖 = 1→ ∀ agent into the set do
10: 𝑡𝑏𝑎𝑡𝑐ℎ ← 𝑡𝑖𝑚𝑒( )
11: for 𝑗 = 1→ ∀ agent into the set −{𝑖} do
12: if 𝑆*

𝑖 (𝑗) < (1−∆𝑆) ·𝑆𝑖(𝑗) | | 𝑊 *.𝜏𝑖,𝑗 < (1−∆𝑡𝑖𝑚𝑒) ·𝑊 .𝜏𝑖,𝑗 | | 𝑡𝑏𝑎𝑡𝑐ℎ < 𝜉 then
13: 𝑐𝑜𝑛𝑡𝑟𝑜𝑙← 𝐹𝐴𝐿𝑆𝐸
14: end if
15: end for
16: end for
17: 𝑥← 𝑥+ 1
18: end while
19: 𝑇 ← 𝑇 + (𝑇 − 𝑇 *)/(𝑥− 1)
20: 𝑆 ← 𝑆 + (𝑆 − 𝑆*)/(𝑥− 1)
21: 𝑊 ←𝑊 *

22: return

4.1. Experiments

This Section describes the experiments we performed to evaluate the advantages given by
TONS2 with respect to TONS. The interested reader can found a more detailed analysis of the
effectiveness and efficiency of TONS in [16].

To carry out these experiments we adopted the same computational configuration, i.e. an
ASUS PC equipped with an Intel i7 CPU (8-Cores, 7GHz), 32 GB DDR4-SDRAM, 1 TB of SSD
and Windows-11 OS. Several experiments by using random network models belonging to
the Barabási–Albert (BA) and Erdős–Rényi (ER) network models [17, 18] have been realized.
Moreover, as in [16] we varied the number of nodes to analyze, the percentage of misbehaving
nodes randomly generated, but also adding the dimension of the batch. ∆𝑆 and ∆𝑡𝑖𝑚𝑒, have
been set to 5, 𝜏 has been set to 600 seconds that is a value suitable for the adopted simulated
DL, and the batch size varied from 3 to 5.

The results obtained bv the performed comparison between the TONS and TONS 2 algorithms
are presented in the Tables 1 and 2 and graphically depicted in Figures 1 and 2 for the BA and
RE network models and different batch dimensions. To permit a proper evaluation of the results,
the average times (in seconds) have been reported for only those simulations that completed
all the blocks assigned to them. Such results show that the advantage in time introduced by



number of nodes 150 300 500 1000
average neighbors 2 2 5 7
TONS (3 blocks) 61.74 111.39 183.52 302.24
TONS2 (k=3) 24.81 40.98 98.60 186.73

TONS (4 blocks) 84.49 150.92 239.64 409.89
TONS2 (k=4) 34.49 55.82 123.29 267.57

TONS (5 blocks) 102.18 189.96 307.07 501.18
TONS2 (k=5) 40.89 70.43 196.40 304.88

Table 1
Results (in seconds) of TONS and TONS2 on the BA random network model with different sizes and
batch dimensions.

TONS2 with respect to TONS increases with both the network size and the batch dimensions.
This confirmed our expectations.

Figure 1: Results (in seconds) of TONS and TONS2 on the BA random network model with different
sizes and batch dimensions.

5. Conclusions

The consistency of a DL is a fundamental aspect of BC systems where the propagation of shared
data in the shortest way and the optimization for the neighbor selection for each agent play a
relevant role, particularly in IoT scenarios.

In our previous work [16] we presented TONS (Trust-based ONS) an optimized BC network
algorithm that allows agents to communicate with an optimized selection of neighboring agents,
ensuring that these are the most trustworthy agent nodes in the BC. Therefore, the TONS
algorithm identifies the optimal neighbor selection based on both the delivery time rates and



number of nodes 150 300 500 1000
connection probability 0.02 0.015 0.01 0.007
TONS (3 blocks) 65.19 105.87 174.51 301.86
TONS2 (k=3) 28.08 41.67 105.46 177.11

TONS (4 blocks) 86.92 141.16 232.68 402.48
TONS2 (k=4) 34.56 48.81 128.37 186.47

TONS (5 blocks) 108.65 176.45 290.85 503.10
TONS2 (k=5) 42.60 56.41 186.47 320.18

Table 2
Results (in seconds) of TONS and TONS2 on the ER random network model with different sizes and
batch dimensions.

Figure 2: Results (in seconds) of TONS and TONS2 on the ER random network model with different
sizes and batch dimensions.

the trustworthiness of the agent nodes in the network.
To improve the computational complexity of TONS, we added in TONS an heuristic strategy

to avoid of computing a new set of agents for each new block to validate. To test the benefits
provided from this new version of TONS, called TONS2, we compared these two algorithms by
executing some simulations on BA and ER network models for different dimensions of the batch
of validating blocks. The obtained results have shown that TONS2 is capable to save important
amount of computational, storage and power resources (a desired feature in an IoT context)
with a minimal performance detriment, particularly important in presence of IoT devices poorly
equipped.
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