
From pure Prolog
to logic Agent-Oriented Programming Languages
Rafael Bordini3, Stefania Costantini1,4, Andrea Monaldini1,2 and Alina Vozna1,2

1Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Italy
2University of Pisa, Largo B. Pontecorvo, Pisa, Italy
3School of Technology, PUCRS, Porto Alegre – RS, Brazil
4Gruppo Nazionale per il Calcolo Scientifico - INdAM, Rome, Italy

Abstract
We motivate and compare Agent-Oriented Logic Programming languages (AOLPs), showing that they are not
really a departure from the basic logic programming paradigm, but rather constitute an extension to account
for abstractions that are essential to model autonomous agents and multi-agent systems. So, existing AOLPs like
AgentSpeak and DALI, which have already been successfully applied in many kinds of applications, can contribute
to the spread of logic programming thinking in the next years.

Keywords
Agent-Oriented Programming Languages, Logic Languages, Comparison Among Languages

1. Introduction

Agent-Oriented Programming (AOP) is a programming paradigm that conceptualizes software systems
as composed of autonomous, interactive entities known as agents. These agents are designed to operate
independently, possess their own goals, and can make decisions to achieve these goals without direct
external control. This autonomy allows agents to proactively pursue their objectives, as opposed to
merely reacting to external stimuli, which distinguishes AOP from other paradigms like Object-Oriented
Programming (OOP) where objects typically react to method calls. Additionally, agents in AOP are
characterized by their social ability; they can communicate, negotiate, and collaborate with other agents
to form a coherent, functioning system. This makes AOP particularly suitable for developing complex,
distributed systems where flexibility, modularity, and scalability are paramount. For instance, AOP has
found significant applications in areas such as multi-agent systems (MAS), artificial intelligence, and
simulation of real-world phenomena, where systems can benefit from decentralised control and adaptive
behaviour [1]. However, the paradigm also presents challenges, including the complexity of designing
effective agent interactions and ensuring robust coordination among agents. Despite these challenges,
the adoption of AOP continues to grow, driven by the increasing need for sophisticated, autonomous
systems in diverse fields.

A wide variety of agent-oriented programming languages and frameworks have emerged since 2005.
[2] presents a systematic review of 395 articles spanning a period of time ranging from 2005 to the
present. The aim of the authors is to highlight the use trends of programming languages in the field of
agent programming, as well as their applications. The graph shows that Java is the most widely used
language and that Python has become the most popular language in recent years.

Java became the industry standard language for agent-oriented programming between 2006 and 2016.
Because of its adaptability, robustness, and general acceptance, Java has become the preferred language
for creating intelligent software agents in a variety of fields and applications. With the help of its vast

WOA 2024: 25th Workshop "From Objects to Agents", July 8-10, 2024, Forte di Bard (AO), Italy
$ rafael.bordini@pucrs.br (R. Bordini); stefania.costantini@univaq.it (S. Costantini); andrea.monaldini@student.univaq.it
(A. Monaldini); alina.vozna@student.univaq.it (A. Vozna)
� 0000-0001-8688-9901 (R. Bordini); 0000-0002-0877-7063 (S. Costantini); 0009-0004-2518-2055 (A. Monaldini);
0009-0009-0179-6948 (A. Vozna)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:rafael.bordini@pucrs.br
mailto:stefania.costantini@univaq.it
mailto:andrea.monaldini@student.univaq.it
mailto:alina.vozna@student.univaq.it
https://orcid.org/0000-0001-8688-9901
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0009-0004-2518-2055
https://orcid.org/0009-0009-0179-6948
https://creativecommons.org/licenses/by/4.0/deed.en

Figure 1: Most used programming language for each year

ecosystem of libraries, frameworks, and tools, developers were able to construct sophisticated agent
systems that could address a variety of challenges and specifications [3].

Python is a popular, versatile programming language that is well-known for being easy to learn, flex-
ible, and simple. Since its 1991 debut, Python has become a mainstay in several fields, including scien-
tific computing, data science, web development, and artificial intelligence. Beginners can easily grasp
it thanks to its simple and straightforward syntax, and experienced developers can access its advanced
features and libraries [4].

This paper will, however, devote particular attention to computational logic due to its potential for
verifiability and explainability so that, overall, it can be a suitable tool for trustworthy Artificial In-
telligence and Neuro-symbolic applications. In particular, we consider two well-known implemented
agent-oriented logic programming languages that have been widely used, also in industrial applications,
in recent decades. We compare them with each other and with other recently-published approaches
authored by “founding fathers” of logic programming.

The remainder of this paper is structured as follows. The following section compares and contrasts
reactive and proactive models with deductive reasoning agents, while the development of logical agent-
oriented languages is examined. Section 3 describes AgentSpeak(L), a logic-based language that sup-
ports the modeling of agents in dynamic environments that receive perceptual data and act according
to their internal mental states. Section 4 introduces DALI, a Prolog-based agent-oriented language de-
signed for logical agents and multi-agent systems. In Section 5, an actual example of a cleaning robot is
used to compare DALI to AgentSpeak. It draws attention to some of their commonalities and peculiar-
ities. Section 6 introduces the Evolutionary Semantics approach to provide a declarative semantics for
agent-oriented languages like DALI and AgentSpeak. The related work section provides an overview
of other various agent-oriented logic languages and a comparison with the recent proposals of LPS and
Epilog. Finally, in Section 8 we conclude.

2. Logic Agent-Oriented Languages

The original perspective on agents in Artificial Intelligence was focused on the agents’ reasoning process
(“deductive reasoning agents”), identifying “intelligence” as rationality, thus neglecting the interactions

of the agents with the environment and with other agents. This perspective has been heavily criticized
for instance in [5] [6], that adopts in an extreme way the opposite point of view, arguing that “intelligent”
behavior results solely from the ability of an agent to react appropriately to changes in its environment
(“purely reactive agents”).

More generally however, agents can be seen as independent entities interacting both reactively and
proactively with a partially observable external environment, where proactivity is the ability to do things
on the agent’s ows’s initiative, in consequence to past interactions with the environment and/or of internal
reasoning. The idea of an agent reasoning about what it chooses to do, and via which means, has been
the basis of the seminal approach of the BDI (Belief, Desires, Intention) logic for modelling agents by
[7], that resulted in the definition of the AgentSpeak agent-oriented logic programming language [8]. At
the same time, in the approach of [9], agents were theories (logic programs), each one with its name,
and they were able to communicate with each other via two communication primitives (tell/told). A
view of logical agents, able to be both rational and reactive, i.e., capable not only of reasoning and
communicating, but also of providing timely response to external events was introduced in [10, 11,
12]. Many significant attempts have been made over time to integrate rationality with reactivity and
proactivity in logic programming, see for instance [13], [14], [15], [16] and [17] for a discussion. Along
this line came the proposal of “Active Logic Programming”introduced in [18].

After those seminal approaches, both the notion of agency and its interpretation in computational logic
have greatly evolved. Several computational-logic-based agent-oriented languages and frameworks to
specify agents and Multi-Agent Systems (MAS), that we may call Agent-Oriented Logic Programming
languages (AOLPs), have in fact been defined over time (for a survey of these languages and architec-
tures the reader may refer, among many, to [19, 20, 21]). Their added value with respect to non-logical
approaches is to provide clean semantics, readability and verifiability, as well as transparency and ex-
plainability ‘by design’ (or almost), as logical rules can easily be transposed into natural-language ex-
planations.

Prolog has proved over time to be a good knowledge representation language, also for modelling intel-
ligence agents. In fact, Prolog has been the basis for the specification of many of the above-mentioned
approaches. Two Prolog-based AOLPs are DALI [22, 23] and the Jason variant of AgentSpeak [24].
These two languages have proved to be remarkably successful in practical (even industrial), and cogni-
tive robotics applications. Their distinctive features involve several kinds of events as first-class objects,
along with the possibility of explicitly modeling reactivity ad proactivity via special rules. In the follow-
ing, we argue that these languages are a natural evolution of Prolog, as in fact they can be endowed with
a fully logical semantics, the Evolutionary Semantics; in this semantic approach, summarized below,
reactive and proactive rules are reinterpreted in terms of standard Horn Clause rules, and results of an
agent’s interaction with the environment and of the agent’s internal proactive operations are interpreted
as a sequence of program transformation steps, so as to reason about the “state” of an agent, without
introducing explicitly such a notion. Success that AgentSpeak and DALI have achieved in practice, has
contributed and in our opinion has the potential to contribute even more in the future to the spread of the
logic programming paradigm.

3. AgentSpeak

The Belief-Desire-Intention (BDI) architecture is one of the best known models for the development of
intelligent agents and in particular practical reasoning agents. In the BDI approach [7, 8], agents are
systems that are situated in a changing environment, receive perceptual input, and take actions to change
their environment, based on their internal “mental state”. Implementations of BDI agents are being used
successfully in real application domains. One of the first concrete platforms based on BDI architecture
was PRS [25], applied in several significant multi-agent applications. Several agent-oriented program-
ming languages have been developed based on BDI (surveys can be found here [26] [27]). Among them,
one of the best known languages is AgentSpeak(L) [28] — an abstract language based on an concepts of
the PRS architecture but heavily influenced by Prolog: AgentSpeak rules, called ‘plans’ are effectively

guarded Horn clauses. That abstract language was later extended and implemented by concrete Agent
Programming platforms such as Jason [29] [30] and ASTRA [31].

AgentSpeak(L) is a logic language with external events and actions, and language construct that are
meant to (indirectly) model BDI features in a simple way. The internal state of an AgentSpeak agent is
constituted by its beliefs, the goals (i.e., desires), and instances of plans (from a dynamic plan library) for
achieving goals are its intentions. External events are interpreted as belief changes, which are pursued
concurrently with goals in some order (according to a selection function) by means of plans (selected
by another special function). A plan can set new goals, called internal events. Below is an example,
concerning an agent controlling a cleaning robot.

+𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑤𝑎𝑠𝑡𝑒,𝑋) : 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡,𝑋) & 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑏𝑖𝑛,𝑋)
< − 𝑝𝑖𝑐𝑘(𝑤𝑎𝑠𝑡𝑒); 𝑑𝑟𝑜𝑝(𝑤𝑎𝑠𝑡𝑒).

+𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑤𝑎𝑠𝑡𝑒,𝑋) : 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡,𝑋) &𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑏𝑖𝑛, 𝑌) & 𝑛𝑜𝑡 𝑋 = 𝑌
< − 𝑝𝑖𝑐𝑘(𝑤𝑎𝑠𝑡𝑒); !𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡, 𝑌); 𝑑𝑟𝑜𝑝(𝑤𝑎𝑠𝑡𝑒).

In both rules (in AgentSpeak called “plans”), +𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑤𝑎𝑠𝑡𝑒,𝑋) is an external event, i.e., a per-
ception of the agent about some aspect of the state of the agent’s external environment, meaning that
there is waste at some location 𝑋 (where 𝑋 is instantiated to some value, as external events are supposed
to be represented by ground atoms). After the semicolon, there is a conjunction of Prolog-like subgoals
(with & as a separator) that, if successful, enables the body of the rule, i.e., the part after the < − (that
takes the place of Prolog’s :−) to be executed. The body consists of a sequence of atoms (separated by
;) where each plain one represents an action and each one prefixed by ! represents a new goal, called an
internal event that the agent itself sets, to be coped with by another rule. The internal event occurring in
the above program fragment is coped with by the following two rules/plans:

+!𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡,𝑋) : 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡,𝑋) < − 𝑡𝑟𝑢𝑒.
+!𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡,𝑋) : 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡, 𝑌) & 𝑛𝑜𝑡 𝑋 = 𝑌

< − !𝑚𝑜𝑣𝑒(𝑟𝑜𝑏𝑜𝑡, 𝑌,𝑋).

According to the first rule, if the agent wants to reach location 𝑋 (+!𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡,𝑋)) and the
robot believes to be indeed at location 𝑋 , nothing needs to be done. According to the second one, if
instead the robot believes to be at location 𝑌 different from 𝑋 (where 𝑛𝑜𝑡 is Prolog’s negation as failure),
then the robot will set the goal !𝑚𝑜𝑣𝑒(𝑟𝑜𝑏𝑜𝑡, 𝑌,𝑋) to go to location 𝑋 . This internal event is managed
by rules not shown here.

4. DALI

DALI [22, 23, 32, 33, 34, 35] is a superset of Prolog in the sense that a Prolog program is a DALI program
as well. There are however some additional specific features to make the language agent-oriented. In
fact, DALI has been specifically devised to program logical agents and multi-agent systems. In DALI,
the autonomous behavior of an agent is triggered by several kinds of events: external, internal, present
and past events. Reaction to external and internal events is defined by reactive rules, indicated by special
token :> instead of :−.

External events correspond to the perceptions concerning the agent’s environment, that arrive to the
agent via some kind of sensors. They are indicated with postfix 𝐸. Below is an example of an external
event, with the corresponding reactive rule.

alarm_clock_ringsE :> stand_upA.

Precisely, the sound of the alarm clock captured by a sensor is transformed, via some interface we do
not care about, into the atom alarm_clock_ringsE , which is added to the agent’s input queue. Atom
stand_upA indicates an action (within the repertoire of those that the agent is capable to do by means of
some actuator), in this case without preconditions. Let us say that we are modeling a personal assistant
agent, which will advise the user what to do via a natural-language interface, thus stand_upA will be
translated via a suitable interface into a natural-language message. There is only one reactive rule for

every external event, with no loss of generality because the body of a reactive rule may contain any kind
of Prolog subgoal, as seen below.

alarm_clock_ringsE :> 𝑠𝑤𝑖𝑡𝑐ℎ_𝑜𝑓𝑓_𝑎𝑙𝑎𝑟𝑚_𝑐𝑙𝑜𝑐𝑘𝐴,
weekday(Today), choose(Today).

choose(Today) :− working_day(Today), stand_upA.
choose(Today) :− vacation(Today), go_back_to_sleepA.

Let us now consider a “butler” agent, able to manage the door.

𝑣𝑖𝑠𝑖𝑡𝑜𝑟_𝑎𝑟𝑟𝑖𝑣𝑒𝑑 :− 𝑏𝑒𝑙𝑙_𝑟𝑖𝑛𝑔𝑠𝑁.
𝑏𝑒𝑙𝑙_𝑟𝑖𝑛𝑔𝑠𝐸:> 𝑜𝑝𝑒𝑛_𝑑𝑜𝑜𝑟𝐴.

In this case, 𝑏𝑒𝑙𝑙_𝑟𝑖𝑛𝑔𝑠𝑁 indicates a present event (𝑁 for ‘now’), i.e., an event that is in the incoming
queue but has not been reacted to. As seen, the present event is used to draw an internal conclusion.
Upon reaction, specified in the second rule, the event is removed from the queue. The conclusion
𝑣𝑖𝑠𝑖𝑡𝑜𝑟_𝑎𝑟𝑟𝑖𝑣𝑒𝑑 can be interpreted as an internal event, by adding the reactive rule specifying that the
owners of the house should be told about the visitor:

visitor_arrivedI :> warn_landlords.

But, how is the conclusion visitor_arrived obtained? The interpreter categorizes visitor_arrived as
an internal event due to the presence of the reactive rule. Thus, an internal event is characterized by a
couple of rules: the first one is a plain rule, and the second one is a reactive rule. For each internal event
like, e.g., visitor_arrived , the interpreter checks the event, that is, queries itself with ?−visitor_arrived
at a certain frequency, and, upon success, will add the corresponding event visitor_arrivedI (𝐼 standing
for ‘internal’) in an incoming queue from which it will be taken to trigger the reactive rule. According
to Kowalski’s maxim “Algorithm = Logic + Control”, the frequency for checking an internal event can
be customized by changing the default one, by means of a user directive associated to the program; it is
also possible to state conditions to start and/or to stop the check (the default is “check forever”). Internal
events make DALI agents proactive, i.e., able to perform inferences and take initiatives without direct
external intervention, initiated and performed on the agent’s own accord in consequence to internal
reasoning.

The DALI interpreter in its present form performs an interleaving of different activities: normal
Prolog-like processing; check an internal event and, if successful, insert the event into a dedicated
queue; extract an external or internal event from the dedicated queue, and execute the reactive rule.
A more powerful interpreter might perform the three activities in parallel. It might even be feasible to
parallelize reaction to events. Events are in fact time-stamped, and the order might be of importance.
However, while at present the only user directive for events concerns their priority (high priority implies
faster reaction), one might allow the programmer to (optionally) specify a partial ordering among events:
those unrelated w.r.t. this ordering might be managed in parallel.

Notice that an action may have preconditions, specified by plain Prolog rules that however, for the
sake of clarity, are indicated with the special token :<. For instance (where 𝑛𝑜𝑡 is Prolog’s negation-as-
failure):

open_doorA:< have_key .
open_doorA :< not have_key , get_key .

A DALI agent remembers to have reacted to an external or internal event, and to have performed
an action, by converting the event/action into a past event, indicated with postfix 𝑃 . Past events are
exploited in the example below.

bell_ringsE :> open_doorA.
open_doorA:< door_closed .
door_closed :− close_doorP .
close_doorA:< door_open.
door_open :− open_doorP .
unsafe_situation :−alarm_reportedP .
unsafe_situationI :> close_doorA.

Here, the butler agent is responsible to open and close a door on which we suppose it has the full
control. The agent will, upon need, open and close the door. Action 𝑜𝑝𝑒𝑛_𝑑𝑜𝑜𝑟𝐴 will be actually
performed only if the agent remembers to have closed the door before, and thus the door is indeed
closed; this is the case if the past event 𝑐𝑙𝑜𝑠𝑒_𝑑𝑜𝑜𝑟𝑃 is present in the agent’s memory (in practice, it is
recorded as a fact added to the agent program). Symmetrically for action 𝑐𝑙𝑜𝑠𝑒_𝑑𝑜𝑜𝑟, performed only
if 𝑜𝑝𝑒𝑛_𝑑𝑜𝑜𝑟𝑃 is in the memory. In addition, the agent will close the door in case there has been an
alarm (recorded by other rules as a past event). Notice however that, upon completion of the action
𝑜𝑝𝑒𝑛_𝑑𝑜𝑜𝑟𝐴 (resp. 𝑐𝑙𝑜𝑠𝑒_𝑑𝑜𝑜𝑟𝐴) the fact 𝑐𝑙𝑜𝑠𝑒_𝑑𝑜𝑜𝑟𝑃 (resp. 𝑜𝑝𝑒𝑛_𝑑𝑜𝑜𝑟𝑃) must be removed, as it
represent a situation which is no longer actual. This is done via the user directives:

keep close_doorP until open_doorA.
keep open_doorP until close_doorA.

Other user directives manage the agent’s memory (which consists in the set of past events), specifying
for instance conditions for a past event to expire. Notice that, in case of arrival of similar events (e.g.,
different measurements of the temperature) or of repeatedly performing the same actions, different past
events are created. In fact, all events in DALI are time-stamped, in the sense that they are of the form
𝑡 : 𝑝(𝑎1, . . . , 𝑎𝑛) where 𝑡 is an integer number representing a time instant, and 𝑝(𝑎1, . . . , 𝑎𝑛) is a ground
atoms (i.e., an atom not containing variables); 𝑡 can be seen as an additional argument of 𝑝, but in the
proposed syntactic form the time-stamp can be omitted if not needed. Consequently, analogous past
events will be all recorded, with a different time-stamp. The interpreter, for each kind of event (i.e., the
temperature), keeps the indication of the ‘actual’ one, meaning the most recent version (the one with
the newest time-stamp). So, when a past event is ‘removed’ by a directive, it is simply removed from
the set of the actual ones. Notice that the set of actual past events constitutes the best possible agent’s
approximation of the present situation concerning the external environment and the agent itself. The
‘old’ past events, that can be accessed via their time-stamps, might be useful for reasoning, think, e.g.,
of the calculation of the average/maximum/minimum temperature in a certain period. Time-stamped
past events allow one to define fluents over intervals, e.g., the following example defines a fluent and
computes the actual time intervals where the fluent holds, considering implicitly the last version of past
events (where 𝑛𝑜𝑡𝑒𝑣𝑃 means that no version of past event 𝑒𝑣𝑃 is present in the memory):

door_closed(T ,T1) :− close_doorP : T , open_doorP : T2 ,T2 >= T1 .
door_closed(T ,T1) :− close_doorP : T , now(Tn),T1 =< Tn, not open_doorP .

The usefulness of time-stamps is also seen in the example below, modeling an agent that checks for
attacks of some kind (e.g., cyberattacks):

𝑎𝑙𝑎𝑟𝑚𝐸(𝐾) : 𝑇 :> alarmP(K) : T1 , T1 − T < threshold1 , alert_operatorA.
alarmE (K1) : T1 , alarmE (K2) : T2 :> T1 − T2 < threshold2 ,

𝐾1 = / = 𝐾2,
close_accessA, alert_operatorA.

The first reactive rule detects an alarm of the same kind of a past alarm occurred recently; notice the
difference between the external event 𝑎𝑙𝑎𝑟𝑚𝐸(𝐾) : 𝑇 happening now and the past event 𝑎𝑙𝑎𝑟𝑚𝑃 (𝐾) :
𝑇1 corresponding to an external event happened previously, both of them time-stamped. The second
rule detects two external events of the same kind occurring in conjunction. In fact, it can be seen that,
in the head of the second reactive rule, there are two external events supposed to occur together. A user
directive will state what ‘together’ means, specifying a time interval in which both timestamps should
be included.

DALI provides features for basic planning tasks. In particular, postfix 𝐺 indicates a so-called DALI
‘goal’, i.e., an internal event that, once successful and reacted to, expires, in the sense that it will no
longer be attempted. However, to manage more involved planning activities, an Answer Set Solver (cf.
[36] and references therein for Answer Set Programming) has been integrated into the implementation,
and can be invoked by a DALI agent. The use of the ‘goal’ construct is seen in the example below, when
the butler agent will prepare a cake (only once) if some children are expected to visit. The example
includes a goal and a ‘normal’ internal event. The variable 𝐶𝑎𝑘𝑒 will have as a value the specification

of the kind of cake one wants to prepare. The example overcomes the baking procedure. The cake is
deemed to be good and ready to eat upon heuristic conditions.

prepare_cakeG(Cake) :− children_visitors_expected , favorite_children_cake(Cake).
prepare_cakeG(Cake):> bakeA(Cake), put_in_ovenA(Cake), ready(Cake).
check_ready(Cake) :− put_in_ovenP(Cake),

color(Cake, golden), smell(Cake, good).
check_readyI (cake):> take_from_ovenA(cake), switch_off _ovenA, eatA(cake).

5. Comparison between DALI and AgentSpeak

Below we show a DALI program for the cleaning robot, analogous (with some additions) to the AgentS-
peak program illustrated before, and we discuss the analogies and differences.

To begin with, let’s notice that to ascertain its most recent location, the DALI robot exploits an internal
event. The first rule is attempted at a certain frequency to detect the actual position by the robot’s sensors
(frequency will affect, here, the precision with which the robot knows its position); the second (reactive)
rule will do nothing, having however the effect to record the most recent position as a past event. Low
level of battery charge, as an external event returned by a internal sensor, is managed, via a related
reactive rule, by going to the recharge station; the 𝑚𝑖𝑛 threshold for the battery will be devised by the
programmer so as to be sufficient to reach the station.

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑏𝑜𝑡, 𝐿) :− 𝑐ℎ𝑒𝑐𝑘_𝑠𝑒𝑛𝑠𝑜𝑟𝑠(𝐿).
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼(𝑟𝑜𝑏𝑜𝑡, 𝐿):> 𝑡𝑟𝑢𝑒.
𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙𝐸(𝑟𝑜𝑏𝑜𝑡, 𝐵):> 𝐵 =< 𝑚𝑖𝑛, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃 (𝑟𝑜𝑏𝑜𝑡, 𝐿),

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑎𝑟𝑔𝑒𝑟,𝐷), 𝑚𝑜𝑣𝑒𝐺(𝑟𝑜𝑏𝑜𝑡, 𝐿,𝐷),
𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝐴.

𝑚𝑜𝑣𝑒𝐺(𝑟𝑜𝑏𝑜𝑡, 𝐿1, 𝐿2) :− 𝐿1 = ∖ = 𝐿2.
𝑚𝑜𝑣𝑒𝐺(𝑟𝑜𝑏𝑜𝑡, 𝐿1, 𝐿2):> . . .

In the second reactive rule, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃 (𝑟𝑜𝑏𝑜𝑡, 𝐿) means that the robot remembers to be at location 𝐿
(last location detected), and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑎𝑟𝑔𝑒𝑟,𝐷) means that the agent believes that the location of the
charger is 𝐷; presumably, this is a fact present since the beginning in the agent program. Notice that
𝑚𝑜𝑣𝑒𝐺(𝑟𝑜𝑏𝑜𝑡, 𝐿,𝐷) is a DALI so-called “goal”, i.e., a special internal event which is executed only
once as soon as invoked (no associated frequency here); this one, in particular, is aimed to get the robot
moving from a location to another one. The first rule, which enables the internal event, checks that the
starting and destination locations are different – otherwise nothing must be done – and if so, proceeds
somehow to move in the environment. The code below is analogous to the AgentSpeak one, coping with
the fact that DALI admits only one reactive rule for each event. This is not an essential language feature;
rather, this choice has been done to make the interpreter simpler. The context as specified in AgentSpeak
rules in DALI is represented by the first subgoals in rules bodies.

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐸(𝑤𝑎𝑠𝑡𝑒,𝑋) :> 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑟𝑜𝑏𝑜𝑡,𝑋).
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑟𝑜𝑏𝑜𝑡,𝑋) :− 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃 (𝑟𝑜𝑏𝑜𝑡, 𝐿), 𝐿 == 𝑋, 𝑝𝑖𝑐𝑘𝑢𝑝𝐴(𝑤𝑎𝑠𝑡𝑒),

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑏𝑖𝑛,𝐵) ,𝑚𝑜𝑣𝑒𝐺(𝑟𝑜𝑏𝑜𝑡, 𝐿,𝐵), 𝑑𝑟𝑜𝑝𝐴(𝑤𝑎𝑠𝑡𝑒, 𝑏𝑖𝑛).
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑟𝑜𝑏𝑜𝑡,𝑋) :− 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃 (𝑟𝑜𝑏𝑜𝑡, 𝐿), 𝐿 = / = 𝑋, 𝑚𝑜𝑣𝑒𝐺(𝑟𝑜𝑏𝑜𝑡, 𝐿,𝑋),

𝑝𝑖𝑐𝑘𝑢𝑝𝐴(𝑤𝑎𝑠𝑡𝑒), 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑏𝑖𝑛,𝐵),
𝑚𝑜𝑣𝑒𝐺(𝑟𝑜𝑏𝑜𝑡,𝑋,𝐵), 𝑑𝑟𝑜𝑝𝐴(𝑤𝑎𝑠𝑡𝑒, 𝑏𝑖𝑛).

It is easy to notice the analogies between the two languages, looking beyond the different syntax.
There are some differences, e.g., in Agent Speak we do not have different versions of time-stamped past
events, and we do not have DALI-like internal events, i.e., actived proactively at a default or user-defined
frequency.

In order to be able to program multi-agent systems, DALI and AgentSpeak have both been made
compliant to the FIPA standard, where FIPA is a widely used standardized ACL (Agent Communication
Language), cf. http://www.fipa.org/specs/fipa00037/SC00037J.html.

http://www.fipa.org/specs/fipa00037/SC00037J.html

DALI, however, also features a full communication architecture composed of three layers. The first
layer implements a FIPA-compliant communication protocol. The second layer allows an agent to fil-
ter incoming and outcoming messages via special (optional) meta-rules concerning the distinguished
predicates tell and told. And, the last layer (optionally) employs a meta-interpreter to allow for inter-
operability by means of exploiting internal or external ontologies. Below is an example concerning
message filtering. There, an agent receives a communication informing it about a film 𝐹 which is now
being screened in theaters. The FIPA primitive inform, with parameters message content and sender, is
received by the agent as the external event informE (film(F),A). However, before being inserted into
the external event queue, since there is a told rule whose head matches with the message, it is verified
that the rule’s body is true. If this is not the case, i.e., here, if the sender agent is either not a friend or not
trusted (code for deciding not shown here), then the message is simply deleted, so the related reactive
rule will never be fired. If the message is accepted, in this program the agent will go to see the film,
and will also request to 𝑎𝑛𝑛 to go as well. However, before being inserted into the outcoming messages
queue, since there is a tell rule whose head matches with the message, it is verified that the rule’s body
is true. If this is not the case, i.e., here, 𝑎𝑛𝑛 is either not a friend or she is not nice (code for deciding
not shown here), then the message is simply deleted and will never be sent. Notice that FIPA message
syntax includes some more parameters, that are automatically coped with by the interpreter.

told(inform(film(F),A)) :− friend(A), trusted(A).
tell(proposeA(go_to_see(F),A)) :− friend(A),nice(A).
informE (film(F),A):> go_to_seeA(F), proposeA(go_to_see(F), ann).

Notice also that, the same ‘core’ agent program, if equipped with a different set of tell/told rules, will
result in an overall agent behaving differently (e.g., bold rather than cautious, friendly rather than stern,
etc.).

6. Declarative Semantics of Evolving Agents

In order to demonstrate that DALI and AgentSpeak are indeed en enhancement of Prolog, we provide
below some hints about a declarative semantic approach (first presented in [37]) called Evolutionary
Semantics, which is immediately applicable to both of them. In fact, DALI was designed from the
beginning in order to have a declarative semantics. AgentSpeak was not, but the general semantic
approach presented below turns out to be applicable to it as well.

The difficulty in defining a semantics for agent-oriented languages is that agents evolve according to
the interaction with their external environment, while, traditionally, logic includes neither the notion of
state nor that of evolution. The Evolutionary Semantics consider DALI and AgentSpeak programs as
Prolog programs where a limited form of assert/retract is allowed. As described in detail in [37], these
programs can be in fact translated into plain Prolog programs plus some asserts/retracts. Below the
sample translation of a reactive rule is shown (disregarding, for the simplicity, timestamps). Given the
reactive rule:

𝑎𝑙𝑎𝑟𝑚_𝑐𝑙𝑜𝑐𝑘_𝑟𝑖𝑛𝑔𝑠𝐸 :> 𝑠𝑡𝑎𝑛𝑑_𝑢𝑝𝐴.

the translation into Prolog is:

𝑟𝑒𝑎𝑐𝑡_𝑎𝑙𝑎𝑟𝑚_𝑐𝑙𝑜𝑐𝑘_𝑟𝑖𝑛𝑔𝑠 :−
𝑎𝑙𝑎𝑟𝑚_𝑐𝑙𝑜𝑐𝑘_𝑟𝑖𝑛𝑔𝑠𝐸, 𝑠𝑡𝑎𝑛𝑑_𝑢𝑝𝐴,
𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑎𝑙𝑎𝑟𝑚_𝑐𝑙𝑜𝑐𝑘_𝑟𝑖𝑛𝑔𝑠𝐸),
𝑎𝑠𝑠𝑒𝑟𝑡(𝑎𝑙𝑎𝑟𝑚_𝑐𝑙𝑜𝑐𝑘_𝑟𝑖𝑛𝑔𝑠𝑃), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑠𝑡𝑎𝑛𝑑_𝑢𝑝𝑃).

𝑠𝑡𝑎𝑛𝑑_𝑢𝑝𝐴 :− 𝑡𝑟𝑢𝑒.

The Prolog rule takes profit of the fact that the external event 𝑎𝑙𝑎𝑟𝑚_𝑐𝑙𝑜𝑐𝑘_𝑟𝑖𝑛𝑔𝑠𝐸, once arrived, is
asserted as a new fact. The action 𝑠𝑡𝑎𝑛𝑑_𝑢𝑝𝐴, considered as a Prolog subgoal, and having no precondi-
tions, always succeeds. Considering that a past event is always new, being characterized by a timestamp
and thus distinguishable from analogous previous events, no destructive update is needed.

At any time, the Prolog counterpart 𝑃𝑃𝑟𝑜𝑙 of agent program 𝑃 admits the Least Herbrand Model [38]
(or the Perfect Model if negation as failure is employed, where every program is assumed to be stratified

[39]). This model changes when a new event is asserted/retracted. Each assert/retract can be seen as
a program transformation step. Then, one will have an initial program 𝑃0 = 𝑃𝑃𝑟𝑜𝑙 which, according
to these program-transformation steps (each one transforming 𝑃𝑖 into 𝑃𝑖+1), gives rise to a Program
Evolution Sequence 𝑃𝐸 = [𝑃0, ..., 𝑃𝑛]. The program evolution sequence will have a corresponding
Semantic Evolution Sequence 𝑀𝐸 = [𝑀0, ...,𝑀𝑛] where 𝑀𝑖 is the semantic account of 𝑃𝑖.

The Evolutionary Semantics 𝜀Ag of agent Ag is thus the tuple ⟨𝑃𝐸,𝑀𝐸⟩, over a potentially infinite
evolution. The snaphot at stage i is the tuple ⟨𝑃𝑖,𝑀𝑖⟩. The evolutionary semantics represents the
evolution of an agent without introducing a formal concept of “state” in the sense of some memory items
on which destructive updates are applied. The snapshot denotes the activity of an agent performed up to
a certain stage, but none of the previous stages is overwritten, they are encompassed by the Evolutionary
semantics. Note that the Evolutionary Semantics allows forms of static or dynamic checking of an
agent’s behaviour to be performed (cf., e.g., [40, 41, 42, 43]).

Speech Act Theory (SAT) [44, 45, 46] is a theory that aims to understand how utterances can be used
to achieve actions, consisting of locutionary acts (uttering a sentence), illocutionary acts (expressing
the speaker’s intention), and perlocutionary acts (what is achieved by saying something). In agent com-
munication, speech-act theory is adapted to determine how agents interpret messages, with the actual
behavior depending on the agent’s plan library and circumstances at the time of message processing.
Concerning communication, according to the Speech-Act-Theory both DALI and AgentSpeak interpret
incoming messages as special events and outcoming messages as special actions, so no semantic exten-
sion is needed.

7. Related Work

Both DALI and AgentSpeak were designed in order to understand whether modeling agents in logic
programming was possible, and to which extent. These new languages were intentionally kept as simple
and easy to understand as the Horn clause language: so, both syntax and semantics are very close to
the Horn clause language, and so is the procedural semantics. Therefore, our claim is that they truly
constitute agent-oriented versions of Prolog. Thus, they can spread the popularity of logic programming
among designers of practical applications of agents.

Notice that DALI and AgentSpeak are meant to be logic general-purpose programming languages
like Prolog, aimed at programming agents.They do not commit to any specific agent architecture, and
also, they do not commit to any specific planning formalism. Then, they do not directly compare with
approaches like ConGolog [47], which is a multi-agent Prolog-like language with imperative features
based on situation calculus, and 3APL [48, 49], which is rule-based, planning-oriented, and has no
concept of event. Also, a comparison with very extensive approaches for Multi-Agent-Systems like
IMPACT [50] is not in order, since IMPACT is not just a language, but proposes a complex agent
architecture.

A purely logic language for agents is METATEM [51] [52], where different agents are logic programs
which are executed asinchronously, and communicate via message-passing. METATEM has a concept
of time, and what happened in the past determines what the agent will do in the future. Differently
from DALI and AgentSpeak, METATEM agents are purely reactive, and there are no different classes
of events.

We now proceed to discuss ‘competing’ approaches presented in papers appearing in the 2023 book
“Prolog: The Next 50 Years”, namely, LPS [53] and Epilog [54]. We propose comparisons on relevant
examples showing either DALI or the AgentSpeak counterparts; as we have seen before in fact, the two
are almost fully interchangeable.

The paper by Kowalski et al. presents the language LPS (Logic Production Systems) [55] [56] [57],
which is procedurally executed via the imperative paradigm of solving goals by generating a sequence of
states and events with the aim of making the goals true. States are modeled as sets of facts representing
properties that change over time (called fluents). Events include both external events and internally gen-
erated actions. Rules modeling state transitions, called causal laws, based upon an underlying causal

theory, can destructively assert and retract fluents. Rules in the causal theory exploit an explicit represen-
tation of time. The language seems to be related to event calculus (introduced by Kowalski and Sergot
in [58]) and to Action Languages [59] [60] [61] [62] although the latter are based on Answer Set Pro-
gramming and thus theories admit multiple models, while an LPS theory has a single model. The LPS
language includes reactive rules of the form if antecedent then consequent that transform LPS theories
into agent programs. In fact, reactive rules link external events perceived by the agent and/or internal
events generated within the agent itself, which occur in the antecedent of a reactive rule, to the LPS
causal rules aimed to make the consequent true. AgentSpeak, DALI and LPS all feature reactive rules
(called, in LPS, ECA rules). To manage concurrent events, requiring as a reaction actions that cannot
reasonably occur together, LPS can adopt either time (to distinguish the two) or an integrity constraint
to make them incompatible. In DALI, as events are time-stamped, they would be served in the order in
which they arrived, however, it is possible to specify, as a user directive, a priority indicating which of
the two should be considered first (e.g., referring to the example proposed in the LPS paper, better first
eating and then sleeping). AgentSpeak and DALI actions’ preconditions can assure that no incompatible
actions are attempted. To model frame axioms, i.e., quoting from the LPS paper:

if a fact is true in a given state, then it continues to be true in a later state, unless it is
terminated by an event (either an external event or action) that occurs between the two
states.

in LPS destructive state changes are adopted; in DALI instead, time-stamped past events can be removed
by user directives (precisely, made no longer actual rather than physically removed). Concerning the LPS
example of an sos issued in consequence of three consequent flashes, the reader may refer to the alarm
example presented in Section 3, which is quite analogous. The capabilities of DALI for Complex Event
Processing are described in [63, 64]. Let us consider the more extensive LPS example presented in the
paper by Kowalski et al. appearing in this issue. To understand the code, note that, where the execution
of LPS programs, and computation in LPS in general, fulfills in principle a background event-calculus-
like causal theory, the LPS implementation relies on destructive state updates: fluents initiated by some
event are added to the current state, whereas fluents that are terminated are vice versa deleted.

initially lightOn.
observe switch from 1 to 2 .
observe switch from 3 to 4 .
lightOff if not lightOn.
switch initiates lightOn if lightOff .
switch terminates lightOn if lightOn.

It is not clear whether the above LPS agent is meant to hypothesize the state of the external environment
(precisely, the light being on or off) in consequence of observing switch events, or if the agent is acting
itself to control the light source. The DALI formulation shown below works in both cases, where actions
are in the former case fictitious (do nothing) and are just used to create past events to hypothesize the
current environment state, while in the latter case actions actually switch the light on and off.

initially_lightOnE :> lightOnA.
switchE :> choose_switch.
choose_switch :− lightOnP , lightOffA.
choose_switch :− lightOffP , lightOnA.
keep lightOnP until lightOffA.
keep lightOffP until lightOnA.

In case one is really interested in defining a fluent that makes it explicit in which interval a switch has
been observed, this can be done as seen in Section 3.

In LPS, both the antecedent and consequent of a reactive rule can include conjunctions of timeless
predicates, fluents, and events, possibly negated. This allows for effects similar to DALI’s internal
events but less explicit and without frequency for attempts. Unlike DALI and AgentSpeak, LPS does
not allow specifying execution deadlines for reactive rules. Additionally, LPS does not address Multi-
Agent systems as it lacks mechanisms for inter-agent communication.

The paper by M. Genesereth discusses Epilog [65], a Dynamic Logic Programming language, which
is intended as a Knowledge Representation formalism for describing the world. It has often been used for
describing legal actions, with the related/required actions and/or goals. Where in LPS, an agent behavior
is formalized by means of behavioral constraints, and explicitly mentions time, Epilog programs are
composed of operation rules (for short ‘rules’) of the form 𝑎𝑐𝑡𝑖𝑜𝑛 :: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ==> 𝑒𝑓𝑓𝑒𝑐𝑡𝑠. The
action expression to the left of the double colon is called the head, the literals to the left of the arrow are
conditions, and the literals to its right are effects. Operationally, if the conditions of a rule are true in
any state, executing the action in the head requires executing the effects of the rule. The semantics of
stratified (with respect to negation) Epilog programs is defined by their extension, which is the union of
all datasets obtained from an initial dataset Δ via repeated application of all applicable rules, resulting
in a unique extension for a given program and dataset. Epilog executes all applicable operation rules in
parallel, applying all updates (both deletions and additions) to the dataset, thus completing a step and
enabling the rules to fire again.

Both DALI and AgentSpeak can also execute all distinct activities in parallel using an enhanced
interpreter. Epilog rules can model agent actions in response to external stimuli using Prolog-style rules
called Views, although this concept is not further elaborated in the paper. An example provided in the
paper is Tic Tac Toe, where two players (denoted by identifiers 𝑥 and 𝑜) place a mark on a blank cell by
retracting the cell fact with mark 𝑏 and asserting the fact with the new mark, then passing control to the
other player by retracting a fact and asserting a new one.

𝑚𝑎𝑟𝑘(𝑀,𝑁) :: 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑍) ==> 𝑐𝑒𝑙𝑙(𝑀,𝑁, 𝑏) & 𝑐𝑒𝑙𝑙(𝑀,𝑁,𝑍)
𝑚𝑎𝑟𝑘(𝑀,𝑁) :: 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥) ==> 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥) & + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑜)
𝑚𝑎𝑟𝑘(𝑀,𝑁) :: 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑜) ==> 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑜) & 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥)

In AgentSpeak, these rules would look like:

+!𝑚𝑎𝑟𝑘(𝑀,𝑁) : 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑍) < − − 𝑐𝑒𝑙𝑙(𝑀,𝑁, 𝑏) ; +𝑐𝑒𝑙𝑙(𝑀,𝑁,𝑍)
+!𝑚𝑎𝑟𝑘(𝑀,𝑁) : 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥) < − − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥) ; +𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑜)
+!𝑚𝑎𝑟𝑘(𝑀,𝑁) : 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑜) < − − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑜) ; −𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥)

where however it would be easy to devise three agents, player 𝑥, player 𝑜 and 𝑡𝑎𝑏𝑙𝑒; the players would
require 𝑡𝑎𝑏𝑙𝑒 to assert their move, and the table would inform them if one wins (this via the confirm and
inform FIPA primitive). Agent-related issues are hardly considered in Epilog, and inter-agent communi-
cation is not considered at all.

Overall, in our view the different approaches presented in this issue (DALI, AgentSpeak, LPS, Epilog)
have some similar features concerning, e.g., reactive rules, but on many aspects they are complementary
and present their own distinguished style of modeling problems. Thus, it is difficult to consider these
approaches as in competition with each other. The features that characterize each approach can be
profitably exploited in some specific application domains, as discussed by the authors themselves in the
aforementioned references, and may be less suitable in other contexts. Notice, however, that DALI and
AgentSpeak have practically proven to have wide applicability, even in industrial applications, while the
others remain at the moment more theoretical than practical. Interesting future work may concern the
investigation of how these approaches might be profitably integrated into a comprehensive framework
so as to exploit in a synergistic way the features of each.

8. Conclusions

In this paper we have presented, discussed and compared Agent-Oriented logic languages, with particu-
lar attention to those, like AgentSpeak and DALI, that build upon Prolog’s foundation to allow for the
specification and implementation of dynamic systems. These languages offer significant advantages over
traditional Prolog for this purpose. We have seen that AgentSpeak and DALI incorporate mechanisms
for both reactive (responding to events) and proactive (taking initiative) agent behavior. Additionally,
their semantics can be grounded in Prolog-like logic through a technique called Evolutionary Semantics.
This approach translates agent programs with a limited form of assert/retract statements into standard
Prolog, making them easier to reason about and verify. This not only simplifies the development process

but also allows for formal verification of agent behavior, a crucial aspect for ensuring robust and reliable
systems. In conclusion, we would like to reiterate the importance of incorporating functions for the
development of multi-agent systems in such languages. This paves the way for modeling a much wider
range of practical applications. More importantly, it enables the specification of distributed logic-based
agent systems. Languages such as DALI and AgentSpeak, which extend agent-oriented programming
with MAS functions, can be further enhanced by adhering to communication protocols such as FIPA
(or other ACLs). FIPA compliance provides interoperability among agent systems written in disparate
languages, anticipating a future where logical programming forms the foundation of a unified network
of intelligent agents spanning the entirety of the Internet. Collaborative problem solving, distributed
information processing and the automation of complicated systems become immensely possible. As a
result, the scope of logic programming is expanding exponentially and encompasses the broad field of
the Internet.

References

[1] M. Wooldridge, An introduction to multiagent systems, John wiley & sons, 2009.
[2] A. Vozna, A. Monaldini, S. Costantini, P. d. Giovanni De Gasperis, A. Formisano, A. Rafanelli,

Evolution of programming languages in agent systems, 2024. Submitted paper.
[3] J. Bloch, Effective java, Addison-Wesley Professional, 2017.
[4] D. Robinson, R. Ferrigno, J. Silge, D. Choi, Why is python growing so quickly?, Stack Overflow

blog (2017).
[5] R. A. Brooks, Intelligence without reason, in: The artificial life route to artificial intelligence,

Routledge, 2018, pp. 25–81.
[6] R. A. Brooks, Intelligence without representation, Artificial intelligence 47 (1991) 139–159.
[7] A. S. Rao, M. P. Georgeff, Modeling rational agents within a BDI-architecture, in: R. Fikes,

E. Sandewall (Eds.), Proceedings of Knowledge Representation and Reasoning (KR&R-91), Mor-
gan Kaufmann Publishers: San Mateo, CA, 1991, pp. 473–484.

[8] A. S. Rao, M. Georgeff, BDI Agents: from theory to practice, in: Proceedings of the First Interna-
tional Conference on Multi-Agent Systems (ICMAS-95), San Francisco, CA, 1995, pp. 312–319.

[9] S. Costantini, P. Dell’Acqua, G. A. Lanzarone, Reflective agents in metalogic programming, in:
A. Pettorossi (Ed.), Meta-Programming in Logic, 3rd International Workshop, META-92, Proceed-
ings, volume 649 of Lecture Notes in Computer Science, Springer, 1992, pp. 135–147.

[10] R. A. Kowalski, F. Sadri, Towards a unified agent architecture that combines rationality with re-
activity, in: D. Pedreschi, C. Zaniolo (Eds.), Logic in Databases, International Workshop LID’96,
San Miniato, Italy, July 1-2, 1996, Proceedings, volume 1154 of Lecture Notes in Computer Sci-
ence, Springer, 1996, pp. 137–149.

[11] J. Barklund, P. Dell’Acqua, S. Costantini, G. A. Lanzarone, Multiple metareasoning agents for
flexible query-answering systems, in: H. Christiansen, H. L. Larsen, T. Andreasen (Eds.), Flexible
Query-Answering Systems, Proceedings of the 1996 Workshop, FQAS’96, Roskilde, Denmark,
May 22-24, 1996, volume 62 of Datalogiske Skrifter (Writings on Computer Science), Roskilde
University, 1996, pp. 155–166.

[12] P. Dell’Acqua, F. Sadri, F. Toni, Combining introspection and communication with rationality and
reactivity in agents, in: J. Dix, L. F. del Cerro, U. Furbach (Eds.), Logics in Artificial Intelligence,
European Workshop, JELIA ’98, Dagstuhl, Germany, October 12-15, 1998, Proceedings, volume
1489 of Lecture Notes in Computer Science, Springer, 1998, pp. 17–32.

[13] J. Barklund, K. Boberg, P. Dell’Acqua, M. Veanes, Meta-programming with theory systems, in:
K. Apt, F. Turini (Eds.), Meta-Logics and Logic Programming, The MIT Press, Cambridge, Mass.,
1995, pp. 195–224.

[14] R. A. Kowalski, F. Sadri, Towards a unified agent architecture that combines rationality with
reactivity, in: Proc. International Workshop on Logic in Databases, LNCS 1154, Springer-Verlag,
Berlin, 1996.

[15] P. Dell’Acqua, F. Sadri, F. Toni, Combining introspection and communication with rationality and
reactivity in agents, in: J. Dix, F. D. Cerro, U. Furbach (Eds.), Logics in Artificial Intelligence,
LNCS 1489, Springer-Verlag, Berlin, 1998.

[16] P. Dell’Acqua, F. Sadri, F. Toni, Communicating agents, in: Proc. International Workshop on Multi-
Agent Systems in Logic Programming, in conjunction with ICLP’99, Las Cruces, New Mexico,
1999.

[17] S. Costantini, Meta-reasoning: a Survey, in: Computational Logic: Logic Programming and Be-
yond, Essays in Honour of Robert A. Kowalski, Part II, volume 2408 of Lecture Notes in Computer
Science, Springer, 2002, pp. 253–288.

[18] S. Costantini, Towards active logic programming, in: A. Brogi, P. Hill (Eds.), Proc. of 2nd Interna-
tional Workshop on Component-based Software Development in Computational Logic (COCL’99),
PLI’99, http://www.di.unipi.it/ brogi/ ResearchActivity/COCL99/ proceedings/index.html, Paris,
France, 1999.

[19] R. H. Bordini, L. Braubach, M. Dastani, A. E. Fallah-Seghrouchni, J. J. Gómez-Sanz, J. Leite,
G. M. P. O’Hare, A. Pokahr, A. Ricci, A survey of programming languages and platforms for
multi-agent systems, Informatica (Slovenia) 30 (2006) 33–44.

[20] A. Garro, M. Mühlhäuser, A. Tundis, M. Baldoni, C. Baroglio, F. Bergenti, P. Torroni, Intelligent
agents: Multi-agent systems, in: S. Ranganathan, M. Gribskov, K. Nakai, C. Schönbach (Eds.),
Encyclopedia of Bioinformatics and Computational Biology - Volume 1, Elsevier, 2019, pp. 315–
320. doi:10.1016/b978-0-12-809633-8.20328-2.

[21] R. Calegari, G. Ciatto, V. Mascardi, A. Omicini, Logic-based technologies for multi-agent systems:
a systematic literature review, Auton. Agents Multi Agent Syst. 35 (2021) 1. doi:10.1007/
s10458-020-09478-3.

[22] S. Costantini, A. Tocchio, A logic programming language for multi-agent systems, in: S. Flesca,
S. Greco, N. Leone, G. Ianni (Eds.), Logics in Artificial Intelligence, European Conference, JELIA
2002, Proceedings, volume 2424 of Lecture Notes in Computer Science, Springer, 2002.

[23] S. Costantini, A. Tocchio, The DALI logic programming agent-oriented language, in: J. J. Alferes,
J. A. Leite (Eds.), Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Pro-
ceedings, volume 3229 of Lecture Notes in Computer Science, Springer, 2004, pp. 685–688.

[24] R. H. Bordini, J. F. Hübner, Semantics for the jason variant of agentspeak (plan failure and some
internal actions), in: H. Coelho, R. Studer, M. J. Wooldridge (Eds.), ECAI 2010 - 19th European
Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings, volume
215 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2010, pp. 635–640. doi:10.
3233/978-1-60750-606-5-635.

[25] F. F. Ingrand, M. P. Georgeff, A. S. Rao, An architecture for real-time reasoning and system control,
IEEE expert 7 (1992) 34–44.

[26] R. H. Bordini, M. Dastani, J. Dix, A. E. F. Seghrouchni (Eds.), Multi-Agent Programming: Lan-
guages, Platforms and Applications, volume 15 of Multiagent Systems, Artificial Societies, and
Simulated Organizations, Springer, 2005.

[27] R. H. Bordini, M. Dastani, J. Dix, A. E. F. Seghrouchni (Eds.), Multi-Agent Programming, Lan-
guages, Tools and Applications, Springer, 2009. URL: https://doi.org/10.1007/978-0-387-89299-3.
doi:10.1007/978-0-387-89299-3.

[28] A. S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language, in: Agents
Breaking Away, 7th European Works. on Modelling Autonomous Agents in a Multi-Agent World,
Proceedings, volume 1038 of Lecture Notes in Computer Science, Springer, 1996, pp. 42–55.

[29] R. H. Bordini, J. F. Hübner, Bdi agent programming in agentspeak using jason, in: International
workshop on computational logic in multi-agent systems, Springer, 2005, pp. 143–164.

[30] R. H. Bordini, J. F. Hübner, M. Wooldridge, Programming multi-agent systems in AgentSpeak
using Jason, John Wiley & Sons, 2007.

[31] R. W. Collier, S. Russell, D. Lillis, Reflecting on agent programming with agentspeak (l), in:
PRIMA 2015: Principles and Practice of Multi-Agent Systems: 18th International Conference,
Bertinoro, Italy, October 26-30, 2015, Proceedings 13, Springer, 2015, pp. 351–366.

http://dx.doi.org/10.1016/b978-0-12-809633-8.20328-2
http://dx.doi.org/10.1007/s10458-020-09478-3
http://dx.doi.org/10.1007/s10458-020-09478-3
http://dx.doi.org/10.3233/978-1-60750-606-5-635
http://dx.doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.1007/978-0-387-89299-3
http://dx.doi.org/10.1007/978-0-387-89299-3

[32] V. Bevar, S. Costantini, A. Tocchio, G. D. Gasperis, A multi-agent system for industrial fault
detection and repair, in: Y. Demazeau, J. P. Müller, J. M. C. Rodríguez, J. B. Pérez (Eds.), Advances
on Practical Applications of Agents and Multi-Agent Systems - Proc. of PAAMS 2012, volume 155
of Advances in Soft Computing, Springer, 2012, pp. 47–55. Related Demo paper “Demonstrator of
a Multi-Agent System for Industrial Fault Detection and Repair”, pages 237-240 of same volume.

[33] S. Costantini, G. De Gasperis, G. Nazzicone, DALI for cognitive robotics: Principles and prototype
implementation, in: Y. Lierler, W. Taha (Eds.), Practical Aspects of Declarative Languages - 19th
International Symposium, PADL 2017, Proceedings, volume 10137 of Lecture Notes in Computer
Science, Springer, 2017, pp. 152–162.

[34] S. Costantini, G. De Gasperis, Dynamic goal decomposition and planning in MAS for highly
changing environments, in: Proceedings of the 33rd Italian Conference on Computational Logic,
volume 2214 of CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp. 40–54.

[35] G. De Gasperis, S. Costantini, G. Nazzicone, Dali multi agent systems framework, doi
10.5281/zenodo.11042, DALI GitHub Software Repository, 2014. DALI: http://github.com/
AAAI-DISIM-UnivAQ/DALI.

[36] V. Lifschitz, Answer set planning, in: D. D. Schreye (Ed.), Proc. of ICLP ’99 Conference, MIT
Press, Cambridge, Ma, 1999, pp. 23–37. Invited talk.

[37] S. Costantini, A. Tocchio, About declarative semantics of logic-based agent languages, in: Declar-
ative Agent Languages and Technologies III, Third Intl. Works., DALT 2005, Selected and Revised
Papers, volume 3904 of LNAI, Springer, 2006, pp. 106–123.

[38] J. W. Lloyd, Foundations of Logic Programming, Second Edition, Springer-Verlag, Berlin, 1987.
[39] K. R. Apt, Logic programming, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer

Science, Volume B: Formal Models and Semantics, Elsevier and MIT Press, 1990, pp. 493–574.
doi:10.1016/b978-0-444-88074-1.50015-9.

[40] R. Bordini, M. Fisher, W. Visser, M. Wooldridge, Verifying multi-agent programs by model check-
ing, Autonomous Agents and Multi-Agent Systems 12 (2006) 239–256.

[41] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: an open-source model checker for the verification of
multi-agent systems, Int. J. Softw. Tools Technol. Transf. 19 (2017) 9–30.

[42] A. Ferrando, L. A. Dennis, D. Ancona, M. Fisher, V. Mascardi, Verifying and validat-
ing autonomous systems: Towards an integrated approach, in: C. Colombo, M. Leucker
(Eds.), Runtime Verification - 18th International Conference, RV 2018, Proceedings, volume
11237 of Lecture Notes in Computer Science, Springer, 2018, pp. 263–281. doi:10.1007/
978-3-030-03769-7_15.

[43] A. Ferrando, M. Winikoff, S. Cranefield, F. Dignum, V. Mascardi, On enactability of agent in-
teraction protocols: Towards a unified approach, in: L. A. Dennis, R. H. Bordini, Y. Lespérance
(Eds.), Engineering Multi-Agent Systems - 7th International Workshop, EMAS 2019, Revised Se-
lected Papers, volume 12058 of Lecture Notes in Computer Science, Springer, 2019, pp. 43–64.
doi:10.1007/978-3-030-51417-4_3.

[44] N. Hanna, D. Richards, Speech act theory as an evaluation tool for human–agent communication,
Algorithms 12 (2019) 79.

[45] B. Smith, Towards a history of speech act theory, Speech acts, meanings and intentions. Critical
approaches to the philosophy of John R. Searle (1990) 29–61.

[46] R. Vieira, Á. F. Moreira, M. Wooldridge, R. H. Bordini, On the formal semantics of speech-act
based communication in an agent-oriented programming language, Journal of Artificial Intelli-
gence Research 29 (2007) 221–267.

[47] G. De Giacomo, Y. Lespérance, L. H. J., Congolog, a concurrent programming language based on
the situation calculus, Artificial Intelligence (2000) 109–169.

[48] K. V. Hindriks, F. de Boer, W. van der Hoek, J.-J. Meyer, Agent programming in 3apl, Autonomous
Agents and Multi-Agent Systems 2 (1999) 357–401.

[49] K. Hindriks, F. de Boer, W. van der Hoek, J. J. Meyer, A formal architecture for the 3apl program-
ming language, in: Proceedings of the First International Conference of B and Z Users, Springer
Verlag, Berlin, 2000.

http://github.com/AAAI-DISIM-UnivAQ/DALI
http://github.com/AAAI-DISIM-UnivAQ/DALI
http://dx.doi.org/10.1016/b978-0-444-88074-1.50015-9
http://dx.doi.org/10.1007/978-3-030-03769-7_15
http://dx.doi.org/10.1007/978-3-030-03769-7_15
http://dx.doi.org/10.1007/978-3-030-51417-4_3

[50] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, R. Ross, Heterogenous Active
Agents, MIT-Press, 2000. 580 pages.

[51] M. Fisher, A survey of concurrent METATEM – the language and its applications, in: Proceedings
of First International Conference on Temporal Logic (ICTL), LNCS 827, Springer Verlag, Berlin,
1994.

[52] M. Mulder, J. Treur, M. Fisher, Agent modelling in concurrent METATEM and DESIRE, in:
Intelligent Agents IV, LNAI, Springer Verlag, Berlin, 1998.

[53] R. A. Kowalski, F. Sadri, M. Calejo, J. A. Dávila, Combining logic programming and imperative
programming in LPS, in: D. S. Warren, V. Dahl, T. Eiter, M. V. Hermenegildo, R. A. Kowalski,
F. Rossi (Eds.), Prolog: The Next 50 Years, volume 13900 of Lecture Notes in Computer Science,
Springer, 2023, pp. 210–223. doi:10.1007/978-3-031-35254-6_17.

[54] M. R. Genesereth, Dynamic logic programming, in: D. S. Warren, V. Dahl, T. Eiter,
M. V. Hermenegildo, R. A. Kowalski, F. Rossi (Eds.), Prolog: The Next 50 Years, volume
13900 of Lecture Notes in Computer Science, Springer, 2023, pp. 197–209. doi:10.1007/
978-3-031-35254-6_16.

[55] R. Kowalski, F. Sadri, Reactive computing as model generation, New Generation Computing 33
(2015) 33–67.

[56] R. A. Kowalski, F. Sadri, Programming in logic without logic programming, Theory Pract. Log.
Program. 16 (2016) 269–295. URL: https://doi.org/10.1017/S1471068416000041. doi:10.1017/
S1471068416000041.

[57] R. A. Kowalski, F. Sadri, M. Calejo, How to do it with lps (logic-based production system)., in:
RuleML+ RR (Supplement), 2017.

[58] R. Kowalski, M. Sergot, A logic-based calculus of events, New Generation Computing 4 (1986)
67–95.

[59] C. Barai, M. Gelfond, Logic programming and reasoning about actions, in: Foundations of
Artificial Intelligence, volume 1, Elsevier, 2005, pp. 389–426.

[60] J. Blount, M. Gelfond, Reasoning about the intentions of agents, in: Logic Programs, Norms and
Action: Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday, Springer, 2012,
pp. 147–171.

[61] D. Inclezan, M. Gelfond, Modular action language, Theory and Practice of Logic Programming
16 (2016) 189–235.

[62] C. Baral, G. Gelfond, E. Pontelli, T. C. Son, An action language for multi-agent domains, Artificial
Intelligence 302 (2022) 103601.

[63] S. Costantini, P. Dell’Acqua, A. Tocchio, Expressing preferences declaratively in logic-based agent
languages, in: Proceedings of Commonsense’07, the 8th International Symposium on Logical
Formalizations of Commonsense Reasoning, AAAI Spring Symposium Series, 2007. A special
event in honor of John McCarthy.

[64] S. Costantini, ACE: a flexible environment for complex event processing in logical agents, in:
L. B. Matteo Baldoni, M. Dastani (Eds.), Engineering Multi-Agent Systems, Third International
Workshop, EMAS 2015, Revised Selected Papers, volume 9318 of Lecture Notes in Computer
Science, Springer, 2015.

[65] M. Genesereth, Epilog for javascript, 2013.

http://dx.doi.org/10.1007/978-3-031-35254-6_17
http://dx.doi.org/10.1007/978-3-031-35254-6_16
http://dx.doi.org/10.1007/978-3-031-35254-6_16
https://doi.org/10.1017/S1471068416000041
http://dx.doi.org/10.1017/S1471068416000041
http://dx.doi.org/10.1017/S1471068416000041

	1 Introduction
	2 Logic Agent-Oriented Languages
	3 AgentSpeak
	4 DALI
	5 Comparison between DALI and AgentSpeak
	6 Declarative Semantics of Evolving Agents
	7 Related Work
	8 Conclusions

