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Abstract 
The article examines the features of modern polymorphic malware and its impact on the functioning 
of computer systems. Existing approaches and methods of its detection and analysis are considered, 
such as: string search algorithm, intelligent data analysis, sandbox analysis, machine learning, 
structural feature engineering. Their advantages and disadvantages are determined. The necessity of 
using a new approach, namely the detection of malicious software using probabilistic logical 
networks, is argued. Its advantages and development prospects are determined. In the study, a 
comprehensive approach consisting of 3 stages is proposed for the detection of polymorphic malware. 
The first one uses string search algorithms. The second is a complex of methods, including intelligent 
data analysis, sandbox analysis, machine learning, and structural feature engineering. In the third 
step, the use of probabilistic logical networks is proposed, which will allow establishing the 
probability that the software belongs to polymorphic malware. The use of the proposed integrated 
approach will also allow to determine the necessary methods for neutralization of detected malicious 
software. This approach will maximize the probability of detecting polymorphic malware. 
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1. Introduction 

The search for and elimination of computer viruses is becoming an increasingly urgent and 
complex problem every year. After all, they pose a threat to the smooth functioning of computer 
systems that are used in increasingly critical areas of human activity. Therefore, the 
development of methods and means of neutralizing malicious software is one of the promising 
and priority research tasks in the field of computer science. Despite the continuous 
improvement of anti-virus software, the generation and distribution of malicious software 
increases year by year. One of the most serious problems faced by the developers of antivirus 
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software is the automatic mutation of the code of the malicious program. The mechanism of 
mutation and permutation of malicious program code is called polymorphism. Polymorphic 
malware cannot be identified by signature analysis. Therefore, for this purpose, it is necessary 
to use new, improved methods of analysis of modern malicious soft. 

2. Literature Review 

Among the scientists who studied the issue of detection and analysis of malicious software, 
the following can be distinguished: O. Savenko [1-4], S. Lysenko [1-4], A. Nicheporuk [1-4], 
A. Damodaran [6], K. Brezinski [8], M. Singh [9], B. Anderson [10], L. Bilge [11], U. Urooj [12], 
K. Gundogan [13] etc. 

Among the latest methods of analysis of modern malware [1-5] are some artificial 
intelligence (machine learning) algorithms that analyze a malicious program in a virtual 
machine. A virtual machine can run a packaged potentially dangerous file and dynamically 
analyze it, automatically testing code and behavior. In addition, the latest research looks 
promising, where anti-virus software uses modern machine learning methods and real-time 
behavior analysis in combination with static methods to identify suspicious activity and prevent 
threats. This approach to malware detection is called hybrid [6]. The importance and relevance 
of the topic of protection against malicious software is also evidenced by statistical data. Thus, 
according to the statistical company Statistica, the number of cyber attacks on computer 
systems is constantly increasing from year to year, which is shown in (Figure 1), and the number 
of attacks on computer systems by types of malicious software in Figure 2. 

 
Figure 1: Growth in the number of cyberattacks over the years in million [7]. 

 
Polymorphic malware is a type of virus that can change its code while retaining its core 

functionality. These viruses usually have a mutation mechanism based on code obfuscation, 
packaging, and metamorphism techniques that can encrypt or decrypt the virus code, each time 
creating a unique program code [8]. This adaptive behavior makes static signature-based 
detection methods ineffective because the malware code differs with each iteration of infection. 
Thus, the need for dynamic and proactive detection and remediation methods to combat 
polymorphic malware has become more important than ever. Polymorphic viruses use several 
adaptive strategies to ensure that they are not detected and neutralized. One of the most 
common strategies is code encryption using unique encryption algorithms [9]. This encryption 
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makes it difficult for antivirus software to detect the virus because it looks like a harmless file. 
A well-known block diagram of polymorphic malware detection is shown in Figure 3. 

 
Figure 2: Statistics of the number of cyberattacks by types of malicious software [7]. 

 

 
Figure 3: Block diagram of polymorphic malware detection. 

 
In addition, the virus may use an unzip program that only runs when the file is opened, 

making it more difficult to detect. Finally, polymorphic malware often uses anti-analysis 
techniques to thwart reverse engineering attempts. This may include methods such as code 
obfuscation, procedures to prevent reverse engineering, and others [10]. By applying these 
techniques, polymorphic malware becomes even more elusive, making detection and analysis 
quite a challenge. 



Detection of polymorphic malware requires the use of a combination of static and dynamic 
analysis methods [11]. While static analysis can provide initial insight into malware behavior, 
it is often ineffective due to the rapid change of polymorphic malware code. Therefore, dynamic 
analysis methods are important for effective threat detection and neutralization. Dynamic 
analysis involves running malware in a controlled environment, such as a virtual machine or 
sandbox, to observe its behavior [12]. By monitoring system actions, file modifications, network 
connections, and other indicators, security analysts can identify suspicious behavior and 
classify malware accordingly [3]. Behavioral analysis techniques are often used to improve 
detection capabilities. These methods include monitoring the file's runtime behavior, analyzing 
its actions, and assessing the risks it poses. By comparing the behavior of a potentially malicious 
executable against known patterns and heuristics, security tools can quickly identify instances 
of polymorphic malware. In addition, machine learning algorithms play an important role in 
detecting polymorphic malware. By learning from models and large datasets of known malware, 
these algorithms learn to identify malicious files and distinguish between polymorphic malware 
and legitimate software. This approach provides an efficient and scalable solution to combat the 
ever-growing threat of polymorphic malware. As polymorphic malware continues to evolve 
and evade traditional methods of detection and remediation, implementing effective 
countermeasures becomes an increasingly urgent need. Failure to mitigate the threat of 
polymorphic malware can lead to catastrophic consequences such as data leakage, financial 
loss, and reputational damage. 

2.1. String searching algorithms 

The malware detection method is an effective method used in cyber security to detect 
potential malware in a system [13, 14]. It involves scanning binary code or application code 
to look for specific lines of data commonly associated with malware. 

One of the most common tools for finding strings is the strings command on Unix-based 
systems. This command scans the file and outputs any sequences of printed characters, 
which often indicate human-readable lines of code in a program. 

In the context of malware detection, these lines can provide valuable information about 
the potential behavior of a suspicious file. For example, they can detect suspicious API calls, 
file paths, URLs, or registry keys that are often associated with malicious activity. 

However, string searching is not a reliable method. Advanced malware writers often use 
obfuscation techniques to hide their strings, or they may avoid using suspicious strings 
altogether. In addition, legitimate programs may also contain suspicious-looking strings by 
accident. 

Therefore, while string searches can be a useful first step in malware analysis, it is 
important to confirm the results using other methods. This can include dynamic analysis 
(observing the program's behavior at runtime), static analysis (examining the program's 
code without running it), or heuristic analysis (comparing the program's behavior or code 
patterns with known malware signatures). 

As such, the method of searching for malware strings is a valuable tool in the 
cybersecurity analyst's arsenal, but it should be used as part of a broader, comprehensive 
approach to malware detection and analysis. 



2.2. Intelligent data analysis 

One of the most promising ways to detect malware is the use of data analysis methods. 
These techniques involve analyzing large data sets to identify patterns, associations, or 
anomalies that may indicate malicious activity [15, 16]. 

The first step in the data mining discovery method is data collection. This involves 
collecting a wide range of data, such as network traffic logs, tracking system calls and user 
actions. Data can be collected from a single machine or a network of computers for broader 
analysis. 

Once data is collected, it is often pre-processed to convert it into a suitable format for 
data analysis. For example, raw data may need to be converted to a numeric format or 
filtered out for irrelevant data. 

Then, the pre-processed data is subjected to data mining algorithms. There are several 
types of data mining techniques that can be used, including classification, clustering, 
regression, and anomaly detection. These techniques can help identify patterns or 
anomalies that may indicate the presence of malware. 

Finally, the results can be presented in a format that is easily interpreted by computer 
security analysts, such as a visual dashboard or notification system. 

Classification, for example, involves training a model to recognize the characteristics of 
known malware and then using that model to classify new data as safe or malicious. 
Clustering, on the other hand, groups similar data together, which can help identify patterns 
in the data that may indicate an attack. 

After the data mining process, the results are often post-processed to remove any false 
positives or negatives. This may include cross-checking the results with other detection 
methods or manually checking for malware detection. 

It's worth noting that while data mining can be a powerful tool for malware detection, 
it's not foolproof. Sometimes it can give false positives or give a negative response. 
Therefore, it cannot detect all types of malware. However, when combined with other 
detection methods, data mining can significantly improve a system's ability to detect and 
respond to malware threats. 

2.3. Sandbox analysis 

Malware sandbox analysis is a technique used by cybersecurity professionals to analyze and 
understand the behavior of malware in a controlled environment [17, 18]. It involves 
running malware in a virtual or isolated environment, known as a sandbox, to observe its 
activities and gather valuable information. 

The goal of malware analysis is to reveal the capabilities of the malware, identify 
potential threats, and develop effective countermeasures. By executing malware in a 
controlled environment, analysts can study its interactions with the operating system, 
network, and other software components. 

During the analysis, various dynamic and static techniques are used. Dynamic analysis 
includes monitoring the malware's runtime behavior, such as file system modifications, 
network communication, and system calls. Static analysis, on the other hand, focuses on 
examining the code and structure of the malware without execution. 



Information gathered from analyzing the behavior of a malicious program in an isolated 
software environment helps identify infection vectors, infrastructure and management 
practices, payload delivery mechanisms, and potential data theft methods. This knowledge 
is critical to developing effective detection methods, updating security controls, and 
mitigating the impact of malware attacks. 

In summary, analysis in an isolated software environment is an important component of 
modern cybersecurity practices. It provides valuable information about the behavior and 
characteristics of malware, allowing cybersecurity organizations to improve their defense 
mechanisms and develop forward-looking methods to counter new threats. 

Traditional malware detection methods often struggle to keep up with the rapidly 
evolving malware attack landscape. Machine learning techniques have become a powerful 
tool to improve malware detection and combat these threats. 

2.4. Machine learning algorithms 

Machine learning algorithms can analyze large amounts of data and extract patterns and 
features that can be used to detect malicious behavior [19, 20, 21]. By training models on 
known malware samples and legitimate software, machine learning algorithms can learn to 
distinguish between them and accurately classify new and unknown files. 

One of the key benefits of using machine learning to detect malware is its ability to adapt 
and learn from new threats. As new types of malware emerge, machine learning models can 
be updated and retrained to effectively detect these new threats. 

There are several approaches to malware detection using machine learning, including 
static analysis and dynamic analysis. Static analysis involves examining the code and 
structure of a file without executing it, while dynamic analysis involves running the file in a 
controlled environment to observe its behavior. Both approaches can provide valuable 
information for malware detection. 

Cesare and Xiang proposed a polymorphic malware classification method called Malwise 
(Figure 4), which uses program-level emulation to unpack the malware code [22]. 

However, it is important to note that detecting malware using machine learning is not 
without challenges. Adversarial attacks, where attackers manipulate malware to avoid 
detection, can pose a significant problem. In addition, the large volume of data and the need 
to constantly update and retrain models require significant computing resources. 

In summary, machine learning offers promising solutions for malware detection by 
leveraging its ability to analyze vast amounts of data and identify patterns. By constantly 
improving and updating models, machine learning can improve the security of computer 
systems and networks against new malware threats. 

2.5. Structural feature engineering 

Structural feature engineering is a key aspect of the development of effective malware 
detection models [23-25].  

By extracting meaningful features from structured data, data analysts and researchers can 
improve the accuracy and reliability of their malware detection systems. 

 



 
Figure 4: Block diagram of the malware classification system [22]. 

The following steps describe a structural feature development method specifically designed 
for malware detection: 

1. Understanding data: Gaining a complete understanding of the structure and 
characteristics of malware data. Identifying relevant variables, their types, and any 
patterns or relationships present in the dataset. 

2. Feature Identification: Identifying features that may be informative for malware 
detection. This can be achieved through domain knowledge, exploratory data analysis, 
or statistical techniques specifically designed for malware detection. 

3. Feature Extraction: Extracting selected features from raw malware data and converting 
them into a suitable format for analysis. Application of mathematical transformations, 
scaling, normalization or encoding methods for preprocessing functions. 

4. Feature building: Creating new features by combining or modifying existing features in 
a way that captures important aspects of malware behavior. This may include 
aggregations, mathematical operations, or interactions between variables. 

5. Feature Selection: Selecting the most relevant features that significantly contribute to 
malware detection. This helps to reduce the dimensionality and improve the efficiency 
and accuracy of the detection model. 

6. Coding of features: coding of categorical features into numerical representations that 
can be processed by machine learning algorithms. Use techniques such as single coding, 
label coding, or target coding to effectively represent categorical variables. 

7. Scaling functions: Scale functions to a common range to ensure that they have 
comparable magnitudes. Standardization, normalization methods can be used for this. 

8. Feature Validation: Validate the developed features by evaluating their performance in 
a malware detection model. Using methods such as cross-validation and model 
evaluation metrics to measure the performance of the developed features and iteratively 
improve them as needed. 

By following this method of developing structural features, analysts and data scientists can 
improve the accuracy and reliability of their malware detection systems, leading to improved 
cybersecurity and anti-malware measures. 



The disadvantages of the considered methods require new approaches to the detection and 
analysis of malicious software. Among them is the detection of malware using probabilistic 
logic networks (PLN). 

3. Methodology 

3.1. Probabilistic logic networks (PLN) 

Malware detection is a critical aspect of cyber security. PLN [26-28] offer a powerful 
approach to detect and mitigate malware threats. PLNs combine probabilistic reasoning with 
logical inference to model complex relationships and dependencies in malware detection. 

PLN is a hybrid framework that combines probabilistic graphical models with first-order 
logic. They provide a flexible and expressive representation for capturing uncertainty and 
reasoning about complex domains. PLNs utilize the strengths of both probabilistic reasoning 
and logical inference, making them suitable for malware detection. 

One of the key advantages of PLNs in malware detection is their ability to handle uncertain 
and incomplete information. By assigning probabilities to different hypotheses, PLNs can 
estimate the probability of the presence of malware and make informed decisions. This 
probabilistic reasoning allows for more accurate and adaptive detection mechanisms. 

PLNs excel at capturing complex malware behaviors and patterns. They can represent both 
static and dynamic characteristics of malware, including code structure, system interactions, 
and propagation mechanisms. By modeling this behavior, PLNs can effectively distinguish 
between legitimate and malicious software. 

To train PLN to detect malware, a large dataset of known malware samples and benign 
software is required. Machine learning methods can be used to study PLN parameters and 
structure from these data. By iteratively refining the PLN with training examples, it can be 
tuned to accurately detect and classify PWDs. 

Advantages of PLN for malware detection: 

• flexibility: PLNs provide a flexible framework for modeling and justifying malware 
behavior, allowing for adaptation to new threats; 

• processing uncertainty: the probabilistic nature of PLN allows processing uncertain and 
incomplete information, increasing the accuracy of malware detection; 

• expressiveness: PLNs can capture complex relationships and dependencies found in 
malware, providing more comprehensive detection capabilities; 

• training from data: PLN can be trained using machine learning techniques, allowing for 
continuous improvement based on new malware samples. 

Challenges in PLN for malware detection: 

• scalability: as the complexity of malware and the size of datasets increase, scaling PLN 
to handle large-scale detection becomes a challenge; 

• knowledge development: creating a knowledge base and defining logical rules for 
detecting malicious software requires experience and knowledge in the field; 

• computational complexity: performing inference and learning in PLN can be 
computationally demanding, requiring efficient algorithms and systems. 



3.2. A comprehensive approach to the detection and analysis of polymorphic 
malware 

In the study for the detection of polymorphic malicious software, a complex approach (Figure 
5) is proposed, which consists of 3 stages. The first one uses string search algorithms. The 
second is a complex of methods, including intelligent data analysis, sandbox analysis, machine 
learning, and structural feature engineering. In the third step, the use of PLN is proposed, which 
will allow establishing the probability of the software belonging to polymorphic malware. The 
use of the proposed integrated approach will also allow to determine the necessary methods for 
neutralization of detected malicious software. 

 

 
Figure 5: A comprehensive approach to the detection and analysis of polymorphic malware. 
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4. Experiments 

A series of experiments was conducted to determine the effectiveness of the proposed 
technique. Various types of polymorphic generators were used to obtain modified polymorphic 
versions of viruses taken from [29]. All polymorphic versions, the generators they created were 
compiled with anti-debugging and anti-emulation options. For the first experiment, 100 viruses 
were generated. To evaluate the effectiveness of the proposed method, the percentage of 
detected viruses was determined at each step of the comprehensive approach proposed in the 
study. 

The results of the conducted experiment are shown in Table 1. 
Thus, only 12% of viruses were detected in step 1, 61% in step 2, and 89% in step 3 using PLN. 

The effectiveness of the proposed method according to the conducted experiment is 28% due to 
the use of PLN. Also, of the 89% of viruses detected by PLN, 9% were assigned to the range of 
probability of belonging to malicious software at the level of 0-25% (low level), at the level of 
25-75% (medium level) - 19%, at the level of 75- 100% - 72% (high level). The use of PLN allowed 
not only to increase the effectiveness of malware detection, but also to classify by the level of 
probability of belonging to malicious software. 

5. Conclusions 

The study proposes a comprehensive approach to the detection and analysis of polymorphic 
malware. This approach consists of three stages. The first one uses string search algorithms. 
The second is a complex of methods, including intelligent data analysis, sandbox analysis, 
machine learning and structural feature engineering. In the third step, the use of PLN is 
proposed, which will allow establishing the probability of the software belonging to 
polymorphic malware. The effectiveness of the proposed method according to the conducted 
experiment is 28% due to the use of PLN. The use of PLN allowed not only to increase the 
effectiveness of malware detection, but also to classify by the level of probability of belonging 
to malicious software. 

Table 1 
The percentage of detected viruses at each step of the proposed integrated approach 

Number of viruses 
generated 

The percentage of 
viruses detected by 

string search 
algorithms (step 1) 

The 
percentage 
of detected 
viruses by 

the 
methods of 

step 2 

Percentage 
of viruses 
detected 

using PLN 
(step 3) 

The range of 
probability 
that viruses 
belong to 

polymorphic 
malware 

The 
number of 
viruses in 
the range 

of 
probability 

of 
belonging 

to malware 
100 12 % 61 % 89 % 0-25 % (low) 9 % 

25-75 % 
(medium) 

19 % 

75-100 % 
(high) 

72 % 
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