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Abstract
SkRobot is a software platform that simplifies robot development, especially for those with cognitive
capabilities. It uses the C++ SpecialK framework as its foundation. It provides active data brokering, dis-
tributed storage and processing, and pseudo-realtime synchronisation, enabling efficient communication
between system entities. The platform relies on FlowProtocol, a custom protocol that ensures robust
binary communication over network channels. SkRobot’s architecture is designed for simplicity and
efficiency, allowing developers to focus on functions while reducing the influence of system artefacts.
This framework enables developers to quickly understand robotic paradigms, including cognitive robotics,
and meet various implementation needs efficiently.
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1. Introduction

The book ”Artificial Intelligence: Foundations of Computational Agents” by David L. Poole
and Alan K. Mackworth [1] presents a model of computational agents relevant to cognitive
robotics. An agent is defined as an entity that pursues goals by interacting with andmodifying its
environment based on sensory inputs and feedback. Agents are classified by their environmental
impacts and goal attainment methods. Artificial agents are either reactive or intelligent. Reactive
agents respond to stimuli with predetermined actions and are prone to errors in complex
scenarios. Intelligent agents autonomously analyse information to make decisions based on
context and learned experiences [2]. Agents are structured hierarchically with three main layers:
the decision-making level evaluates perceptions; the central level manages control, perception,
proprioception, and feedback; and the peripheral level interfaces with hardware, including
sensors and actuators.
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The physical body of an agent, comprising sensors and actuators, is crucial for interacting
with and modifying the environment to achieve goals, positioning it within embodied artificial
intelligence [1, 3]. Sensors detect environmental stimuli processed internally to form percep-
tions. Actuators execute actions based on decisions, with some incorporating feedback devices
to monitor and adjust actions [1, 4, 5]. Proprioceptors, or internal sensors, monitor action
progress and provide feedback that can modulate actuator activities, essential for rapid response
adjustments. Perceptions are multi-stimulus responses requiring efficient data management for
real-time responsiveness [1, 6]. Attention mechanisms filter out irrelevant stimuli, enhancing
computational efficiency and decision precision. The agent’s state is time-dependent, defined by
discrete operational phases, with transitions triggered by perceptions, affecting both external
actions and internal state. This dynamic interplay of state, attention, and action underlines the
adaptive nature of cognitive agents in embodied AI systems. Integrating real-time, parallel, and
asynchronous communication is essential in contemporary distributed programming, posing
significant challenges and offering innovative solutions through advanced middleware design
[7, 8]. In this scenario, we have identified several design solutions and described them below,
each with its own strengths and weaknesses; to address some of the weaknesses, we have
decided to develop a new solution: SkRobot [9].

2. Literature Review and Related Works

Designing a robot requires a multidisciplinary approach, combining systems and network
engineering, physical-environmental sciences, and electronics. A robot’s operability depends
on interacting with an operating system that manages resources like memory, storage, network
capabilities, energy, and environmental data, often through peripheral devices. Software control
is crucial, with algorithms related to robot’s perception and actions. While the high-level pro-
gramming language is less critical, efficient low-level component design is essential. Developers
must integrate multiple complex programs that interface with users or process environmental
inputs such as audio or video, recognising elements like objects or sounds. Using pre-built
middleware and specialised applications simplifies development. For example, Redis is com-
monly used for real-time data brokering in distributed systems. Frameworks and SDKs like ROS
(Robot Operating System) offer essential tools and libraries, facilitating robotic functionalities
without starting from scratch [10]. Though developers often implement many features, ROS
acts as middleware, abstracting hardware to manage processes and communication. Its modular
architecture allows focused development on navigation, perception, or control. The active
ROS community contributes to a repository of software packages, solving common robotics
challenges and promoting innovation and efficiency in robotic design.
The evolution of SpecialK 1 involved extensive experimentation with various frameworks,

notably the Qt development framework [11]. SpecialK adapted Qt’s Signal/Slot paradigm
through reverse engineering, surpassing the traditional callback mechanisms used in ROS and
creating complex yet manageable connection graphs among class functionalities. However, Qt
was eventually deemed unsuitable due to its high commercial costs and event management
system, which does not prioritise time — a critical factor for distributed systems with pseudo-

1https://gitlab.com/Tetsuo-tek/SpecialK last accessed June 2024
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realtime synchronisation. These limitations helped refine SpecialK’s programming concepts and
paradigms. Additionally, SpecialK integrated programming modalities from other platforms,
such as the C++ sketches from the Arduino platform for firmware-oriented microcontroller
programming [12]. These sketches, with a setup configuration section and a cyclically called
loop section, inspired the design of SpecialK’s event manager and the Sk/PySketch engine 2 3 4,
a Python binding of the flow protocol compatible with Python versions 2 and 3. This integration
underscores SpecialK’s commitment to developing robust and efficient programming structures
for complex robotic and embedded system applications.

3. Methodology

Delving into the design and subsequent implementation, the first significant challenge en-
countered consists of constructing a nervous system that enables the entity to receive stimuli
from its surroundings and perform valuable and logical actions by modifying the state of the
environment itself without allowing processes of acquisition and activity to interfere with each
other. The main features of the communication layer that connects all the entities making
the nervous system are (1) parallelism, (2) functional asynchrony, (3) reactivity efficiency, (4)
real-time (as much as possible), and (5) data and events distribution.
Effective robotic design focuses on low-level communication systems for asynchronous

input/output distribution, akin to efficient structures in vertebrates. These systems are crucial
for both autonomous and reactive high-level decision-making. The design approach should
be straightforward, minimising the impact on the host system and maintaining transparency
to avoid unnecessary complications. Establishing fundamental principles that clarify related
concepts is essential for intuitive understanding, often requiring in-depth theoretical research.
Creating new tools from scratch is sometimes necessary to enhance knowledge and simplify the
design process. The SkRobot environment, based on the SpecialK framework, exemplifies this
approach. It offers a streamlined method for developing robotic systems, addressing various
implementation needs in robotics and related fields. SkRobot enables developers to quickly grasp
and apply different study cases and solutions, simplifying the study and design process. The
concepts learned through development under SkRobot and SpecialK are few and well-defined.
Still, they are the cornerstones of the discussion, whatever the implementation you are using:
(a) active data-brokering, (b) distributed storage, (c) distributed processing, and (d) pseudo-
real-time synchronisation. SpecialK is a C++ framework perfectly compatible with the STL
(Standard Template Libraries). Sk essentially enforces the following paradigms: asynchronous
and recursive destruction of objects, Signal/Slot interactions between potentially unknown
objects, events and pulsing management (ticks, which can be regulated in terms of type and
frequency).
The design of robust and lightweight time management applications avoids mutexes or

semaphores using asynchronous collaboration, following Sk’s paradigms for efficient parallel
programming. Similar to the Qt framework, specific scenarios allow single process flow con-

2https://gitlab.com/Tetsuo-tek/PySketch last accessed June 2024
3https://gitlab.com/Tetsuo-tek/SkRobot/-/blob/main/examples/publisher.py last accessed June 2024
4https://gitlab.com/Tetsuo-tek/SkRobot/-/blob/main/examples/subscriber.py last accessed June 2024
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currency through the Signal/Slot paradigm. Sk minimises dependencies on external libraries,
typically requiring only open-source components like OpenCV-4, PortAudio, FFTW3, Ogg
Vorbis, and FLTK for GUI support. Features and dependencies can be toggled via compilation
macros, allowing direct inclusion of framework artefacts in the application code and enhancing
control over framework changes. The foundational class in SpecialK’s hierarchy is SkFlatObject
5, providing minimal functionality beyond naming instances. All Sk data structures 6 derive from
SkFlatObject, designed for simple instantiation and automatic memory management when stack-
allocated. Derived classes not using the Signal/Slot mechanism or asynchronous destruction
also originate from SkFlatObject. The SkObject class 7, a derivative, introduces enhancements
for efficient programming flows, utilising macros and limited C++ templates8. Instances of
SkObject derivatives should be created with the new operator and destroyed asynchronously
through destroyLater() to prevent runtime errors. This ensures smooth integration with ongoing
system interactions and decommissioning objects after careful termination of relationships and
activities. Objects are destroyed automatically only in two known cases:

1. the object is set as a child of a parent object, and the last one is destroyed; this occurs for
all direct children, as well as recursively for all children of children, following what can
be defined as a destruction tree;

2. the event manager terminates its activity and some instances of SkObject-derivatives have
been instantiated under its control; this occurs when a thread is closed or, more simply,
when the application is closed (reverting to the situation at point 1 if it is the case).

For objects within Sk, other than two specific exceptions, it is necessary to use the destroyLater()
method to ensure the proper release of resources. Without invoking this method, resources
remain allocated until the owning SkEventLoop 9 manager terminates. This system operates on
a pulse or tick basis, a concept that mirrors the operational flow of an Arduino sketch, where
activities are driven by the regular execution of the loop() function. This approach underpins
the design of the SpecialK Python sketches (Sk/PySketch) and the implementation of the flow
protocol. In the Sk framework, each thread, including the main application thread, operates
under an instance of SkEventLoop, which generates ticks at configurable intervals and modes.
For optional threads, the tick interval and mode can either be customised or inherit the default
settings from the main application thread, allowing for synchronised or individualised thread
operations. Each event loop manager emits cyclically three types of ticks with different speeds;
the fastest, non-divisible, therefore atomic, also describes the temporal resolution of response
(lag) to external and internal solicitations:

• FastTick - is the fastest tick provided by the manager, active or passive, depending on the
mode set; it represents the maximum processing speed in the thread where the manager
resides;

• SlowTick - is a passive tick with an interval >= the FastTick interval;

5https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkFlat/Core/Object/skflatobject.h last accessed June 2024
6https://gitlab.com/Tetsuo-tek/SpecialK/-/tree/master/LibSkFlat/Core/Containers last accessed June 2024
7https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkCore/Core/Object/skobject.h last accessed June 2024
8https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkFlat/skdefines.h last accessed June 2024
9https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkCore/Core/App/skeventloop.h last accessed June 2024
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• OneSecTick - is a passive tick interval always equal to 1 second.

In the Sk framework, passive waiting for SlowTick and OneSecTick is managed using the
SkElapsedTime, a nanosecond-resolution timer that counts intervals. Active waiting, in contrast,
involves suspending the thread for a less or more precise time using usleep(...) or nanosec(...),
applicable only in the FastTick mode, which sets the computational cadence for the thread.
SlowTick and OneSecTick are used for less frequent operations like monitoring, visualisation,
and control. They should not be mixed with FastTick operations that handle more immediate
external events, such as network communication, to prevent processing delays. SlowTick and
OneSecTick operate as passive clocks relative to the FastTick, with their accuracy dependent on
the fast interval’s size and regularity. More precise and smaller fast intervals result in better
timing for SlowTick and OneSecTick. Conversely, more oversized or irregular fast intervals may
lead to variable and non-deterministic timings for these slower ticks. For applications involving
multiple threads where some function as producers and others as consumers, it’s crucial that
consumer threads pulse at a frequency greater than or equal to their associated producer to
prevent issues like queue overflows or deadlocks in concurrent environments. If threads share
data through non-blocking structures like the SkRingBuffer10, less frequent data acquisition than
production may occur, which can be an intentional choice by developers for sampling purposes.
It’s also vital to monitor the job-time amplitude during tick processing to ensure it doesn’t
approach the upper limit of the FastTick interval. Exceeding this limit can slow the tick rate,
leading to a longer average pulse interval and potential application performance degradation.
The cadence typology for FastTick, as a consequence also for SlowTick and OneSecTick, can
follow various modes:

• regular coarse timing - never equal to or below the required interval (resulting in time
loss), used as default and very light as it calls usleep(...), which puts the process in a
passively timed pause evaluated by the kernel in this case;

• pseudo-real-time regular timing - more than regular average time, slightly more
CPU-intensive as it calls nanosec(...), which counts (within the process) nanoseconds
based on elapsed machine cycles, thus keeping the process always active within the time
window assigned by the Kernel;

• irregular timing dictated by socket I/O activity - CPU workload can be very intensive
if sockets traffic is significant; in this case, the value set as the FastTick interval corresponds
to the maximum wait time on sockets to detect data presence (select); it is an upper limit
to the tick interval since it waits at most for the proposed time interval for each existing
active socket in the owner thread;

• irregular timing dictated by GUI activity - based on the FLTK library event handler,
always very light on the CPU (the GUI portion of Sk enabling graphical application
development is not described in this document);

• no timing - requires a blocking call of any type within the FastTick pulse scope, aimed at
slowing it down as it would do when reading from a blocking socket connected that has
no data available yet; if not slowed down, this pulsing mode is comparable to a while(1)...

10https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkFlat/Core/Containers/skringbuffer.h last accessed June
2024

https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkFlat/Core/Containers/skringbuffer.h


The Signal/Slot paradigm (Fig. 2) 11 12, pivotal in programming workflows and evolution
from callback functions, dictates a specific interaction flow in applications. Historically, callback
functions — originating from C and prevalent in various languages, including ROS — serve
as parameters set during initialisation to respond to specific events. A typical example is a
graphical interface where a button triggers a predefined function, linking an action (button
click) directly to a response through event setup. In this paradigm, a Signal is a method declared
in the header file without any associated scope. At the same time, a Slot functions similarly to a
standard method but always returns void. Signals can be connected to one or multiple Slots,
which could belong to the same or different objects, through the Attach(...) functional-macro 13.
The following is an example of Attach functional macro related to establishing some Signal/Slot
meta-connection:

1 Attach(svr, addedChannel, this, onChannelAdded, SkQueued);
2 Attach(svr, removedChannel, this, onChannelRemoved, SkQueued);
3 Attach(eventLoop()->fastZone_SIG, pulse, this, onFastTick, SkDirect);
4 Attach(eventLoop()->oneSecZone_SIG, pulse, this, onOneSecTick, SkQueued);

Listing 1: Attach syntax examples to establish Signal/Slot meta-connections

This connection can be dissolved using the Detach(...) method, ceasing the Signal’s ability to
invoke the Slot after a tick. Below is an example of Detach functional macro related to breaking
some Signal/Slot meta-connection:

1 Detach(svr, addedChannel, this, onChannelAdded);
2 Detach(svr, removedChannel, this, onChannelRemoved);
3 Detach(eventLoop()->fastZone_SIG, pulse, this, onFastTick);
4 Detach(eventLoop()->oneSecZone_SIG, pulse, this, onOneSecTick);

Listing 2: Detach syntax examples to break Signal/Slot meta-connections

Some in-depth information and code snippets are available at SpecialK repository 14.
Signals and Slots must be declared publicly within the class to ensure they are observable,

accessible and manageable by the event manager. This is crucial for handling inheritance and
interaction across derived types. A protected or private declaration of Signals/Slots will lead to
runtime errors during attachment attempts due to visibility restrictions to the manager. To avoid
issues with access levels when deriving types that include Signals and Slots, the ’extends’ macro
is used to ensure public inheritance. This architecture facilitates the synchronisation of activities
across different object types and threads without needing mutual exclusion mechanisms like
mutexes and wait conditions, streamlining Inter-Object Communication (IOC) and enhanc-
ing program responsiveness. The Attach and Detach operations in the Signal/Slot paradigm
are asynchronous, not executing immediately but scheduled for the next pulse by the event
manager. Consequently, if a Signal is triggered right after an Attach, the connected Slot won’t
respond until the following tick. Attach usually occurs in the object’s Constructor, and Detach
automatically at the object’s destruction, ensuring stable connections throughout the object’s

11https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkCore/Core/Object/sksignal.h last accessed June 2024
12https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkCore/Core/Object/skslot.h last accessed June 2024
13https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkCore/Core/Object/skattach.h last accessed June 2024
14https://gitlab.com/Tetsuo-tek/SpecialK/README.md last accessed June 2024
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Figure 2: Signal/slot paradigm

lifecycle. Triggering a signal acts like a usual method of calling. If linked to one or more Slots,
these Slots are invoked after the Signal is activated, executing their scoped code directly or,
when connected in asynchronous mode, in their respective thread as soon as possible. This
setup ensures the Signal’s immediate trigger with subsequent flexible Slot execution.
The connection mode between Signal and Slot can be of different types:

• Direct Slots are invoked directly when the Signal is triggered. This is similar to the Slot
method being called to execute the code in the triggering thread where the code that
requested the Signal triggering is live. It’s important to note that manually invoking a
Slot through the method provided by the manager (invokeMethod()) is not direct and will
always occur at the next pulse asynchronously.

• Queued - Slots are queued for future invocation by the event manager at the next round
and in the flow of the owning thread, even when the Signal call comes from another
manager, hence a different thread. Triggering a signal connected with queuing mode
never blocks the triggering call, even when the signal and slot reside in the same thread;
this still implies the asynchronous invocation of the slot connected to the next pulse
when the triggering purpose is already closed.

• OneShot (direct or queued) - Slots are invoked as illustrated in the previous two points
but only once; immediately after the invocation, the disconnection occurs automatically.

A signal can simultaneously connect to multiple slots but never connect to the same slot
more than once. Upon triggering, a signal can pass a list of SkVariant 15 type arguments used
by the invoked Slots. If the call is direct, Slots access pointers to the original values; if queued,
they receive argument copies, thus avoiding critical sections and mutual exclusion issues.

15https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkFlat/Core/Containers/skvariant.h last accessed June
2024
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The SkVariant class efficiently encapsulates diverse data types, including primitives, complex
structures, and pointers. For threading synchronisation without mutexes or wait conditions,
queue-type connections between Signals and Slots from different threads are recommended to
prevent deadlocks and efficiency losses due to micro-waits. This paradigm also allows various
processing tasks to be isolated across different classes without requiring direct knowledge of
each other, maintaining interaction through functional and dynamic runtime meta-links. The
SkRobot application, developed in C++, offers a robust platform for managing data flows in
autonomous devices, robotic systems and industrial production lines. It supports Input/Output
management and custom internal network services, requiring a Unix-like environment (e.g.,
GNU/Linux or *BSD) and minimal dependencies, adhering to the POSIX standard. This setup
ensures SkRobot is a flexible, easy-to-implement solution that can be adapted and modified even
during production. Sk defines a communication protocol named the ”flow protocol” (figg. 3, 4,
5 and 6) 16. It enables communication between entities (modules and satellites with their hubs)
on various network supports, ranging from simple serial TTY lines to Unix-domain sockets,
TCP, UDP, and WebSockets offered by the HTTP support 17.

Unix

TCP/IP

TTY

Sat E

Sat D

Sat C

Sat B

Sat A

Sat F

Service

Sat H

Sat G

Figure 3: Mono-centralized FlowNetwork

SkRobot II

SkRobot IVSkRobot III

SkRobot I

Figure 4: Multi-centralized
FlowNetwork/DipoleNetwork

In this context, communication uses a binary format, transporting structured frames for each
command and response. The protocol distinguishes between synchronous and asynchronous
commands, which are crucial for service distribution and flow management. Synchronous
commands block until a response is received, while asynchronous commands do not wait and
may send notification frames to all or only relevant connections based on the request type. For

16https://gitlab.com/Tetsuo-tek/SpecialK/-/tree/master/LibSkCore/Core/System/Network/FlowNetwork last ac-
cessed June 2024

17https://gitlab.com/Tetsuo-tek/SpecialK/-/tree/master/LibSkCore/Core/System/Network/TCP/HTTP last accessed
June 2024
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efficiency, the binary frame lacks control records for data quality and integrity, relying instead on
the correctness of parameter order and the announced segment length to ensure frame integrity.
Any communication errors result in terminating the connection, logged as ”Killing spurious
client”. Due to the prevalence of little-endian (LE) hardware, all binary data within the frame
is written in LE format, contrary to the big-endian (BE), called also Network-Order, typically
used in other protocols. The SkFlowServer class manages these communications, supporting
network functionalities and handling new connections, which can be either synchronous or
asynchronous. Asynchronous connections facilitate the distribution of computational tasks
across different processes and threads, aligning with the generic flow concept of the satellite.

Note that all connections accepted by the server always start as synchronous. Only after the
authentication is passed is it possible to set the connection as asynchronous, transforming it
into a satellite distribution flow. The commands in the synchronous section, some of which are
also valid for asynchronous connections, consist of those related to authentication and database
service management offered through the SkFlowPairDatabase class:

• login execution;
• database selecting creation, persistence saving, removal, heterogeneous data-retrieves
and data management through database himself other than its pair variables.

All database operations are subordinated to the current database label setup before execution.
The current database setup is executed every time the database target for performing operations
is changed. Variables are stored in the form of SkVariant type, a class capable of containing
and expressing all primitive types, buffer pointers, and other container types such as strings,
objects, maps, vectors, and lists. SkVariant class can convert to/from Json its contents. Protocol
commands that use variables are duplicated with a less efficient counterpart that transports
textual JSON as an adaptation to porting platforms where the SkVariant is not available yet,
such as Python. Other synchronous commands directed to channels allow the following:

• obtain the current list of channels and their properties (pair-variables) and data;
• register/deregister for polling on a streaming channel buffer;
• request the latest current buffer (polling) for a streaming channel;



• makes synchronous requests to an existing service channel and receives responses.

As mentioned before, asynchronous commands do not receive responses; at least they could
trigger the generation of asynchronous messages to one or many targets based on the requested
command:

• setting the connection as asynchronous (originally, it is always synchronous);
• request for creating a streaming or service channel;
• removing a channel of which one is the creator (owner);
• requesting subscribe/unsubscribe for an active channel;
• linking/unlinking a replicating channel to/from a source channel (attach/detach);
• requesting data publishing on owned channels;
• setting the current database;
• creating/removing a database;
• saving on disk for database persistence;
• setting/creating/removing pair-variables.

When obtaining pair variables and data is necessary, a temporary synchronous connection must
be established to make the blocking request(s). The connection can be closed, and the object
can be destroyed once the data has been obtained. In asynchronous connections, the messages
received from the server refer to the following events (not related to Sk events described earlier
but to the FlowNetwork):

• the current database has changed (only on the connection that set it);
• a channel has been created/removed (to all);
• a channel has modified its header (to all);
• a service request has arrived on a previously created service channel (to the owner);
• a (first/last) streaming-request to start/stop publishing data on a specific channel is happen (to the channel
owner);

• streaming data has arrived from a channel that has been subscribed to (to all subscribers).

The distribution also occurs, primarily through flow channels that can be identified as data
queues (1:N and 1:1) that overlap within the same asynchronous connection described earlier
as a satellite flow. The transmission on flow channels always occurs asynchronously to avoid
interference in the transit of different data types with various weights and speeds. A FlowNet-
work can be activated up to 32768 flow channels (the type SkFlowChanID being a redefinition of
short). All channels in a FlowNetwork, regardless of their type, are identified by three always
unique values, gotten as tuple or individually: (chanID, hashID, name) . As mentioned earlier,
channels can be of two types:

• 1:N - intended for the distribution of streaming data of any kind that can be subscribed to and thus received
by multiple consumers,

• 1:1 - intended to offer a synchronous (or asynchronous) service based on request/response and with the
possibility of creating one-to-one streaming due to service requests.

When the flow is disconnected, all embedded channels and relationships within the dis-
tributed network are removed and managed only by an administrator or owner. If the hub
core owns the channel, its removal depends on commands from an administrator. The SkRobot
architecture, which is modular and core-focused, manages communication via FlowNetwork. In-
ternal modules enhance system communication and synchronisation, governed by the core from
initiation to shutdown, deriving from the SkAbstractModule interface 18. This setup manages
internal parameters through a configurable JSON structure and requires a redefinition of virtual

18https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkCore/Modules/skabstractmodule.h last accessed June
2024
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Figure 7: Robot agent web-user-interface screenshot

methods for transitions, control, and event handling. Developing internal modules is more
complex than external satellites, for which the SkFlowSat class 19, similar to SkAbstractModule,
automates connection, flow management, and event subscription. Both interfaces simplify
network and event management, reducing repetitive coding, ensuring satellite code focuses
on essential functionalities, and streamlining consistent, compatible component development
within the network and service framework.

Examples of C++ and Python code can be acquired from SkRobot repository 20.

4. Results

SkRobot made it possible to create the robot-agent demo application 21. It is a distributed and
medium-complex satellite application that uses other secondary satellites to offer a virtual
assistant service capable of listening, seeing, and operating procedures and commands on its
system or other remote satellites (Fig. 7), inspired by our previous work [13]. The SkRobot
application integrates core detection modules for faces, movements, and QR/Bar codes and
collaborates with external satellites for speech-recognition services using local OpenAI Whisper
technology [14]. Suppose an Nvidia GPU with adequate memory is available. In that case,
the application leverages CUDA to enhance processing capabilities, significantly boosting the
performance of Automatic Speech Recognition (ASR) and computer vision tasks using cv::cuda.
The system has been successfully developed and tested on Nvidia’s Jetson Orin AGX and Jetson
Nano B01 platforms. Its user interface is web-based and compatible with major browsers like
Chrome, Chromium, and Edge, although Firefox is excluded due to its lack of support for
audio resampling. Upon accessing SkRobot through a web browser, the HTML, JavaScript, and
CSS required for the interface are downloaded. The JavaScript initialises a WebSocket client
that connects to the robot-agent application on the same IP, facilitating real-time interaction.
Once the connection handshake is complete, the application displays a 3D avatar of the virtual
assistant, based on the open-source ”Armanda - 3D Talking Agent” by Patrizio Migliarini, PhD

19https://gitlab.com/Tetsuo-tek/SpecialK/-/blob/master/LibSkCore/Core/System/Network/FlowNetwork/skflowsat.h
last accessed June 2024

20https://gitlab.com/Tetsuo-tek/SkRobot/-/tree/main/examples last accessed June 2024
21https://gitlab.com/Tetsuo-tek/robot-agent last accessed June 2024
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22 , which has been adapted and integrated into the SkRobot environment. The application
graph is shown in Fig. 8. The SkRobot application allows users to activate their microphone
and camera through the browser, using interface buttons and granting the required multimedia
input permissions. Audio and video streams are captured and transmitted over WebSocket.
The Audio Stream is sent as a binary sequence of 16-bit PCM buffers, mono, at a sampling rate
of 22050 Hz. The Video Stream is sent as 640x360 resolution JPEG frames at 15 frames per
second (MJPEG). The browser-based WebSocket client receives JSON text commands to control
the avatar and associated actions, including eye blinking, gaze direction, and lip movement
synchronised with synthetic speech from the Espeak library. Despite Espeak’s simplistic and
robotic vocal timbre, it supports Italian and operates efficiently on lower-performance devices.
Binary PCM audio data representing the avatar’s voice is transmitted back to the browser,
with lip movements triggered by phonetic analysis performed by the Espeak engine, timed
to match the speech. For network operations, in Video Processing, the original video frame
is converted to a monochrome JPEG of just the Y channel (most significant for detection) for
lighter processing. For Audio Processing, additional audio channels are created for the Fast
Fourier Transform (FFT) of the microphone audio and ASR daemon control. Each collaborating
satellite for speech recognition, named robot-whisper-asr 23, manages two channels: Audio
Input for downloading audio from the microphone and transcription output for uploading
transcribed text. The transcription daemon subscribes to the Agent.ctrl control queue and

22https://github.com/PatrizioM/armanda Last accessed June 2024
23https://gitlab.com/Tetsuo-tek/robot-whisper-asr Last accessed June 2024
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multiple daemons can operate concurrently to enhance responsiveness, even during active
transcription phases. Detector modules process and emit detection data (bounding geometries)
through various queues. This data is aggregated and sent over WebSocket to the browser, where
JavaScript visualises detected geometries overlaid on the camera preview. Facial expressions
are implemented to enhance realism so that the avatar’s blinking rate varies from 450 ms to 4
seconds, with distinct speeds for each blink phase. Also, Gaze Direction is controlled via data
from face detection or the centre of motion if no faces are detected. This architecture allows for
scalable parallel processing for ASR and detection services, optimising the system’s efficiency
and responsiveness. In this demonstration, the browser primarily acts as an executor, controlled
by the application through pseudo-real-time remote commands. The only autonomous browser
functions manage the FPS for camera capture and transitions during the blinking phase. SkRobot
has also been utilised to retrofit the Nao v5 humanoid robot made by Aldebaran, revitalising its
use in the Intelligent Systems and Robotics Laboratory (ISRLAB) at the University of L’Aquila.
The Nao’s original software, which is no longer updated due to deprecation, posed limitations
on its use in educational activities. The Nao robot, programmable in C++ and Python-2, has
faced challenges due to changes in ownership and lack of support, making its proprietary SDK
inaccessible for modifications. Its Linux-based operating system is immutable, lacks a package
manager or development tools, and complicates updates and software installations. Python-2
presents integration challenges with modern libraries and environments like ROS or Redis.
Setting up development environments on external machines, especially on modern or Apple
ARM-based systems, is problematic due to outdated dependencies. The flow protocol was ported
to Python-2 as PySketch-py2 to bridge these gaps, enabling Nao to integrate with SkRobot.
This adaptation allows satellites to connect to SkRobot, access data from Nao via its SDK, and
transmit it across the flow network for processing by more advanced tools. Control commands
can also be issued from satellites using Python-2, importing the Naoqi SDK directly 24.
Two Docker images have been created to support Python-2 development outside the Nao

environment, containing PyNaoqi and SpecialK/SkRobot, respectively. Additionally, two PyS-
ketch examples, one for a publisher and one for a subscriber, facilitate communication between
Nao and external applications outside the Naoqi SDK. This system architecture allows the
distribution of sensory data and control commands across multiple satellites, supporting a
scalable and distributed processing model for the Nao robot (Fig. 1). The satellite running
Python-2 with PyNaoqi (NaoSat) also creates a service channel where all collaborating satellites
authorised can send Json packages of control commands related to specific internal or external
actions of the robot control can occur differently, with ad-hoc streaming queues created by
collaborating satellites and subscribed to by NaoSat, obtaining an asynchronous stream of Json
command-packages.

To manage all software related to SpecialK, SkRobot and PySketch, a meta-package manager
was built: pck 25. It is a meta-packagemanager based on git repositories. It was fast developed to
manage the numerous applications, experiments and examples built around SpecialK, SkRobot,
and PySketch. It is a very young software developed from scratch for specific contingent
needs, but it is already capable of performing the required operations, such as setting up its

24https://gitlab.com/Tetsuo-tek/robot-nao-io last accessed June 2024
25https://gitlab.com/Tetsuo-tek/pck last accessed June 2024
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environment and searching, installing, and removing applications available in the configured
Repositories. Currently, the only configured repository is InoxPacks 26, which is the default for
the environment. However, as explained below, it is possible to add new ones with different
software sources. Pck is entirely written in Python and supports both versions 2.x and 3.x. In
the next future, pck need to rewrite in an OOP and more clean form.

5. Discussion

ROS (Robot Operating System) supports C++ and Python 3.x, enhancing flexibility for develop-
ers. However, the exclusion of deprecated Python 2.x poses challenges for maintaining legacy
systems like Aldebaran’s Nao. This limits support for older robotic systems that are still used for
education and research. ROS requires developers to manage event handling, synchronisation,
and distributed information organisation, which can lead to redundancy and necessitates creat-
ing reusable objects. ROS’s Callback paradigm for event handling can be limiting, complicating
linking various functional scopes to a single event and supporting synchronised or real-time
scenarios. Despite these challenges, ROS excels in asynchronous and parallel processing, making
it a robust framework for modern robotics. Implementing ROS in educational and research
settings is challenging due to its complexity and invasiveness, requiring specific OSmanagement
skills. This is particularly difficult on non-standard or minimal systems not based on Debian
or Ubuntu. ROS’s rapid evolution and frequent updates, often lacking backward compatibil-
ity, further complicate maintaining older projects. This necessitates careful consideration in
environments where stability and ease of use are critical.

The learning curve for ROS is steep, posing challenges for students, researchers, and develop-
ers due to its demanding and fast-paced development environment. Despite these challenges,
ROS remains a pivotal software in setting standards for distributed agent systems across vari-
ous sectors, including robotics and IoT. ROS and SkRobot share core functional concepts that
facilitate the development of distributed systems. An abstracted comparison of their properties
includes:

• Utilization of a communication protocol with synchronous and asynchronous elements.
• Default intervals or synchronisation sources to regulate computational timing.
• Creation of data queues in a 1:N relationship for data producers.
• Subscription model allowing consumers to receive data from queues.
• Capability to transport any data type in real-time or pseudo-real-time through binary formats via asyn-
chronous communication.

• Runtime modification and distribution of component-specific variables and parameters.
• Support for request/response transactions and streaming distribution, with the service provider constantly
engaging in asynchronous communication.

• Support for multiple programming languages like C++ and Python through specific libraries and modules.
• Open-source licensing of the frameworks used.
• Enhanced system efficiency, computability, control, and resilience, with clustering and mirroring capabilities
for automatic substitution and computational augmentation across multiple CPUs and machines.

These attributes underline the advanced capabilities of both ROS and SkRobot in managing
complex, distributed systems efficiently. As described in Table 1, ROS and SkRobot share
foundational concepts in distributed system design, yet they were developed independently,

26https://gitlab.com/Tetsuo-tek/InoxPacks last accessed June 2024
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with ROS being studied and understood later in SkRobot’s development. This resulted in
convergent evolution, driven by common challenges within their domains, yet they differ
significantly in their development philosophies and ecosystem structures.

Aspect ROS SkRobot
System Compo-
nents

Nodes as atomic entities, com-
plex relationships

Nodes (external satellites/central hubs),
subnodes (internal satellites/modules),
DipoleNetwork for dual-layer manage-
ment

Development Ap-
proach

Robotics-focused, lower-level
operations

Abstract design, pulsating processing,
broad applicability, efficient notification
engine

Code and Interface
Management

Focuses on robotics, requires
managing relationships

Uses SkAbstractFlowSat to simplify satel-
lite/module creation, supports Qt/C++
and Python (2/3)

System Architec-
ture and Manage-
ment

Many dependencies, invasive,
non-centralized in ROS-2, com-
plex network configuration

Minimal OS changes, binaries/config files
for workflows, multi-centralized hubs
managing asynchronous messaging

Event Handling Callback paradigm, limited
flexibility

Signal/Slot paradigm, flexible event man-
agement, stable environment

Learning Curve Steep, complex setup, frequent
updates

Gradual, fewer dependencies, streamlined
setup

Table 1
Comparative Analysis of ROS and SkRobot

While both systems provide robust frameworks for developing distributed applications,
SkRobot offers a more developer-friendly environment with its simplified setup, broader system
compatibility, and more abstract design philosophy. In contrast, with its detailed but complex
system requirements, ROS provides a powerful but potentially cumbersome platform for specific
robotic applications.

6. Threats to Validity

Potential biases and limitations could impact the findings of the comparative analysis between
ROS and SkRobot. The primary concern is selection bias, as focusing exclusively on ROS
and SkRobot may overlook other platforms providing different insights. The analysis relies
on subjective interpretations based on individual experiences, which may not be universally
applicable. The generalizability of the results is limited by specific use cases and platform
dependencies, primarily Debian or Unix-like environments, potentially skewing the analysis
towards these conditions. The rapid evolution of ROS and SkRobot introduces a dynamic
factor, as frequent updates may quickly render some points outdated, affecting the long-term
relevance of the analysis. Continuous development can lead to inconsistencies between versions,
impacting stability and reliability. The analysis lacks empirical data to substantiate theoretical
assessments, relying on inferred performance metrics. Variability in system configurations
across implementations could lead to performance variations, complicating the application of



the findings. While the analysis outlines functional differences and similarities between ROS
and SkRobot, the interpretations are subject to the limitations of rapid development cycles,
platform-specific dependencies, and broader application contexts. These factors should be
considered to ensure the insights are relevant and appropriate for specific use cases.
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