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Abstract 
This article discusses the network attacks detection in cyber-physical systems using neural 
networks based on logical rules. The object of the study was cyber-physical systems of varying 
degrees of heterogeneity. The study purpose is the cyber-physical system functioning process in a 
normal state and under conditions of network attacks on it.   
The authors analyzed the most common methods of presenting data circulating in cyber-physical 
systems and highlighted the main advantages and disadvantages of using each method. The authors 
also reviewed the most common network attacks detecting methods in cyber-physical systems and 
identified the advantages and disadvantages of these methods. 
As a result of the work, taking into account the previous analysis, a method of detecting network 
attacks in cyber-physical systems based on the use of a rule-based logical neural network was 
developed, implemented and researched. The authors also evaluated the accuracy of the method. 

Keywords  
Multivariate Time Series, Cyber-Physical Systems, Neural Networks, Rule-based Logic, Network 

Attacks 1 

1. Introduction 

Cyber-physical system (CPhS) are used in many different sectors and critical infrastructures, 
including manufacturing, distribution and transportation. 

A typical CPhS structure contains remote diagnostic tools, multiple control and 
redundancy loops, a user interface for input/output, logging, maintenance and supervisory 
control tools. Often, implementations of these tools are performed on multiple network 
protocols using multi-layer networking paradigms and architectures. 

Control loops typically use data obtained from actuators, sensors, and programmable logic 
controllers. Sensors in this context are understood as devices that measure some physical 
quantity, property and/or parameter and then send the resulting data of fixed discrete 
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variables to a logic controller for subsequent processing. Next, the logical controller processes 
the received data and generates the necessary commands, based on the final algorithms and 
control and decision-making mechanisms. The received commands are sent to the input of 
actuators, which are used to control controlled processes.  

The end observer (operational engineer) can interact with the input/output and display 
interfaces to obtain current data about the state of the system. It is also possible to manually 
configure set values or scheduled events, change control and/or operating algorithms. The 
user interface can additionally be used for communication with neighboring devices or remote 
control of the latter. It is common practice to use diagnostic and maintenance utilities to 
prevent, identify, and resolve abnormal operation or failures. 

Often, control loops are executed in a modular hierarchy: they can be either nested or 
executed in cascade, while the given values may be indirectly dependent on the values used 
between the loops if the system is not implemented in a single-level process execution. Lower-
level circuits usually operate continuously from the beginning of the technical process until 
its end, and the execution time of a given circuit can range from several machine cycles to 
several days. Figure 1 shows a typical logical structure of the CPhS and the operations 
performed on it [1, 2, 3]. 

 
Figure 1:  Logical structure of the CPhS. 

When developing the logical structure of the functioning and/or interaction of the CPhS, it 
is worth observing the principle of isolation: separation of the end-system network from the 
corporate, enterprise or global network. The functional component of circulating commands 
in networks varies - access to the global network, mail servers, data exchange and remote 
access are usually legitimate in an enterprise network, but clearly should not have a place in 
special-purpose CPhS. In an enterprise network, it is acceptable to lack strict procedures for 
monitoring the configuration of network equipment, policies for updating and operating 
software, etc. However, if you allow access to CPhS from the global network, additional risks 



in the operation of the CPhS could arise: the possibility of network attacks, illegitimate access 
and changes in functioning, etc. 

Practical considerations, such as the cost of setting up a public Internet connection or 
maintaining a flat network infrastructure, often mean that a connection between the CPhS 
and corporate networks is required. This connection poses a significant security risk and must 
be secured. If networks must be connected, it is highly recommended to allow only minimal 
connections and establish the connection through a firewall and DMZ (Demilitarized Zone). It 
is recommended to place servers that process CPhS data, which can be accessed from the 
enterprise network, in a DMZ. 

From the above, the following main components of the CPhS security architecture can be 
identified [4]: 

1. Network segmentation. Dividing the CPhS into security domains and separating it from 
other networks, such as the corporate network. Each network is divided into critical 
parts after an analysis of operational risk. Segmentation involves dividing a network 
into smaller networks.  

2. Protecting the boundaries of security domains. Edge protection devices manage the flow 
of information between security domains to protect the CPhS from cyberattacks, 
unauthorized logical and physical errors and accidents.  

3. Firewalls. These software packages allow you to administer network flows within target 
systems based on selected security policies. 

4. Intrusion detection systems. 
5. Layered architecture. Its includes the use of firewalls, demilitarized zones, and intrusion 

detection capabilities.  
6. Authentication and authorization. 
7. Monitoring, logging and auditing. These architectural elements are necessary to 

understand the current state of the CPhS and confirm that the system is operating 
normally, correctly and in normal mode. 

8. Abnormal operation detection, response and system recovery. 

2. A problem formulation 

The use of the security mechanisms described above allows you to divide the enterprise 
network into zones with different security policies, control the flow of information 
transmitted from one zone to another, and detect unauthorized access to the enterprise 
network, anomalous conditions and network attacks. Also, thanks to the introduction of 
defense in depth, it provides a fairly high level of security due to redundancy. However, some 
CPhS security threats may provide the opportunity for a successful attack even if all of the 
previously listed security mechanisms are in place. Such threats include: human factor, 
vulnerabilities of existing protocol implementations, vulnerabilities of firewalls and edge 
protection equipment, zero-day vulnerabilities, etc. That is, an attacker has the potential to 
gain full access to the operator’s terminal and manipulate input values to disrupt the normal 
flow of physical and logical processes of the system. 

Thus, attacks are possible in which none of the security mechanisms detects a violation - 
the only data on the basis of which anomalies can be detected are indicators of the current 
state of processes. Since the restoration of physical processes is extremely difficult and 



expensive, it is necessary to detect an anomaly as early as possible. This article is dedicated to 
this task. 

3. Overview of existing solutions 

Detection of anomalies in the flow of processes on a cyber-physical system of an enterprise 
can be based on the methods of presenting data within the system. Creating a full-fledged 
model of complex physical processes is a very non-trivial task: such an approach requires a 
deep understanding of the system and its implementation, and, consequently, an individual 
approach to each system separately or to a certain set of typical systems. In practice, they are 
often limited to methods for detecting anomalous CPhS states, based on methods of data 
presentation and their processing. 

Based on their descriptive nature, methods of presenting data in CPhS can be 
fundamentally divided into those using: 

• multivariate time series without transformation with subsequent analysis; 
• compressed, aggregated or otherwise processed multivariate time series; 
• fractal representation of the system topology; 
• graph structures of different types. 

In [5, 6, 7], the proposed approach considers data from actuators, PLCs (programmable 
logic controllers), and sensors. The authors of these works perform transformations of data 
received from the CPhS, the latter are converted into multidimensional time series. The use of 
multivariate time series is justified by the following principle: this method retains greater 
information content for further analysis by preserving connections between devices. In order 
to identify deviations in the operation processes of the CPhS, a forecast of the following state 
of the system is performed using a trained multidimensional time series forecasting model. 
The input of the model is the readings of the current state, and the output is the predicted 
result. Next, the divergence is calculated - the difference between the real value of the CPhS 
state and that predicted using the trained model. If the divergence value is above the threshold 
value, the system detects an abnormal condition. 

To predict the state of system components, in [8, 9, 10] it is used the mathematical 
apparatus of the Kalman filter, which has found wide application in problems of predicting 
the coordinates of a body moving in space. The data of the system components are presented 
in the form of a chaotic trajectory of motion of a certain body with variable speed in one-
dimensional space using the classical physical equations of path, speed and acceleration of a 
material point. 

The authors in [11, 12] followed different approaches. They propose to analyze the traffic 
received in the CPhS using discrete wavelet transform (DWT) of the sequence of data received 
from the inspected packets. Additionally, the authors perform a statistical analysis of various 
parameters of network packets obtained from the CPhS. 

In [13, 14], the authors use the method of multifractal data analysis to identify anomalies in 
the traffic of backbone networks. According to the authors, this approach adequately detects 
network problems or attacks. The values of the characteristics of the multifractal spectrum are 
used as signal metrics. 



The work [15, 16] considers the possibility of using classical graph structures to model the 
network infrastructure of complex large-scale objects (including critical ones. The authors 
also supplement classical graphs with the target function of the object and unary operations 
on the graph, reflecting cyber-attacks. 

In works [17, 18], the authors consider a graph-event model for presenting data in CPhS. 
This approach allows you to analyze the behavior of programs based on events generated 
during the operation of the system. The authors also present the system architecture and list 
the events that are monitored at the appropriate levels. Additionally, metrics are analyzed that 
allow one to evaluate the similarity of the resulting graph and the structure of the graphs of 
given applications. Experimental results are presented that illustrate the effectiveness and 
accuracy of the developed approach. 

The methods most suitable for CPhS include event graphs, signal graphs and their 
combination with multidimensional time series. For greater clarity, the main advantages and 
disadvantages of methods for presenting data in the CPhS, additional notes and other 
materials are given in Table 1. 

Analyzing the mechanisms, tools and mathematical apparatus used in methods for 
detecting network attacks aimed at CPhS, the following approaches can be distinguished in 
principle: 

• assessment of system self-similarity criteria; 
• prediction of the system state based on statistical tools; 
• prediction of system state based on machine learning. 

Advantages of the first [19, 20] and second methods [21, 22]: 

• high speed of processing results; 
• low demands on the system’s computing resources; 
• high accuracy of assessment in short time intervals – positive results in cases of 

detecting anomalies of short duration. 

Disadvantages of the first [19, 20] and second methods [21, 22]: 

• weak analysis or complete absence of analysis in the low-level segment of the system; 
• the difficulty of detecting long-term anomalies, provided they appear smoothly and 

have a relatively low growth rate. 

Advantages of the third method [23, 24, 25]: 

• high variability of the designs used and, as a result, the possibility of choosing 
between speed, quality and resource requirements of the system; 

• the possibility of the most in-depth and reliable detection of anomalies in the system 
low-level segment; 

• the ability to put the most in-depth analysis and improve the level of system security. 

Disadvantages of the method [23, 24, 25]: 



• initial complexity of settings; 
• the need for system training; 
• increased requirements for system resources in comparison with all other solutions; 
• impossibility of transferring the trained model to a new topology (unlike most other 

approaches), the need for retraining. 

Table 1 
Main characteristics of methods for presenting data in CPhS 

Based on the foregoing, the authors recommend focusing on solutions based on the use of 
machine learning due to increased variability, in particular, artificial neural networks [26]. 

4. Method for detecting network attacks on CPhS, based on the use 
of a rule-based logical neural network 

After a thorough analysis of the existing methods of presenting data in CPhS, the advantages 
of these methods, their disadvantages and areas of application, we can proceed to the 
development and implementation of our method of detecting network attacks in CPhS. 

The described method is based on processing the received time series from CPhS actuators 
and sensors, using a logical neural network to predict the following state of the system and 
calculating the divergence between the predicted and real values. 

The data processing and aggregation included the following steps: 

1. Assigning identification numbers to each of the devices (id, numbering was performed 
arbitrarily, but maintaining the logical connection “sender-receiver”). 

Task\Method of 
representation 

Time series Kalman 
algorithm 

DWT Fractals Graphs 

      
Variability 

 
+ + + - + 

Short-term attacks 
 

+ + + + + 

Long-term attacks 
 

+ + - + + 

Data Aggregation 
 

+ + + + + 

Performance 
 

+ + + + + 

Accounting for 
nonlinear processes 

 

+ + - - - 

Accounting for the 
system topology 

+ - - + - 



2. Changing the status indicators for those devices that cannot measure the degree of their 
"load", but can measure the degree of power discharge. 

Considering the previously discussed existing data presentation methods advantages and 
disadvantages, the authors decided to focus on the use of multivariate time series. The main 
reasons for this are: used data used variability, the possibility of manual adjustment of the 
solver parameters and high degree of method variability.  

When using multivariate time series, a neural network is usually trained on valid data to 
predict the system following state and calculate the divergence between the predicted and 
actual state. By analyzing the divergence, anomalous states in the system are detected. 

A classic multivariate time series is the following set: 
𝑋𝑋 =  �𝑋𝑋(1), 𝑋𝑋(2), … , 𝑋𝑋(𝑚𝑚)�, 

where each value at time 𝑡𝑡𝑡𝑡 is represented by a vector: 

𝑋𝑋 = {𝑥𝑥1
(𝑖𝑖), 𝑥𝑥2

(𝑖𝑖), … , 𝑥𝑥𝑛𝑛
(𝑖𝑖)} 

For ease of use the initial data received from system objects are normalized as follows: 

𝑥𝑥𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖
 

The CPhS system under consideration included 3 devices, each with 3 basic characteristics: 
the object state, the object load, the object physical data measured. Based on these parameters, 
the load level of a particular device is determined. The system load is determined by the 
maximum load value among all devices. 

Figures 2-4 provide examples of displaying normalized data about the state of the system 
during 24 hours, includes its operation in a normal state and in anomalous behavior. 

The collected statistics became the basis for creating training and test samples. 

 
Figure 2: Example of system operation in normal state. 

 
Figure 3  Example of system operation with Backdoor attacks. 



 
Figure 4 Example of system operation with DoS attacks. 

Based on previous studies, it was evident that multivariate time series are the best used 
with neural networks due to the fact that the latter have shown quite high accuracy in 
detecting network attacks when combined with the use of this data description method in 
CPhS. 

To avoid the previously listed disadvantages of using neural networks, especially the initial 
complexity of settings and the topology compiling complexity of the neural network, the 
authors was decided to use a rule-based logical neural network. 

The structure of this network is shown in Figure 5. 

 
Figure 5  Neural network structure. 

The neural network has 5 inputs, four of which receive data on the load of each device, 
obtained by converting the characteristics of the device using a clock series. The fifth input 
supplies data about the current time. The only output of the neural network determines the 



predicted load value of the system as a whole and, based on this, makes a conclusion about the 
presence/absence of an attack. 

The results of the developed neural network work are presented in the form of surfaces 
(Fig. 6 and Fig. 7).  

  

Figure 6  Results for the ratio device 1/time. Figure 7 Results of work for the ratio device 
1/device 3. 

The described method is based on processing the resulting multidimensional time series, 
compiled from data circulating within the CPhS, predicting the following state of the system 
using a logical neural network and analyzing the divergence that arise - the discrepancies 
between the real values of the system state and the predicted ones. 

The methods include 2 stages - preparatory and working. The preparatory stage is aimed at 
automatically training the neural network and involves the following steps: 

1. Preparation of test data - normalization and compilation of multivariate time series. 
2. Transfer of input data in the form of a multidimensional series to the input of a neural 

network. 
3. Training the neural network on the transmitted data until the specified accuracy is 

achieved on the test data. 

The working stage involves the direct detection of network attacks aimed at the CPhS and 
includes the following steps: 

1. Preparation of real data from a functioning CPhS – normalization and compilation of 
multidimensional time series. 

2. Transfer of input data in the form of a multidimensional series to the input of a neural 
network. 

3. Prediction of the following state of the system by a neural network based on inputted 
multidimensional time series. 

4. Calculation of the divergence between the predicted system state and the real one. 
5. Recording the presence or absence of attacks on the CPhS based on the received 

divergence. 



As previously noted, data that has undergone the normalization procedure must be 
preprocessed: for all points in the time series, a predicted value is determined, as shown in 
Figure 8. 

 

Figure 8  Example of system state prediction. 

To assess the developed method accuracy, the following parameters were calculated: 

1. Accuracy: A = (TP +  TN) / (P +  N); 
2. Precision: Pr = TP / (TP +  FP); 
3. True Positive Rate: 𝑇𝑇𝑇𝑇𝑇𝑇 =  TP / (TP +  FN); 
4. True Negative Rate: 𝑇𝑇𝑇𝑇𝑇𝑇 =  TN / (TN +  FP); 
5. False Positive Rate: 𝐹𝐹𝐹𝐹𝐹𝐹 =  FP / (FP +  TN); 
6. False Negative Rate: 𝐹𝐹𝐹𝐹𝐹𝐹 =  FN / (FN +  TP); 
7. Positive Predictive: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  1 −  FP / (FP +  TP); 
8. Negative Predictive: 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  TN / (TN +  FN); 
9. F-Score = 2𝑇𝑇𝑇𝑇 / (2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹); 

where TP – the number of correct detections system normal state (True Positive);  TN – 
number of correct detections of attacks on the system (True Negative); FP – number of 
unrecognized attacks (False Positive); FN – the normal system states number recognized as 
attacks (False Negative); P – total number of normal CPhS states (Positive); N – total number 
of CPhS states, including attacks (Negative). 

Below are the values for all considered time periods in the form of tables. These values are 
broken down by attack type. After each table with the results of calculations, the authors give 
conclusions about the accuracy of the developed method. 

On the segment without attacks, the overall accuracy (Precision) turned out to be equal 
to one. According to the authors, this result is due to the false positives (FP) absence, since 
there were no attacks in this segment. The closeness of the solution (accuracy) allowed the 
authors to conclude that some disagreement (FN) was present – but the model was not 
retrained. 

 
 



Table 2 
Received data in the “without attacks” segment 

Analyzing the “DoS attack” segment, we can say that here the method showed positive 
results. These are confirmed by high closeness of solutions (Accuracy) and high general 
accuracy of classification (Precision). False Positive Rate is less than 0.1 and False Negative 
Rate is less than 0.1, both are very close to each other. This indicates that the false detection 
rate is a small fraction of the total number of attacks. 

Table 3 
Received data in the “DoS attack” segment. 

Parameters Values Parameters Values 
    

All  
 

86 400 Accuracy 0,90 

Positive  
 

86 400 Precision 1,00 

Negative  
 

0 True Positive Rate 0,90 

True Positive  
 

77 414 True Negative Rate - 

True Negative  
 

0 False Positive Rate - 

False Positive  
 

0 False Negative Rate 0,10 

False Negative 
 

8 986 Positive Predictive 
 

1,00 

  Negative Predictive 
 

0,00 

  F-Score 0,95 

Parameters Values Parameters Values 
    

All  
 

86 400 Accuracy 0,92 

Positive  
 

34 747 Precision 0,89 

Negative  
 

51 653 True Positive Rate 0,93 

True Positive  
 

32 258 True Negative Rate 0,92 

True Negative  
 

47 644 False Positive Rate 0,08 

False Positive  
 

4 009 False Negative Rate 0,07 



 
In the segment with Backdoor attacks, the method showed the lowest accuracy (Precision) 

and proximity of solutions (Accuracy). About a third of the attacks were incorrectly classified 
by the system as a normal CPhS state. The authors explain this by the fact that in this case, 
backdoor attacks were understood as resending the package after certain time intervals. To 
improve the performance of the method, the authors recommend using additional attack 
detection criteria or using an event handler to retransmit previously received packets. 

Table 4 
Received data in the “Backdoor attacks” segment. 

5. Conclusions 

The work results are the development, implementation and research of the implemented 
method of detecting network attacks in the CPhS. The method involves using a rule-based 
logical neural network. 

Detection of network attacks carried out on the CPhS consists of the following stages: 

1. Data are processed and presented in the form of multidimensional time series 
2. Developing a neural network based on the plural of rules. 

False Negative 
 

2 489 Positive Predictive 
 

0,89 

  Negative Predictive 
 

0,95 

  F-Score 0,91 

Parameters Values Parameters Values 
    

All  
 

86 400 Accuracy 0,79 

Positive  
 

55 829 Precision 0,84 

Negative  
 

30 571 True Positive Rate 0,84 

True Positive  
 

47 065 True Negative Rate 0,70 

True Negative  
 

21 523 False Positive Rate 0,30 

False Positive  
 

9 048 False Negative Rate 0,16 

False Negative 
 

8 765 Positive Predictive 
 

0,84 

  Negative Predictive 
 

0,71 

  F-Score 0,84 



3. Training a developed neural network on a test samples. 
4. Prediction of the following state of the system. 
5. Calculation of the divergence between the predicted and actual states of the system. 

The average value of accuracy (Precision; 0.91) and proximity of solutions (Accuracy; 0.87), 
as well as the values of False Positive Rate (0.13) and False Negative Rate (0.11) indicate the 
absence of model overtraining and the method high reliability. 
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