Enhancing Robotic Systems in Healthcare: A
Preliminary Analysis of Agent-Based Paradigms and
Simulation Environments

Valeria Seidita®®*!, Antonio Chella™?

'Department of Engineering, University of Palermo, Italy
2JCAR-CNR National Research Council, Palermo, Italy

Abstract

The integration of agent-based paradigms and robotic simulation environments has become increasingly
important in the design and development of robotic systems. As with any complex software, the
development of robotic software requires disciplined processes to ensure efficiency and robustness. This
paper presents the preliminary results of an analysis conducted as part of two healthcare projects. In
these projects, we explore intelligent patient support and make robotic systems explainable to improve
human-robot interaction. The aim is to increase patient confidence in technology, make interactions
more efficient, and improve care outcomes. In this context, we propose the adoption of the agent-based
paradigm as a systematic approach to cover the notable gap in the literature and practice regarding an
engineering discipline that systematically addresses the complexities of designing agent-based robotic
systems with the use of simulation. This gap underscores the need for further research to develop
methodologies that embrace the technical capabilities of robotic simulators and exploit the benefits of
agent-based architectures.

Keywords
Healthcare robotics, Robotic simulation, Robot Operating System (ROS)

1. Introduction

In the ever-evolving field of robotics, the design and development of robust and effective systems
require disciplined and adaptable engineering approaches. This is particularly evident in the
domain of assistive healthcare robotics [1, 2], where systems must interact complexly with
humans and the surrounding environment, doing so with high reliability and flexibility. The
growing need for advanced robotic solutions is evident in healthcare sectors, where the aging
global population presents unprecedented challenges. This scenario has significantly stimulated
interest in innovative approaches to robotic design that can meet these complex needs.

In the context of healthcare robotics, robotic systems must navigate dynamic and unpre-
dictable environments, interact safely and effectively with patients, and perform a wide range
of tasks, from monitoring vital signs to assisting with mobility or daily activities. The inherent

CEUR-WS.org/Vol-3735/paper_15.pdf

WOA 2024: 25th Workshop "From Objects to Agents”, July 8-10, 2024, Forte di Bard (AO), Italy
*Corresponding author.

"These authors contributed equally.

& valeia.seidita@unipa.it (V. Seidita); antonio.chella@unipa.it (A. Chella)

® 0000-0002-0601-6914 (V. Seidita); 0000-0002-8625-708X (A. Chella)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
cour-w.org
I Workshop |SSN1613—0073I
Proceedings

mailto:valeia.seidita@unipa.it
mailto:antonio.chella@unipa.it
https://orcid.org/0000-0002-0601-6914
https://orcid.org/0000-0002-8625-708X
https://creativecommons.org/licenses/by/4.0

complexity of these tasks, combined with the high standards of safety and usability required,
necessitates a design methodology that goes beyond traditional engineering approaches.

The adoption of robotic simulators represents a fundamental solution to address these chal-
lenges. ROS (Robot Operating System) [3, 4] and robotic simulators such as Gazebo [5, 6] and
Webots [7, 8], among others, offer controlled and flexible environments for testing algorithms,
hardware designs, and robot-environment interaction scenarios without the risks or costs asso-
ciated with real-world experiments. These tools provide an essential foundation for building
and testing robotic applications in simulated environments that mimic real-world conditions.
However, despite their widespread adoption, a structured engineering approach for the design and
development of these systems is still lacking.

The work presented here is part of research from two ongoing projects. The first project aims
to develop a robotic support system for patients with metabolic deficits, providing guidance
for physical exercises and monitoring progress for both patients and their physiotherapists.
The second project, also within the healthcare domain, focuses on analyzing the effects of
explainability and trustworthiness in supporting patients and their caregivers during the post-
hospitalization period.

Our primary research interests include modeling the knowledge robots possess about highly
dynamic environments, updating this knowledge during the design phase, and implementing
a decision-making process that can explain its decisions and reasoning. In the initial stages
of both projects, we conducted a theoretical analysis to thoroughly define the application
domains, determine the appropriate technologies to use, and apply the agent paradigm to the
implementation of the robotic systems.

In this paper, we present the initial results of the analysis conducted to use agents as a design
paradigm for developing complex robotic systems with ROS and robotic simulators, particularly
considering Gazebo and Webots. We focused on and used the concept of a metamodel to map
the agent paradigm to the simulation environments.

2. From Agent to Developing Robotic Systems with Robotic
Simulators

In the context of robotic systems, the use of the agent-based design paradigm [9, 10] has proven
effective in managing complexity and scalability. Agents are autonomous computational entities
capable of perceiving the surrounding environment, processing information, making decisions,
and acting autonomously to achieve predefined goals. The adoption of the agent-based paradigm
for the development of robotic systems, particularly those integrated with simulators such as
Gazebo and Webot integrated with ROS, represents a strategic and innovative choice to address
the challenges inherent in complex and interactive environments.

Our work is based on the concept of a metamodel [11, 12], and after studying ROS, Gazebo, and
Webots and how robotic systems are developed with these tools, we hypothesized a metamodel
for the design of computation and control in the operation of ROS.

A metamodel is a model that describes other models, providing a higher level of abstraction
that defines the structure, rules, and relationships for constructing specific domain models.
A metamodel establishes guidelines for executing a design process and spans four different

levels of abstraction. A metamodel for designing agent-based systems includes elements such
as Agent, Role, Task, Action, Goal, Environment, Message, and Capability. These elements form
the modeling language that can also be used to describe agent-based robotic systems.

2.1. Robot Operating System and simulation environments

In this subsection, we delve into the features of ROS, Gazebo, and Webots, and how they
collectively enhance the design, testing, and deployment of robotic systems.

2.1.1. ROS (Robot Operating System)

ROS (Robot Operating System) is a flexible framework designed for developing robotic soft-
ware. It includes a suite of tools and libraries that assist developers in creating complex and
robust robotic applications on various hardware platforms. ROS provides services typical of
an operating system across a heterogeneous network of computers, such as low-level device
control, implementation of commonly required functionalities, inter-process message passing,
and package maintenance. This makes it particularly useful for developing sophisticated robots
requiring effective inter-module communication. The primary goal of ROS is to offer capabilities
for creating powerful, reusable robotic applications. ROS is composed of several elements.

ROS Nodes are processes that use ROS functionalities to perform data computations. A robot
using ROS consists of multiple nodes that communicate with each other, each node performing
a specific task and capable of messaging other nodes. For instance, a node might process data
from a laser scanner to prevent collisions. Nodes are written with the help of ROS client libraries
like roscpp or rospy, utilizing object-oriented programming languages at a low level.

Messages in ROS are data structures used for communication between nodes via topics or
services. Topics are asynchronous communication channels through which nodes exchange
messages, while services offer synchronous function calls between nodes, meaning the calling
node waits for a response from the service provider node. This type of communication is
typically one-to-many, allowing multiple nodes to subscribe to a topic. At the implementation
level, the ROS Master acts as a central node that links other nodes together, though this detail
is less relevant to our current analysis.

Another significant tool in ROS is the Plugin. Plugins allow developers to use and integrate
existing software without modifying the original code, extending the capabilities of simulators
by adding components such as sensors or control algorithms. Developers must be aware of
existing plugins or able to create new ones to build complex functionalities through integration.

To develop a robotic application with ROS, a developer should:

+ Define the system architecture by dividing the robot’s functionalities into separate nodes.
« Identify the communications these nodes will exchange.

+ Implement processes within the nodes to manage tasks.

« Establish the types of messages exchanged by the topics.

+ Define the topics on which nodes will publish or subscribe.

Custom messages may be necessary. After identifying functionalities requiring synchronous
communication, services should be implemented. Finally, before testing and debugging, integra-
tion with the simulators is carried out. Plugins are used to integrate specific functionalities for

instance into the Gazebo simulator, allowing for the testing of the robot’s behavior in a virtual
environment.

2.1.2. Gazebo

Gazebo is an advanced robotic simulator that allows the simulation of robots in complex, dynamic
environments with realistic physics. It is widely used in robotics research and development
because it provides a controlled and flexible environment for testing algorithms, hardware
designs, and robot-environment interaction scenarios without the associated risks or costs of
real-world experiments. Gazebo integrates seamlessly with ROS, enabling developers to use ROS
nodes, messages, and services directly within Gazebo’s simulated environment. Specific plugins
allow commands and data to flow smoothly between ROS systems and Gazebo simulation. One
of Gazebo’s strengths is its ability to simulate accurate physical interactions between robotic
components and their environment. It provides an extensive library of simulated sensors and
ready-to-use robot models, easily integrated and configured in projects. This allows developers
to simulate complex scenarios with various types of sensors and actuators without having
to build them from scratch. Users can create and modify detailed simulated environments
to test their robots in different contexts. Gazebo plugins are specifically designed to extend
the capabilities of the simulator. They are mainly used to add specific behaviors directly to
models within the simulation, such as controlling a robot’s movements, simulating sensors, or
interacting with the simulated physical environment.

It’s essential to emphasize that ROS nodes are software components performing specific
computation, control, or data processing functions within the ROS framework. They handle
a wide range of tasks, from processing sensor data to controlling actuators, managing path
planning, and handling communication between nodes. While Gazebo plugins operate within
the Gazebo simulation environment with direct access to APIs, allowing them to implement
detailed and low-level operational behaviors, ROS nodes are more flexible and modular. They
communicate through a messaging system on topics or services, making them suitable for
implementing and orchestrating high-level logic. ROS nodes can be directly transferred to real
robots without relying on Gazebo, while Gazebo plugins can simulate behaviors managed by
ROS nodes in the simulation context.

2.1.3. Webots

Webots is a 3D robot simulator supporting a wide range of commercial and custom robots,
providing a realistic simulation environment. A Webots world represents the environment
where robots operate, defined by a configuration file specifying objects, terrain, lighting, and
other environmental elements. This world is equivalent to the environment in the agent
paradigm, representing the physical context in which agents operate. Robots in Webots are
mobile entities equipped with various sensors and actuators that can be programmed to interact
with the environment and perform specific tasks. These robots are comparable to agents,
being autonomous entities that perceive the environment, make decisions, and act to achieve
goals. Devices in Webots, including sensors and actuators, extend the capabilities of robots,
representing the capabilities of agents in the agent paradigm. These devices model what the

agent can do and the actions it can perform. A supervisor in Webots is a special type of robot
that can control and monitor other robots in the simulated world, similar to a high-level agent
managing and coordinating other agents’ actions. Additionally, a controller in Webots is a
program defining a robot’s behavior, executing cycles of sensor reading, data processing, and
command sending to actuators. This is equivalent to the plan or task of an agent, defining the
sequence of actions the agent must perform to achieve its goals. The interaction between ROS
and Webots offers a powerful combination that merges ROS’s flexibility with Webots’ realistic
simulation environment. This integration allows robots simulated in Webots to leverage ROS’s
advanced control and communication capabilities. ROS nodes, representing autonomously
executable processes, can be used within Webots to control robots, enabling developers to apply
existing ROS packages and libraries to define the robot’s behavior.

Robots simulated in Webots can publish and subscribe to messages through ROS topics,
allowing efficient communication between various system components. Additionally, it is
possible to execute ROS service calls for synchronous operations and use ROS actions to manage
complex asynchronous operations. This bidirectional interaction facilitates the realization of
complex simulations and allows for rapid development, testing, and iteration of robot behaviors,
reducing the time and costs associated with field tests.

2.2. Relationship between the agent paradigm, ROS, and simulators

In this subsection, we briefly present the results of our analysis of ROS, Gazebo, and Webots for
the design of robotic systems and their relationship with the metamodel elements of the agent
paradigm. The results are summarized in the tables below.

Agent Paradigm | Conceptin Webots | Description
Concept
Agent Robot A mobile entity that can interact with the environ-
ment and perform specific tasks. It is equivalent
to the agent in the agent paradigm, being an au-
tonomous entity capable of perceiving, deciding, and
acting to achieve goals.
Capability Device (Sensors and | Extensions to the robot’s capabilities, representing
Actuators) what the agent can do and the actions it can perform.
Environment World The physical context in which robots operate, de-
fined by a configuration file specifying objects, ter-
rain, lighting, and other environmental elements.
Task/Plan Controller Programs that define the robot’s behavior, perform-
ing sensor readings, data processing, and sending
commands to actuators. Equivalent to the agent’s
plan or task.
Action Action performed by | Specific operations a robot can perform to interact
controllers and actu- | with the environment or achieve its goals.
ators
Table 1

Mapping between agent paradigm concepts and Webots concepts.

Agent Paradigm | Conceptin Gazebo | Description

Concept

Agent Robot An autonomous entity capable of perceiving the en-
vironment and acting to achieve goals.

Capability Sensor and Actuator | Devices that can be mounted on robots to extend

their capabilities, representing the actions an agent
can perform.

plugins and actua-
tors

Environment World The simulated physical context defined by a config-
uration file, including terrain, objects, and lighting.

Task/Plan Plugin Code that extends robot or environment functionali-
ties, defining specific behaviors and functions of a
robot or component.

Action Actions executed by | Specific operations that a robot can perform to in-

teract with the environment or other robots.

Communication

Topic, Service, Action

Mechanisms for communication between ROS nodes
or Gazebo components, supporting coordination and
information exchange.

Table 2

Mapping between agent paradigm concepts and Gazebo concepts.

Agent Paradigm | Conceptin ROS Description

Concept

Agent Node An autonomous process that performs computations,
similar to an agent perceiving the environment, mak-
ing decisions, and acting.

Capability Topic, Service, Ac- | Mechanisms for communication, perception, and

tion, Message interaction with the environment and other nodes.
Environment ROS Master The operational context managing node communi-

cation and registration.

Publishing,
Execution

Action

Task/Plan Node Scripts Programs defining specific behaviors and functions
of a node, similar to an agent’s plan or task.
Action Service Call, Topic | Operations that a node can perform to interact with

the environment or other nodes.

Communication

Topic, Service, Action

Mechanisms for asynchronous message passing,
synchronous service requests, and complex asyn-
chronous interactions, supporting agent cooperation
and coordination.

Table 3

Mapping between agent paradigm concepts and ROS concepts.

Moreover in ROS the Supervisor is a special type of robot that can control and monitor other
robots in the simulated world, akin to a high-level agent managing and coordinating the actions
of other agents. In Gazebo the Supervisor Plugins is the one that can monitor and control
other robots and components within the simulation, similar to a high-level agent managing

other agents and in Webots the Supervisor Node is the node responsible for monitoring and
controlling other nodes, coordinating activities and handling anomalies. These elements leave
the way open for reasoning about how agent organisations can be implemented, which for now
are out of the analysis presented.

Node Task L Task
) i) executes— ! Service

< Action 1 Message Topic ROS

ho'—)| Environment Model | Gazebo

Figure 1: The process of programming with ROS and Gazebo

The results of this initial part of the study are shown in the following two figures. Figure
1 visually illustrates how the key elements of ROS and Gazebo relate to each other in the
context of robotic programming. The undergoing rationale is the same for Webots. This figure
provides a detailed mapping of the fundamental components and concepts of ROS and Gazebo
and how they interact to create an integrated robotic system. It outlines the logical design
process followed to realize a robotic system. ROS nodes are shown as blocks performing
specific functions or controls. Nodes communicate with each other using messages and topics,
represented by arrows indicating the flow of information between nodes. Additionally, ROS
services, allow for synchronous function calls between nodes, and ROS actions, which handle
complex asynchronous interactions. The figure also shows Gazebo plugins, which extend the
simulator’s capabilities by enabling the implementation of simulated sensors, actuators, and
other robotic components.

In Figure 2, we present a first mapping between the fundamental concepts of ROS and the
agent metamodel paradigm. This mapping is essential to understand how the abstract concepts
of the agent paradigm can be concretely implemented using the functionalities offered by ROS.
In the agent metamodel paradigm, an agent is seen as an autonomous entity that can perceive
the environment, make decisions, and act to achieve its goals. In ROS, this concept is represented
by nodes, which are independent processes performing specific computations and controls.
Each node in ROS can be compared to an autonomous agent operating within a broader system,
communicating with other nodes via messages, services, and actions.

The concept of an agent’s capability, which describes the skills and actions an agent can
perform, is mapped in ROS through the use of topics, services, and actions. Topics allow for
asynchronous communication between nodes, services offer synchronous function calls, and
actions handle more complex asynchronous interactions. These communication mechanisms
enable nodes to coordinate and collaborate to achieve common goals, replicating the capabilities
of agents in the metamodel. The environment, which in the agent paradigm represents the
physical and operational context in which agents interact, is managed in ROS by the ROS Master.
The ROS Master acts as a central registry that keeps track of all nodes and facilitates their

Meta-metamodel layer (MOF)

Metamodel layer (Agent Paradigm)

Agent Environment Action Task

caoabi oal Rol Message
<insiance ot Apabilty | insiance ato> od <cinstance ot> e <cinstance ot
! \ = - - <sinstance of>

Model layer (ROS Implementation)

v L4
| L4 ¥ i L4

ROS Node ROS Master
Plugin ROS Service ROS Message

<cinstance of>> <cinstancs of>>

Runtime layer (Real World)

Robot | Meeeeeeeeeeees » Plugin

Figure 2: Mapping between ROS and agent paradigm concepts

communication. This allows for the creation of a structured and coordinated operational envi-
ronment in which nodes can effectively operate. The supervisor in the agent paradigm, which
monitors and coordinates the activities of other agents, is represented in ROS by supervisor
nodes. These nodes are responsible for monitoring the status and performance of other nodes,
intervening in case of anomalies or errors. Finally, the tasks or plans of agents, which define the
sequences of actions to be performed to achieve goals, are implemented in ROS through scripts
and programs executed within nodes. These scripts can be written in various programming
languages supported by ROS, such as Python or C++, and define the specific behavior of each
node.

3. Conclusion

In this paper, we explored the integration of agent-based paradigms and robotic simulation
environments, specifically focusing on ROS, Gazebo and Webots, in the context of healthcare
robotics. Our initial theoretical analysis and the application of the metamodel concept demon-
strated the potential benefits of adopting agent-based design for developing complex robotic
systems. We highlighted the significance of using robotic simulators like ROS, Gazebo,and
Webots to address the inherent challenges in creating reliable and flexible robotic systems for
dynamic and unpredictable environments. These simulators provide essential tools for testing
and validating robotic behaviors in controlled settings, reducing the risks and costs associated
with real-world experimentation.

Our research is part of two ongoing projects aimed at improving patient support through
advanced robotic systems. In both projects, the use of agent-based paradigms has shown promise
in managing the complexity and scalability of the systems. By mapping the concepts of the
agent paradigm to the functionalities of ROS, Gazebo and Webots, we established a structured
approach for designing and implementing robotic systems. This mapping provides a clear
framework for translating high-level agent-based models into practical robotic applications,
enhancing the development process and ensuring robust system performance.

The adoption of agent-based paradigms and the use of advanced robotic simulators represent

a strategic and innovative approach to addressing the challenges in healthcare robotics. Our
findings underscore the need for further research to refine these methodologies and explore
their application in other domains. Future work will focus on validating our theoretical results
through practical implementations and expanding our analysis to include additional simulation
environments and robotic platforms.

Acknowledgments

The work has been supported by the PRIN 2022 project [TROPHYTS - IoT and humanoid
RObotics for autonomic PHYsio-Therapeutic monitoring, coaching and supervising in smart
Spaces: a feasibility study, P20224TAETP and PRIN-PNRR 2022 ADVISOR - ADaptiVe leglble
robotS for trustwORthy health coaching.

References

[1] L-H. Kuo, E. Broadbent, B. MacDonald, Designing a robotic assistant for healthcare
applications, in: the 7th conference of Health Informatics New Zealand, Rotorua, 2008.

[2] P.Shubha, M. Meenakshi, Design and implementation of healthcare assistive robot, in:
2019 5th International Conference on Advanced Computing & Communication Systems
(ICACCS), IEEE, 2019, pp. 61-65.

[3] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al.,
Ros: an open-source robot operating system, in: ICRA workshop on open source software,
volume 3, Kobe, Japan, 2009, p. 5.

[4] L.Joseph, J. Cacace, Mastering ROS for Robotics Programming: Design, build, and simulate
complex robots using the Robot Operating System, Packt Publishing Ltd, 2018.

[5] N.Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot
simulator, in: 2004 IEEE/RS]J international conference on intelligent robots and systems
(IROS)(IEEE Cat. No. 04CH37566), volume 3, leee, 2004, pp. 2149-2154.

[6] M. Marian, F. Stinga, M.-T. Georgescu, H. Roibu, D. Popescu, F. Manta, A ros-based control
application for a robotic platform using the gazebo 3d simulator, in: 2020 21th International
Carpathian Control Conference (ICCC), IEEE, 2020, pp. 1-5.

[7] O. Michel, Webots: Symbiosis between virtual and real mobile robots, in: Virtual Worlds:
First International Conference, VW’98 Paris, France, July 1-3, 1998 Proceedings 1, Springer,
1998, pp. 254-263.

[8] O. Michel, Cyberbotics ltd. webots™: professional mobile robot simulation, International
Journal of Advanced Robotic Systems 1 (2004) 5.

[9] J.Ferber, G. Weiss, Multi-agent systems: an introduction to distributed artificial intelligence,
volume 1, Addison-wesley Reading, 1999.

[10] M. Wooldridge, An introduction to multiagent systems, John wiley & sons, 2009.

[11] Q. Wang, D. Astruc, State of the art and prospects in metal-organic framework (mof)-based
and mof-derived nanocatalysis, Chemical reviews 120 (2019) 1438-1511.

[12] Model-driven development: a metamodeling foundation, IEEE software 20 (2003) 36—41.

	1 Introduction
	2 From Agent to Developing Robotic Systems with Robotic Simulators
	2.1 Robot Operating System and simulation environments
	2.1.1 ROS (Robot Operating System)
	2.1.2 Gazebo
	2.1.3 Webots

	2.2 Relationship between the agent paradigm, ROS, and simulators

	3 Conclusion

