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Abstract 
Stress is a pervasive issue in modern society, significantly impacting both physical and mental health. 
Effective real-time classification of stress levels from biosignals is critical for timely interventions 
and improving overall well-being. However, real-time stress classification is computationally 
demanding and often impractical with traditional methods. This study aims to address these 
challenges by developing parallel computing techniques to enhance the efficiency and accuracy of 
stress classification using ultra-short biosignals. In this research, we utilized CUDA technology and 
OpenMP to accelerate the preprocessing and classification stages of biosignals. The primary goal was 
to reduce computation time while maintaining high classification accuracy. Using CUDA for parallel 
processing, we achieved a speedup of 13.21 times compared to sequential processing. OpenMP also 
provided a significant speedup of 4.65 times using 8 threads. These results highlight the efficiency 
gains from leveraging parallel computing architectures. We also explored the use of ultra-short 
biosignals for stress classification, achieving an accuracy of 87.98%. This represents the highest 
accuracy reported in studies utilizing such short time intervals, demonstrating the feasibility of using 
brief biosignals for effective stress detection. The findings indicate that the proposed parallel 
computing methods not only reduce processing time significantly but also maintain high accuracy in 
stress classification.  
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1. Introduction 

The use of parallel programming technologies to classify stress levels based on biosignal 
analysis is an urgent problem, as it not only contributes to the development of innovative health 
monitoring methods [1], but also requires continuous improvement of cybersecurity measures 
to protect the confidentiality of information about users' biometric data from potential threats. 
It is known [2] that stress is a problem that affects more than half of the adult population. This 
condition has a direct impact on human health and can cause insomnia, apathy, and heart 
disease. A study by the American Psychological Association showed that the number of adults 
suffering from long-term stress increased significantly from 48% in 2019 to 58% in 2023 in the 
age group of 35 to 44 years. There is also an increase in the number of people diagnosed with 
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psychological illnesses from 31% to 45% in the same age group [3]. In addition, there are studies 
that show that a state of constant stress affects not only psychological health, but also physical 
health, which can lead to diseases such as diabetes, cancer, and various cardiovascular and 
respiratory diseases [4]. Moreover, the field of stress research has a wide range of applications, 
ranging from accelerating learning and increasing productivity to reducing the risk of road 
accidents [5, 6]. 

For the above reasons, it is important to develop a fast automated system that can measure 
a person's stress level throughout the day, detect threatening conditions, and notify the user 
about them. Given that stress is regulated by the autonomic nervous system, it can be detected 
based on physiological indicators such as electrocardiogram (ECG), galvanic-skin response 
(GSR), electromyogram (EMG), heart rate variability (HRV), heart rate (HR), blood pressure, 
respiratory rate, and temperature [7]. In our study, we will rely on indicators extracted from 
ECG, EMG, HR, respiratory rate, and GSR, as these biosignals are most often used to classify 
stress levels. However, the main problem is the need for a clean and continuous signal of about 
5 minutes to achieve high accuracy [8], which can be problematic in real time. 

In addition, bio-signal processing is a computationally complex process that requires a lot of 
time and resources, which is also a problem when the goal is to create a near real-time stress 
level classification system. To solve this problem, parallel programming technologies such as 
OpenMP and CUDA can be used. 

The aim of this study is to develop a parallel biosignal processing algorithm for classifying 
human stress level and the possibility of implementing it in an automated system that would 
work in real time. Additionally, this study introduces the use of ultra-short biosignals of two 
seconds in length. These ultra-short signals, under specific conditions, can significantly speed 
up the biosignal processing process while maintaining accuracy. Studies have shown that ultra-
short HRV analysis (2 to 5 seconds) can reliably estimate stress levels under controlled 
conditions [9, 10]. We will clearly define the conditions under which these ultra-short signals 
are effective, including their limitations, and how they can be integrated into the stress level 
classification algorithm. This study will address the computational challenges and propose 
solutions to achieve real-time stress level monitoring, enhancing both the efficiency and 
security of health monitoring systems. 

As a result, the main contributions of this work are as follows: 

1) A parallel algorithm for stress level classification based on human biosignal processing 
has been developed. 

2) Performance indicators for the use of parallel computing technologies OpenMP and 
CUDA were found and analyzed. 

3) The possibility of using ultra-short biosignals of two seconds in length was proposed, 
which made it possible to significantly speed up the process of biosignal processing. 

The developed stress level classification algorithm, optimized by parallel computing and the 
use of ultrashort biosignals, can be integrated into automated medical monitoring systems, 
which will allow faster detection of patients' stressful conditions and provide appropriate 
support. In particular, the analysis of performance indicators and data processing speed of such 
an algorithm is also critical to ensuring the security and confidentiality of patients' biometric 
data, which are key aspects in the field of cybersecurity in medical systems. 



2. Analysis of literary sources 

Stress is a growing problem in modern society that has a direct impact on human health and 
functioning. Therefore, there are currently many studies that aim to determine the level of 
human stress during the day, which allows healthcare professionals to control and influence 
this condition. 

Mohammad Naim Rastgoo and other authors [11] proposed a method for classifying stress 
levels based on the ECG signal. The experiment was conducted for different window lengths 
and the best results were observed for windows of 420-450 seconds, namely, an accuracy of 
92.12% was achieved. However, with the smallest window lengths, from 5 to 30 seconds, the 
maximum accuracy achieved was 71.66%. 

In their study [12], the authors Dun Hu and Lifu Gao used heart rate variability as a 
characterizing feature. As a result, they were able to achieve an accuracy of 93.7% using a KNN 
classifier. 

Kun Liu and other authors in their study [8] aim to categorize the level of stress based on 
short signals, namely from 30 seconds to 3 minutes, using HRV. Using an SVM classifier, they 
managed to achieve the best result of 85.3% accuracy. 

Ali I. Siam and others [6] in their study used indicators such as electrocardiogram, galvanic-
skin response, electromyogram, and respiratory rate to predict stress levels and were able to 
achieve 98% accuracy with a Random Forest classifier, which is one of the highest accuracy 
rates among all the studies we reviewed. The disadvantage of this experiment is the high data 
processing time, as it takes longer to obtain data from four different signals than in the previous 
ones, where only one or two biosignals were taken into account. Also, windows of 1 minute are 
analyzed, which requires continuous recording for a specified period of time. 

Neural networks are also often used to classify stress levels. Mahtab Vaezi and other authors 
in their study [13] were able to achieve an accuracy of 93.6% using an ECG signal to predict 
stress levels, which is still the highest among similar studies. 

All of the above studies use the DriveDB [14] dataset to train the model and evaluate the 
classification accuracy. There are also other studies on determining the level of stress, in 
particular [15] proposes a method that uses a finger tapping test to analyze psychophysical 
states, and develops a mobile application and a machine learning model to detect and predict 
anomalies, which provided information for future experiments and improved model accuracy. 
The developed model is a multilayer recurrent neural network that demonstrates 1.5% error rate 
on synthetic data and 5% on real data with a similar distribution. The phenomenon of 
professional stress was studied in [16]. The authors presented its sources, symptoms, and 
development models, developing a stress classification and an information system for 
determining the level of stress exposure of an operator during professional activities. 

Recent studies have also explored the use of ultra-short biosignals to classify stress levels, 
showing promising results. For example, Shaffer and Ginsberg [9] demonstrated that ultra-short 
HRV recordings of just 2 to 5 seconds can reliably estimate stress levels under controlled 
conditions. Munoz et al. [10] further validated this approach, highlighting that while shorter 
signals are more susceptible to noise, they can still provide accurate stress assessments when 
using advanced signal processing techniques. These findings suggest that ultra-short biosignals 
could be effectively used for real-time stress monitoring, offering significant advantages in 
terms of processing speed and practicality. 



Based on the above-mentioned studies, we can say that the analysis of several biosignals to 
determine the level of stress is rarely used, since processing such a large amount of data takes 
a relatively long time. At the same time, studies that use more than one characterizing signal 
show a better level of accuracy compared to those that use a single signal. Therefore, our 
research will focus on speedup signal preprocessing by parallelization. Also, this approach will 
allow us to study ultra-short signals without compromising the speed of execution, which is 
crucial in real-time systems. 

3. Methods and means 

It is important to investigate the relationship between physiological signs, such as 
electrocardiogram, electromyogram, galvanic-skin response, heart rate and respiratory rate, 
and the stress state of the person being measured. To achieve this, next steps are necessary: 

1) Pre-processing: the signal is extracted, divided into segments according to the window 
size under study, and filtered. 

2) Feature extraction and selection: extracting the main characteristics from the pre-
processed and normalized signal. 

3) Classification: directly determining the patient's condition based on the obtained 
characteristics using a machine learning model. 

3.1. Dataset description 

For the experiment, we used the same dataset DriveDB as in the works analyzed above, obtained 
by J. A. Healey and R. W. Picard as a result of a study of the stress level of drivers while driving 
an unknown route in Boston. During the experiment, biosignals such as electrocardiogram, 
electromyogram, skin conductivity, respiration, and heart rate were continuously recorded for 
about 50 minutes for twenty-four drivers. 

The overall route is divided into several periods with different levels of stress, respectively. 
The rest periods are 15 minutes each at the beginning and end of the recording. They were 
created to measure the driver's baseline performance and to create a situation with no stress 
indicators. Afterwards, the volunteers went through phases of driving in a city with heavy 
traffic and correspondingly high stress levels, as well as periods with medium stress levels while 
traveling on the highway. Since we are using electrocardiogram, skin-galvanic response, 
electromyogram, heart rate, and respiratory rate for our study, we first need to analyze the 
availability of the data we need among the drivers represented in the dataset. As a result, it 
turned out that records 2-4 do not contain EMG, record 13 has no GSR biosignal, and record 14 
has no heart rate. Therefore, we will use only records 5-12 and 15-16 for the experiment. 

3.2. Biosignals preprocessing 

Baseline offset is a type of noise that most often occurs in the ECG signal, resulting from the 
subject's movements or breathing during the recording of the indicator [17, 18]. This type of 
noise can significantly affect the results of the study, so it is important to get rid of it before 
selection of characterizing features. It can be eliminated by discarding low-frequency 
components in the signal (less than 0.5 Hz) [6]. To do this, let's use the fast Fourier transform 
to move from numerical to frequency indicators using formula (1). After that, we assign 0 to all 



values of the function that are less than 0.5 Hz (see formula (2)). After that, using the inverse 
fast Fourier transform (3), we return to the numerical indicators. 

 𝑋𝑋𝑘𝑘 = ∑ 𝑥𝑥𝑚𝑚𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁𝑁𝑁−1
𝑚𝑚=0             𝑘𝑘 = 0, … , 𝑛𝑛 − 1   , (1) 

   𝑋𝑋(𝑓𝑓) = � 𝑋𝑋(𝑓𝑓), 𝑓𝑓 > 0.5
0,               𝑓𝑓 ≤ 0.5       , (2) 

 𝑥𝑥𝑘𝑘 = 1
𝑁𝑁
∑ 𝑋𝑋𝑘𝑘𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁               𝑘𝑘 = 0, … , 𝑛𝑛 − 1   ,    𝑁𝑁−1
𝑚𝑚=0  (3) 

where 𝑥𝑥𝑘𝑘 = {𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1} – numerical values of the ECG signal and 𝑋𝑋𝑘𝑘 =
{𝑋𝑋0, 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛−1} – frequency values of the ECG signal. 

Figure 1 clearly demonstrates the change in the ECG signal in the time and frequency ranges 
for the seventh driver. 

 

Figure 1: The ECG signal of the seventh driver before and after filtering the signal using the 
fast Fourier transform. 

Another important step is to normalize the skin conductivity signal to bring all values to a 
common range. For this purpose, we use minimax normalization [19, 20]. Other biomarkers 
used in our study, such as EMG, heart rate, and respiratory rate, do not require any additional 
preprocessing. 

3.3. Segmentation and feature extraction 

The next step is to divide the data into segments according to the driving period, each of which 
corresponds to a certain level of stress. In our case, the end and beginning of each phase of the 
experiment are marked with a special marking signal, which can be used to separate the data 
and assign them an appropriate stress level score (Table 1), which will determine the correctness 
of the classification. 

The resulting segments are then divided into smaller non-overlapping fragments of 2 
seconds each. After that, you can move on to the next stage, the extraction and selection of 
characterizing features. 



Table 1 
Stress levels during the respective phases of driving 

For each fragment into which we divided the recordings in the previous step, we calculate 
35 statistics that we will use to train our model. As a result, we extracted 8 features of the ECG 
signal (SDNN, SDANN, AVNN, RMSSD, pNN50, TP, LF, HF), 6 features of the electromyogram 
(mean, RMS, waveform length, zero crossings, slope sign changes, Willison Amplitude), 6 
features for the GSR (mean, std, frequency, magnitude, duration, area), duration, area) collected 
from the sensors on the arm and leg, 3 characteristics of heart rate (mean, std, HRV ratio) and 
6 features corresponding to respiratory rate (mean, std, ULF, VLF, LF, HF). 

3.4. Classification 

At this stage, we used the scikit-learn library to train and evaluate the model. As a model, we 
used Random Forest, because according to the study by Ali I. Siam [6], this model shows the 
best classification results. The hyperparameters for the model were selected using grid search 
[21]. The selection results are shown in Table 2. 

Table 2 
Hyperparameters used for model training 

3.5. Parallel Computation of Characteristic Features 

Since during the experiment we noticed that the stage of characterizing features extraction and 
selection takes the most time, we decided to speed up this process using modern parallel and 
distributed computing technologies. 

OpenMP [22] is a specification for parallelizing programs in programming languages such 
as C, C++, and Fortran. It makes it easy to use multithreading to speed up computing on multi-
core architectures. 

The proposed parallel method based on OpenMP technology:  

1. Load the biosignal dataset into RAM. 
2. Set the number of threads to be used for parallel processing. 
3. Distribute the processing of each biosignal among the available threads. 
4. Perform data cleaning and normalization in parallel for each biosignal. 
5. Divide each biosignal into two-second segments in parallel. 
6. Calculate the characteristics for each segment of the biosignal in parallel. 
7. Save the calculated characteristics in a shared matrix. 

Driving phase Stress level 
Rest 1.0 

Highway 3.0 
City 5.0 

N_estimators Min_sample_split Min_sample_leaf Max_features Bootstrap Random_state 

400 2 1 sqrt FALSE 1 



Parallelization on graphics processing units (GPUs) using CUDA [23] is an effective way to 
speed up computing by using the parallel computing capabilities of modern GPUs. 

Parallel algorithm using CUDA: 

1. Load the dataset into the GPU memory, making it available for further processing. 
2. Create six CUDA cores, each of which will be responsible for processing one of the 

biosignals. 
3. In each core, allocate the number of blocks equal to the number of characteristics 

calculated for the corresponding biosignal. 
4. Clean and normalize the data for each biosignal to prepare it for further analysis. 
5. Within each block, divide the biosignal into 2-second segments for more detailed 

analysis. 
6. Calculate the characteristics for each segment in parallel on six cores and save the 

results in a matrix in the device's memory using the capabilities of parallel computing. 
7. Transfer the calculated characteristics from the GPU memory to the local memory and 

save them in a .csv file for further use in the scikit-learn library. 

4. Numerical experiments 

The experiment was performed on a computer with an AMD Ryzen 7 5800H processor (8 
cores/16 threads) and a discrete Nvidia GeForce RTX 3060 graphics processor. 

4.1. Analysis of Sequential Algorithm Execution Time 

Before starting to work on the parallel algorithm, it was decided to first estimate the time spent 
on each stage of the sequential algorithm. The results, namely the time spent, can be seen in 
Table 3. 

Table 3 
Time spent on each stage of the program, s 

As we can see, the Feature Extraction stage takes three quarters of the total time spent on 
classifying the driver's stress level, so there is a need for parallelization to speed up this stage 
of the program. 

4.2. Analysis of Parallel Algorithm Execution Time 

In order to reduce the execution time, we used OpenMP and CUDA technologies that run on 
CPU and GPU, respectively. The calculation results are shown in Table 4. We can observe that 
as the number of threads used for computation increases, the execution time decreases, which 
indicates the feasibility of using parallel algorithms to solve the problem. It is also important to 
note that even though we used an 8-core processor with 16 threads, the execution time does 

Preprocessing Feature Extraction Model Training Total Time 

19.32 120.46 18.55 158.33 



not decrease when the number of worker threads is increased to 16. The reason is that there is 
not enough RAM to store all the necessary variables. 

Table 4 
Time spent on the feature extraction stage depending on the algorithm execution method, s 

Now let's calculate the speedup and efficiency to evaluate our proposed algorithm. It should 
be noted that theoretical speedup and efficiency are not calculated for GPUs. 

Table 5 
Theoretical and actual speedup and efficiency depending on the execution method 

 
Figure 2: Dependence of theoretical and actual speedup on the number of threads in a parallel 
algorithm. 

As you can see in Figure 2, the actual speedup value is lower than the theoretical one. This 
is due to the presence of critical sections in the parallel part of the code, as well as the need to 
synchronize, allocate and close threads. For 8 threads, the theoretical speedup is already close 
to the actual one. 

By classifying the stress level using the Random Forest model, we managed to achieve an 
accuracy of 87.98%. After parallelization, the accuracy did not change significantly, which 
allows us to say that the parallel algorithm was designed correctly. It is also worth noting that 
the achieved accuracy is the highest for studies using ultra-short signals of 2 seconds. 

Sequential 
CPU 

GPU 
2 threads 4 threads 8 threads 16 threads 

120.46 78.33 49.16 25.87 26.03 9.12 

 
CPU 

GPU 
2 threads 4 threads 8 threads 16 threads 

Actual 
speedup 

1.54 2.45 4.66 4.63 13.21 

Theoretical 
speedup 

1.82 3.08 4.71 6.41 - 

Efficiency 0.10 0.15 0.29 0.29 - 



5.  Discussion and Conclusion 

Stress is not only an unpleasant condition, but also a serious problem in modern life. Constant 
stress can negatively affect a person's physical and mental health. It can lead to problems such 
as insomnia, decreased immunity, apathy, and an increased risk of developing serious illnesses 
such as heart disease and depression. In addition, stress can affect productivity and the ability 
to concentrate, which can affect the quality of life in general. 

It is for this reason that creating a method to classify stress states is a necessity that can 
greatly improve the life and productivity of each individual. However, as mentioned earlier, 
there are a number of problems associated with achieving this goal. One of these problems is 
the complexity of computation, which makes this process time-consuming and makes real-time 
classification impossible. We tried to solve this problem in this study. 

In general, the use of CUDA technology gave the greatest speedup, which amounted to 13.21 
at the stage of biosignal processing. This is because CUDA uses the GPU for parallel 
calculations, which is particularly effective for computing large amounts of data. Thus, the use 
of CUDA has made it possible to significantly reduce the calculation time compared to other 
technologies. Using OpenMP, we also managed to achieve a certain speedup, namely 4.65 times 
for 8 threads. However, this speedup was less than that of CUDA. It is also important to note 
that as the number of threads to perform calculations increases, the speedup increases. This 
may indicate that with the increase in CPU power, we can expect a further increase in the speed 
of calculations and acceleration in general. 

In addition, the use of parallel algorithms has a number of other advantages: 

1. Efficient use of resources: Parallel algorithms allow you to use the full potential of 
computing resources, such as multi-core processors or server clusters. 

2. Scalability: Parallel algorithms can be easily scaled to handle large amounts of data or 
perform complex calculations. 

3. Ability to use the latest technologies: Parallel algorithms allow the use of the latest 
technologies and computing system architectures to maximize performance and 
efficiency. 

We also tried to use ultra-short biosignals for classification. We were able to achieve an 
accuracy of 87.98%, which is the highest result among studies that have used such short time 
intervals. However, it is important to note the limitations of the proposed methods. One 
significant limitation is the dependency on hardware capabilities, which can vary significantly 
among users and may affect the performance and feasibility of the parallel algorithms in less 
advanced systems. Additionally, the use of ultra-short biosignals, while offering speed 
advantages, can introduce noise and reduce the accuracy of stress classification under less 
controlled conditions. Further research is needed to determine the optimal conditions and 
preprocessing techniques to mitigate these issues. 

Future work will focus on improving accuracy by exploring other machine learning models, 
selecting more classification features, and identifying more relevant features that have a greater 
impact on stress level classification results. Additionally, expanding the dataset to include a 
more diverse population and different stress-inducing scenarios will help generalize the 
findings. Investigating real-world deployment scenarios, including mobile and wearable 
devices, will also be a key area of future research to ensure the practicality and robustness of 



the proposed system. In addition, the proposed parallel computing methods can be used in other 
stress level studies to optimize and accelerate the signal preprocessing stage. 

To summarize, the parallel method we have proposed can be used to develop automated 
systems and devices [24, 25] aimed at tracking and analyzing a person's stress level throughout 
the day, taking into account not only medical and psychological aspects but also the importance 
of cybersecurity to maintain the confidentiality and integrity of personal information. This can 
become an important tool for healthcare professionals and researchers in the fields of 
psychology and medicine, allowing them to provide timely assistance and interventions to 
support people's physical and emotional health. 
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