
Obfuscation technologies of high-level source code
using artificial intelligence ⋆

Igor Golovko1,†, Oleg Savenko 1,† , Petro Vizhevskyi 1,†, , Olexandr Klein 1,†, , Abdel-
Badeeh M. Salem 2,†

1 Khmelnytskyi National University, 11 Institutska Street, Khmelnytskyi, 29000, Ukraine
2 Ain Shams University, Egypt

Abstract
This article provides an in-depth exploration of "Obfuscation Technologies of Source Code," focusing
on the latest advancements in methodologies to safeguard intellectual property in software. It
meticulously analyzes several key obfuscation techniques, including Identifier Renaming, Control
Flow Obfuscation, and the strategic insertion of Dead or Junk Code. Each technique is detailed in
terms of its implementation, benefits, and the specific aspects of software security it enhances. The
research further introduces a significant innovation through the integration of Artificial
Intelligence (AI) in the obfuscation process. AI is leveraged to dynamically optimize obfuscation
patterns and predict the most effective techniques tailored to specific software environments, which
marks a considerable improvement over traditional methods that often require manual intervention
and are prone to errors. The article substantiates these advancements with a theoretical framework
that models the effectiveness of obfuscation strategies using advanced machine learning algorithms.
These models assess the resilience of obfuscated code against reverse engineering, providing a
quantitative basis for the enhancements in security measures. This comprehensive discussion not
only sheds light on current practices but also sets the stage for future research and application in
software security, making it an essential resource for developers and cybersecurity experts dedicated
to enhancing the robustness of software protection.

Keywords
Code Obfuscation, Software Security, Artificial Intelligence in Security, Source Code Protection
Strategies. 12

1. Introduction

In the digital era, where software becomes an integral part of nearly every industry, the
protection of intellectual property assumes a special significance. Code obfuscation, as a method
of safeguarding software from reverse engineering, plays a pivotal role in ensuring the security
and confidentiality of the developed product. This process involves transforming the primary

ICyberPhyS-2024: 1st International Workshop on Intelligent & CyberPhysical Systems, June 28, 2024, Khmelnytskyi,
Ukraine
∗ Corresponding author.
† These authors contributed equally.

 mailto:i85.golovko@gmail.com (I. Golovko); mailto:savenko_oleg_st@ukr.net (O. Savenko);
petro.vizhevskyi@gmail.com (P. Vizhevskyi); mailto:olexandrkleyn@gmail.com (O. Klein);
mailto:abmsalem@yahoo.com (Abdel-Badeeh M. Salem);

 0009-0004-2173-5126 (I. Golovko); 0000-0002-4104-745X (O. Savenko); 0009-0009-4851-0839 (P. Vizhevskyi),
0000-0002-1896-943X (O. Klein); 0000-0003-0268-6539 (Abdel-Badeeh M. Salem)

 © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:i85.golovko@gmail.com
mailto:savenko_oleg_st@ukr.net
mailto:petro.vizhevskyi@gmail.com
mailto:olexandrkleyn@gmail.com
mailto:abmsalem@yahoo.com
https://orcid.org/0009-0004-2173-5126
https://orcid.org/0000-0002-4104-745X
https://orcid.org/0009-0009-4851-0839
https://orcid.org/0000-0002-1896-943X
https://orcid.org/0000-0003-0268-6539

code of the program into a form [1] that makes reverse engineering difficult, while still
preserving its functionality.

In contemporary programming, one of the greatest challenges is the protection of
commercial secrets and innovations which are critical to a company's competitiveness. The
leakage or unauthorized copying of software can lead to substantial financial losses and
undermine the company's market position. The advancement of internet technologies and
multimedia has heightened the need for research in the field of protection and security. Every
organization, possessing its own intellectual property, faces the challenge of protecting its data,
such as software from piracy or the injection of malicious code [2, 3].

Code obfuscation stands out as one of the advanced techniques in the domain of software
protection, which involves transforming the initial code of the program in such a way that,
while it becomes difficult to understand, it loses none of its functional properties [4, 5]. This
complicates the process of extracting and utilizing important algorithms and procedures that
are part of the software product, thus preserving the confidentiality of data processing through
programs that is critically important for the business of software purchasers. Even if an
obfuscated code can be deciphered by a persistent attacker, integrating obfuscation with other
methods, such as code modification detection or protection updates, limits the time available to
achieve malicious objectives.

Intellectual property protection can be secured both legally and technically. While legal
protection involves obtaining copyrights and signing contracts against the creation of
duplicates, technical protection requires developers to implement protective mechanisms
directly into the software. Together, these strategies form a multi-layered approach to program
protection, which is crucial for ensuring long-term security in the digital age.

2. Main Obfuscation Techniques

Before diving into the obfuscation process, let's briefly look at a very simplified model of the
compilation process of high-level programming languages (C#/Java). First of all we need to
understand basic definitions in this process.

Source code — Intermediate Language code "IL code" is a stack-based assembly language and
serves as the output of the compilation of high-level .NET/Java languages.

JIT — Just-In-Time (JIT) compiler is a component of the runtime environment that compiles
“IL code” to native machine code at run time.

Let’s assume that we have written the code on C# language and want to obfuscate it. Schema
below describe this process.

Figure 1: simplified compilation scheme with obfuscation.

On this schema we can see Post-Compilation Obfuscation process that helps us to protect
our source code. Let's look at which obfuscation techniques can be used for that. Code
obfuscation includes a series of techniques that make the software code more complex to
analyze and understand while preserving its functionality [6]. Here are some of the principal
obfuscation techniques commonly employed in software engineering.

Identifier Renaming (Renaming) involves changing the names of variables, classes, methods,
and other identifiers to non-informative or random names. This complicates the understanding
of the program since semantic information that could assist in decrypting the purpose of code
components is lost.

Control Flow Obfuscation is a technique that modifies the logic of program execution in
such a way that it retains functionality but makes the code less comprehensible. For example,
the use of fake loops or unnecessary conditional statements makes the execution flow of the
code less clear [7, 8].

Insertion of Dead or Junk Code adds code that does not affect the final behavior of the
program but complicates its structure. This code can include non-executable instructions or
functions that lead nowhere.

String Encryption enables the encrypting text strings in the code such as error messages,
URLs, or other sensitive data. It prevents the easy extraction of information from executable
files.

Resource Obfuscation: Protecting program resources such as images, audio files, and other
assets by encrypting or modifying them.

Control Flow Obfuscation is a technique that introduces changes in the program's control
flow to complicate code analysis [27-30]. Instead of direct and obvious execution, the program
is reorganized in such a way that the logic of its execution becomes more complex and less
predictable for observers or analytical tools. This may include the introduction of false loops,
dead code blocks, changes in the execution order of instructions, or the use of conditional
statements that appear illogical or mixing control flows (Interleaving Code Paths): Merging
several functions or execution paths into one, complicating the separation and analysis of
individual components. Transparent Branches is a conditional statements that always execute
or never execute, which misleads analytical tools.

These methods can be used individually or in combinations to achieve a higher level of code
security. The choice of specific obfuscation methods depends on the specific requirements and
context of the program's use.

2.1. Identifier Renaming Method in Code Obfuscation

Identifier renaming is one of the most popular and effective code obfuscation techniques. This
method involves changing the names of variables, functions, classes, and other identifiers to
names that carry no semantic load. The goal of this method is to create confusion or mislead
anyone trying to perform reverse engineering or unlawfully use the code.

Renaming identifiers is based on replacing semantically meaningful names with ones that are
random or unintelligible. For example, a variable storing an intermediate result in calculations,
originally named tempResult, might be renamed to a1 or x47[9]. This complicates understanding
what the code does and reduces the possibility of its analysis on an intuitive level.

Manual and Automatic: Identifier renaming can be implemented both manually and

automatically using specialized obfuscation tools. Automatic renaming programs analyze the
code and replace names using a generation of random character sequences or by using a
predefined set of non-informative names [10].

Static Renaming: During static renaming, each unique identifier is assigned a new name
that remains unchanged throughout the project. This is a simpler but less flexible approach.

S → F → P, (1)

Where: S – Set of original code identifiers. P – Set of obfuscated code identifiers. F –
Transformation function.

Thus, for each value "x" in the set S, there exists a unique value "y" in the set P satisfying the
condition: F(x)=y

Dynamic Renaming: In dynamic renaming, new names can change depending on the
context(C — Context function) in which the identifier is used, adding an additional layer of
complexity for those attempting to understand the program logic[11].

S → F → C → P, C�F(x)� = y′ → C(y) = y′ (2)

Identifier renaming is an important obfuscation strategy used to protect software code from
unauthorized access and analysis. Despite some limitations, this technique is one of the most
common approaches in the software industry due to its effectiveness and ease of
implementation.

2.2. Insertion of Dead or Junk Code

The technique of inserting "dead" or "junk" code forms an integral part of the strategies used to
complicate the reverse engineering process of software. This method incorporates code
segments that, while non-functional concerning the program's outcome, enhance the
complexity of the software structure, making it arduous for unauthorized interpretation or
analysis. Such code may include inert instructions or purposeless functions that do not impact
to the primary functionality of the program.

Examples of "Dead" Code:

1. Superfluous variables and computations.

int a = 10;
int b = a * 2; // An extraneous variable and computation that remain unused

2. Non-functional loops:

for (int i = 0; i < 10; i++) {
 // A loop that performs no meaningful action within the program
}

3. Always-true conditional statements:

if (true) {
 // This block of code will invariably execute
}
Developers may employ automated obfuscation tools to randomly intersperse such code

within the source code, thereby mitigating pattern recognition strategies that could potentially

identify and excise the redundant code. These tools also ensure that the integration of additional
code does not disrupt the core logic or performance of the application. With this approach, we
can improve the following indicators:

- Increased Analytical Complexity. The insertion of "dead" code significantly muddles the
structural clarity of the software, thus thwarting straightforward analytical efforts by
potential attackers.

- Versatility. This method is universally applicable across various programming languages
and software architectures, enhancing its utility in diverse developmental contexts.

2.3. Control Flow Obfuscation

Control Flow Obfuscation is a sophisticated technique aimed at complicating the understanding
of a program's logic by altering the order of operations and instructions, as well as by
introducing additional conditional transitions and loops[12, 13]. This method seeks to obscure
the true execution path of a program, thereby hindering analysis and reverse engineering efforts
[14,15]. One of the options of the Control Flow is interleaving Code Paths.

Interleaving code paths is an advanced obfuscation technique that modifies the execution
structure of a program such that logically independent blocks of code are interwoven. This
significantly complicates the understanding of the program, as both analytical tools and humans
struggle to easily separate individual execution streams. This method involves intertwining
several functional parts of the code together, creating a single entangled execution flow that is
difficult to separate into primary components. This can be achieved by crossing conditional
operators, loops, and functions across different parts of the program.

For example, consider the interleaving of conditional operators and loops:

if (conditionA) {
 // Block A1
 if (conditionB) {
 // Block B1
 }
 // Block A2
} else {
 if (conditionB) {
 // Block B2
 }
 // Block A3
}
for (int i = 0; i < n; i++) {
 for (int j = 0; j < m; j++) {
 if (i == j) {
 // Mixed operation
 }
 }
}

In these examples, the blocks of code and conditions are intertwined in such a way that the
logical and execution flows of conditions A and B, as well as the loops i and j, interact with each
other in a complex manner, making the code analysis more challenging. Implementing this
method can be challenging as it requires a deep understanding of the program's logic and
potential impact on performance. Developers must ensure that changes in control flows do not
violate the business logic of the application or affect its performance. Automated obfuscation
tools can aid in the implementation of this method, but it is crucial to conduct thorough testing.
Constructing a mathematical model for this method is not straightforward. Such a model would
need to utilize concepts from graph theory[17] and complexity theory to analyze and evaluate
the impact of obfuscation on code comprehension.

The model includes the following aspects:

1. Definition of Control Flow Graph (CFG)[17]. The basis for analyzing any program code is
its Control Flow Graph (CFG), where nodes represent blocks of instructions (such as
functions or basic instruction blocks) and edges show the flow of control between those
blocks. CFG allows you to visualize and analyze the structure of the program [16].

Let G =(N,E), where each node n ∈ N corresponds to a base node. Each edge e=(ni,nj) ∈ E
corresponds to a possible transfer of control from block ni to block nj.
CFG provides a graphical representation of the possible paths to control the flow of execution.
It differs from syntax-oriented IRS such as AST, which show grammatical structure. Consider
the while loop shown below.

Figure 2: The loop operator in different representations.

The CFG reflects the essence of the loop: it is a control flow construct. The cyclic edge goes
from stm1 to the condition at the beginning of the cycle. Ast, on the other hand, fixes the syntax;
it is acyclic, but puts all the pieces in place to restore the source code for the loop. For conditional
statements, the CFG will look like presented in Figure 3.

Figure 3: The condition operator in different representations.

In this example, the CFG displays the control flow construction for the conditional statement.
Either stm1 or stm2 will be executed, but not both.

2. Functional mixing of streams. For each node in the CFG, a function can be defined that
describes the mixing of control flows. This function can take into account variable
factors such as the nesting depth of conditional statements or the number of
dependencies between different parts of the code.

Let’s assume 𝐷𝐷𝐷𝐷𝐷𝐷 - represents the dependency between node 𝑖𝑖 and node 𝑗𝑗. This can be
expressed as the weight of an edge in a graph, where the weight indicates the strength of the
dependency (for example, due to the number of variables shared between blocks).𝑁𝑁𝑁𝑁(Nesting of
conditional operators): evaluates the nesting depth of conditional operators in node 𝑖𝑖. This can
be expressed as the number of conditional statements that directly or indirectly affect the
execution of a block of code.

Then for estimating the complexity of mixing flows can be presented as follows:

 (3)

where: 𝑆𝑆 - is the total complexity of mixing control flows in the program. 𝑛𝑛 - is the number
of nodes in the CFG.

This function attempts to quantify the complexity of a program in terms of obfuscation,
taking into account dependencies and nesting of conditional statements.

It can be supplemented by other factors, such as:

- Frequency of use of variables: Consider how often variables affecting node 𝑖𝑖 occur in other
nodes. For each node 𝑖𝑖 in the CFG, we define 𝐹𝐹𝐹𝐹, which indicates the frequency of use
of variables in this node. This can take into account both local and global variables used
in the block.

- Function side effects: evaluating the impact of functions called in a node on other parts of
the program. Ei evaluates the impact of functions called at node 𝑖𝑖 on other parts of the
program. This can include state changes that are not obvious from the local context of
the node, such as changes to global variables, calls to other functions, etc.

Therefore, the final model can be represented as:

 (4)

Where: α and 𝛽𝛽 are weighting factors that regulate the influence of the frequency of use of
variables and side effects of functions, respectively; 𝑛𝑛 is the number of nodes in the CFG.

Variable usage frequency 𝐹𝐹𝐹𝐹 shows how heavily a node depends on certain variables, which
can make it difficult to understand the data flows in the program. The side effects of functions
𝐸𝐸𝐸𝐸 allow you to evaluate how much the changes made by the functions affect the global state
of the program, which also increases the overall complexity of the code.

This model can be used to evaluate the effectiveness of obfuscation in terms of its ability to
complicate code analysis. It allows you to quantify how changes in the structure of the
application affect the ability of analysts or attackers to understand the logic of the application
and detect vulnerabilities.

3. Quantification of complexity. Using metrics to quantify the complexity of mixed control
flows, such as: McCabe cyclomatic complexity [18,19], which measures the number of
linearly independent paths through a CFG. Proposed by Thomas McCabe in 1976, is a
metric that measures the number of linearly independent routes through a program's
control flow graph (CFG). This is one of the key indicators that helps to understand the
complexity of the application from the point of view of its testing and maintenance.

Formula for calculating cyclomatic complexity:

V(G)=E−N+2P (5)

Where: E- is the number of edges in the graph; N - is the number of nodes in the graph; 𝑃𝑃 -
is the number of connectivity components (usually 𝑃𝑃=1 for most programs with a single entry
point).

Therefore, the cyclomatic complexity due to the introduction of obfuscation can be given by
the function:

ΔV(G)=V(G′)−V(G) (6)

Where V(G) і V(G′) — cyclomatic complexities of the original and obfuscated graphs,
respectively.

Such a model helps to evaluate how effective obfuscation is in terms of increasing the
complexity of the program. If ΔV(G) is significant, it can be assumed that obfuscation makes a
significant contribution to protecting the program from unauthorized analysis and
modifications. This model can serve as an important tool when selecting and configuring
obfuscation techniques, as well as when evaluating their impact on the overall security of a
software product.

The number of intersections in the CFG, where a higher number of intersections may
indicate a more complex obfuscation structure.

4. Predicting the impact of obfuscation. Using statistical methods to predict the effectiveness
of obfuscation:

- Building regression models to predict the effort required to understand obfuscated code
based on the aforementioned complexity metrics.

- Simulation of different attack scenarios on obfuscated code to evaluate its resistance to
reverse engineering.

5. Risk assessment. Analysis of the possible risks associated with obfuscation, including the
probability of successful reverse engineering or obfuscation detection [20]. This may
involve using probability theory and statistics to assess risks.

Let 𝑉𝑉 be the set of nodes in the CFG, and 𝐸𝐸 be the set of edges.
The function 𝑓𝑓: 𝑉𝑉→𝑅𝑅 evaluates the "weight" of each node in terms of its impact on the

overall complexity.
Then the complexity of the code 𝐶𝐶 can be expressed as:

𝐶𝐶 = ∑𝑣𝑣∈𝑉𝑉 𝑓𝑓(𝑣𝑣) + 𝜆𝜆 ⋅ ∣𝐸𝐸∣ (7)

where: 𝜆𝜆 — a parameter that controls the effect of the number of intersections.

Such a model allows you to evaluate, analyze and optimize code obfuscation, providing a
science-based approach to software protection.

3. Improvement of the obfuscation process with AI

As we can discern from the previous section, many processes require the engineer to
independently decide on the obfuscation method, conduct performance testing, etc., which is
not always the most efficient or error-free approach to obfuscation, particularly for engineers
with limited experience in code obfuscation. In such cases, utilizing artificial intelligence (AI)
can significantly enhance the effectiveness of obfuscation techniques, even for engineers with
minimal experience [21]. The idea of employing obfuscation mechanisms based on machine
learning can be applied in the .NET obfuscation sphere to model obfuscation strategies, i.e.,
using machine learning algorithms to generate and optimize obfuscation rules that can be
applied to .NET code. The model can learn from existing examples of obfuscated code to identify
the most effective techniques.

The machine learning model can predict the effectiveness of various obfuscation methods
using the following process:

1. Model Training. The model trains on examples of code (using machine learning algorithms
such as random forest [22,23] or gradient boosting [24,25]) that have been obfuscated
using different methods. It learns the characteristics of the code (e.g., structure,
execution flows, variable usage) that change as a result of each obfuscation method.

2. Obfuscation Assessment. Using a set of metrics such as resistance to reverse engineering,
impact on performance, or effects on automated code analysis tools, the model evaluates
the effectiveness of the obfuscation [28-31].

3. Prediction. After analyzing the input code, the model can use the learned relationships
between code features and obfuscation effectiveness to predict which methods will be
most effective for new code.

Thus, the model allows for the identification of optimal obfuscation strategies for specific
use cases, providing better protection and minimizing negative impacts on software
functionality.

The mathematical model for assessing the effectiveness of obfuscation using machine
learning can be constructed as follows:

1. Data: - X: A set of code features (e.g., number of operators, depth of nesting, types of
operators). - Y: The target (dependent variable) which determines the effectiveness of
obfuscation (e.g., time required for reverse engineering).

2. Loss Function. Can be defined to minimize the difference between the predicted
effectiveness of obfuscation and the actual effectiveness.

3. Model. Uses a machine learning model f(X) to learn the relationship between code features
and obfuscation effectiveness.

4.Optimization. Uses optimization methods to adjust the model parameters that best explain
the effectiveness of obfuscation.

 (8)

where: θ are the parameters of the model that we aim to optimize [26,27], 𝑋𝑋𝑋𝑋, are the features
of the i-th code example, 𝑦𝑦𝑦𝑦, is the effectiveness of obfuscation for the i-th example, and the sum
is calculated over all examples in the training set.

The term min𝜃𝜃 signifies an optimization process where the goal is to find the parameter
values 𝜃𝜃 that minimize the sum of the squared differences between observed values 𝑦𝑦𝑦𝑦 and the
values predicted by. The aim of min⁡θ is to adjust the parameters θ to achieve the lowest
possible value of the sum of squared errors, indicating the best fit of the model to the data. This
process is central to regression analysis, where you want to fit a model so that the predicted
values are as close as possible to the actual data values.

This modeling also enhances the automation process - integrating machine learning will
allow for the automation of the obfuscation process, adapting it to specific needs and
characteristics of the software as well as potential threats. Additionally, it can create dynamic
code obfuscation processes - machine learning methods can help develop systems that
dynamically adapt obfuscation depending on the context of software usage and changes in the
external environment.

4. Experiments

To verify the effectiveness of the model, we will use the following metrics:

- Resistance to Analysis - an assessment of the code's ability to resist reverse engineering
attempts.

S=1 −
K
𝑀𝑀

(9)

where: K – number of successful analyses, M -total number of attempts

 - Change in Performance - the impact of obfuscation on the speed of the program.

𝑃𝑃 =
𝑅𝑅 − 𝐿𝐿
𝐿𝐿

(10)

Where: R – execution time after obfuscation, L – execution time before obfuscation

- Preservation of Functionality:

where: N – number of dysfunctional functions, M – total number of functions.

- Pattern Detection:

𝐷𝐷 = 1 −
𝑁𝑁
𝑀𝑀

(12)

where: N – number of detected patterns, M – total number of patterns

𝐹𝐹 =
𝑁𝑁
𝑀𝑀

(11)

This metric is important because one of the main aspects of effective obfuscation is
complicating or masking the logic or structure of the code so that it cannot be easily analyzed
or recognized by static analysis tools, which often use patterns to identify typical constructions
in program code. This expression shows the percentage of patterns that were not detected
during the analysis, and therefore, the higher the value of D, the more effective the obfuscation
in terms of avoiding pattern detection.

- Code Complexity:

𝐶𝐶 = 𝑅𝑅 − 𝐿𝐿 (13)

where: R – cyclomatic complexity after obfuscation, L - cyclomatic complexity before
obfuscation.

This metric helps assess the complexity of understanding and testing the code. High
cyclomatic complexity indicates a high level of code complexity, which can increase the risk of
errors and complicate understanding of the code. In the context of code obfuscation, the goal is
to increase this complexity, thereby making the code less understandable for analysis or reverse
engineering. This initial complexity indicator is important for assessing the effectiveness of
obfuscation. An increase in cyclomatic complexity after obfuscation typically indicates that the
obfuscation has added additional control paths, thereby potentially increasing the security of
the program by complicating reverse engineering attempts. For reverse engineering and code
analysis, we will use two tools:

1. Ildasm.exe [32].
2. dotPeek [33].

To verify the effectiveness of the model, 100 dll/exe files compiled using MSBuild with .NET
8 programming language C# were used. Divide these DLLs into two groups (50/50): control
(without AI) and experimental (with AI). Apply standard obfuscation methods to the control
group without using AI. Calculate the average values for each metric for 50 iterations of the
control group (without AI) and the experimental group (with AI). We are going to analyze such
parameters:

Resistance to Analysis (S):

- Total number of reverse engineering attempts: 100.
- Number of successful analyses: 20 — By successful analyses is meant the full reproduction

of the program's behavior after decompiling IL code using Ildasm/dotPeek and
transferring it to a new program that fully retains the behavior of the original program,
and reproduces the same results as the original program.

- Percentage of unsuccessful attempts: 𝑆𝑆 = 1 − 20/100 = 0.80 or 80%.

Change in Performance (P): average program execution time: 200 ms.

Preservation of Functionality (F):

- Total number of functions: 1000.
- Number of dysfunctional functions: 0.

Pattern Detection (D):

- Total number of patterns: 50.
- Number of detected patterns: 30.
- Percentage of undetected patterns: 𝐷𝐷=1 − 30/50 50 = 0.40 or 40%.

Code Complexity (C). Cyclomatic complexity: 150 – means 150 different paths that
potentially need to be checked to ensure full coverage during testing, making the code more
complex to fully understand and support. The results of the experiment shown in Table 1.

Table 1
The results of the experiment

Metric Description Control group
(without AI)

Experimental
group (with AI)

Comment

Resistance to
Analysis

An
assessment of
the code's
ability to
resist reverse
engineering
attempts.

Number of
successful
analyses: 20

Percentage
of unsuccessful
attempts:

𝑆𝑆 = 1 − 20/100
= 0.80 or 80%

Number of
successful
analyses: 5

Percentage of
unsuccessful
attempts:

𝑆𝑆 = 1 − 5/100
=0.95 or 95%

As we can see
resistance to
analysis is increased
when using AI.

Change in
Performance

The impact of
obfuscation
on the speed
of the
program.

Average
program
execution time:
210 ms

Change in
Performance:

𝑃𝑃 = (210 −
200)/200

= 0.05 or 5%
increase

Average
program
execution time:
210 ms

Change in
Performance:

𝑃𝑃 = (210−200)
/200

= 0.05 or 5%
increase

The execution time
of the program has
changed compared
to the original
program without
obfuscation. But this
is also true for the
control group
(without AI)

Preservation
of
Functionality

A measure of
the
preservation
of the original
functionality
of the code

Number of
dysfunctional
functions: 10

Percentage of
dysfunctional

Number of
dysfunctional
functions: 12

Percentage of
dysfunctional

As we can see, the
number of
dysfunctional
functions is slightly
higher compared to
the control group
(without AI). This

5. Conclusions

The experimental results provide compelling evidence supporting the integration of AI in the
obfuscation process, underscoring its potential to significantly enhance software security.

Each of these metrics helps assess specific aspects of obfuscation, and their comparison before
and after the application of AI allows measuring the real use impact of the of artificial intelligence
on obfuscation. This also provides an opportunity to identify potential issues, such as increased
execution time or loss of functionality, requiring additional attention and optimization. This
approach allows for more precise adjustment of the use of AI for optimization of obfuscation in real
conditions, ensuring a higher level of security of software. AI can analyze large volumes of data and
choose optimal places and ways to apply obfuscation to maximize code complexity. After analyzing
the metrics of the experiment, it is possible to distinguish:

1. Enhanced Efficacy of AI-Driven Obfuscation. The experiments demonstrated a notable
improvement in resistance to reverse engineering attempts when AI-driven obfuscation
techniques were employed compared to traditional methods. This indicates that AI can
effectively increase the complexity and security of obfuscated code, making it more
challenging for unauthorized analysis.

2. Performance and Functionality Consideration. While the use of AI in obfuscation shows
promising results in enhancing security, it's important to also consider its impact on
software performance and functionality. The experiments highlighted minimal impact
on execution times and functionality, suggesting that AI-driven obfuscation can be
implemented without significantly compromising the software's operational efficiency

This approach to security can significantly reduce the costs and resources associated with
resolving security issues after a product is released. Future research should explore additional
AI models and techniques that could further enhance this aspect of software security. As these
technologies become more sophisticated and available, we can expect changes in how
companies approach the security of their software products. This change could encourage more

after
obfuscation.

functions:

𝐹𝐹=10 / 1000

= 0.01 or 1%

functions:

𝐹𝐹 = 12 /1000

= 0.012 or 1.2%

percentage can be
reduced if the AI
model is allowed to
learn on its own or if
the training period is
extended.

Pattern
Detection

The ability of
obfuscation
tools to avoid
pattern
detection.

Number of
detected
patterns: 30
Percentage of
undetected
patterns:

𝐷𝐷 = 1 − 30/50

=0.40 or 40%

Number of
detected
patterns: 5
Percentage of
undetected
patterns:

𝐷𝐷 = 1 − 5/50

=0.90 or 90%

industries to adopt obfuscation best practices, thereby increasing the overall level of security
across sectors.

References

[1] K. D. Cooper, L. Torczon. Engineering a Compiler, Morgan Kaufmann; 3rd edition, 2023, 848 p.
[2] S. A. Ebad, A. A.Darem, J. H. Abawajy. Measuring software obfuscation quality – A systematic

literature review, IEEE Access 9 (2021) 99024-99038.
[3] P. Ahire, J. Abraham. Mechanisms for source code obfuscation in C: Novel techniques and

implementation. In Proceedings of the 2020 International Conference on Emerging Smart
Computing and Informatics (ESCI), Pune, India, 12-14 March 2020, IEEE: New York, NY, USA,
2020, pp. 52–59.

[4] A. B. M. Sultan, A. A. A.Ghani, N. M. Ali, N. I. Admodisastro. Hybrid obfuscation technique to
protect source code from prohibited software reverse engineering, IEEE Access 8 (2020)
187326–187342.

[5] S. Bhansali, A. Aris, A. Acar, H. Oz, A. S. Uluagac. A first look at code obfuscation for
webassembly. In Proceedings of the15th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, San Antonio, Texas, USA, 16-19 May 2022, pp. 140–145.

[6] Y. Li, Z. Sha, X. Xiong, Y. Zhao. Code Obfuscation Based on Inline Split of Control Flow Graph.
In Proceedings of the 2021 IEEE International Conference on Artificial Intelligence and
Computer Applications (ICAICA), Dalian, China, 28–30 June 2021, IEEE: New York, NY, USA,
2021, pp. 632–638.

[7] C. K. Behera, G. Sanjog and D. L. Bhaskari. Control Flow Graph Matching for Detecting
Obfuscated Programs, Software Engineering (2019) 267–275.

[8] Y.-C. Chen, H.-Y. Chen, T. Takahashi, B. Sun and T.-N. Lin, Impact of Code Deobfuscation and
Feature Interaction in Android Malware Detection, IEEE Access, 9 (2021) 123208-123219

[9] B. Liu, W. Feng, Q. Zheng, J. Li, D. Xu. Software obfuscation with non-linear mixed boolean-
arithmetic expressions. In Proceedings of the Information and Communications Security: 23rd
International Conference, ICICS 2021, Chongqing, China, 19–21 November 2021, pp. 276–292.

[10] C. Catalano, P. Afrune P., et al. Security Testing Reuse Enhancing Active Cyber Defence in
Public Administration. In Proceedings of the 2021 Italian Conference on Cybersecurity 2021,
April 7-9, 2021, Salerno, Italy, pp.120–132 (2021).

[11] C. Catalano, A.Chezzi, M. Angelelli, F. Tommasi. Deceiving AI-based malware detection
through polymorphic attacks, Computers in Industry 143 (2022) 103751.

[12] H. Ahmed, M. F. Hyder, M. F. Haque, P. C. Santos, Exploring compiler optimization space for
control flow obfuscation, 139 (2024) 103704.

[13] M. Gervasi, N. G. Totaro, A. Fornaio, D. Caivano, Big Data Value Graph: enhancing security
and generating new Value from Big Data, In Proceedings of the 2023 Italian Conference on
Cybersecurity 2023,May 03-05, 2023, Bari, Italy, 2023.

[14] M. Schloegel, T. Blazytko, M. Contag, C. Aschermann, J. Basler, T. Holz, A. Abbasi. A. Technical
Report: Hardening Code Obfuscation Against Automated Attacks. arXiv (2021),
arXiv:2106.08913.

[15] P. Rajba, W. Mazurczyk, Data hiding using code obfuscation. In Proceedings of the 16th
International Conference on Availability, Reliability and Security, Vienna, Austria, 17-20
August 2021, pp. 1–10.

[16] H. Yao, S. Zhang, R. Hong, Y. Zhang, C. Xu and Q. Tian, Deep representation learning with
part loss for person re-identification, IEEE Trans. Image Process., 28 6 (2019) 2860-2871.

[17] Q. Liu, S. Ji, C. Liu and C. Wu, A Practical Black-Box Attack on Source Code Authorship
Identification Classifiers, In Proceedings of the IEEE Transactions on Information Forensics
and Security, 15 June 2021, vol. 16, pp. 3620-3633.

[18] J. Mayaka, J. C. Jung, Complexity reduction of the Engineered Safety Features Component
Control System, 331 (2018) 194-203.

[19] M. A. Subandri, R. Sarno, Cyclomatic Complexity for Determining Product Complexity Level
in COCOMO II, 124 (2017) 478-486.

[20] C. Basile, D. Canavese, L. Regano, P. Falcarin, B. De Sutter, A meta-model for software
protections and reverse engineering attacks, Journal of Systems and Software, 150 (2019) 3-21.

[21] I. Obeidat, M. AlZubi, Developing a faster pattern matching algorithms for intrusion detection
system. International Journal of Computing, 18(3), 2019, 278-284. doi:10.47839/ijc.18.3.1520

[22] S. Kang, S. Lee, Y. Kim, S. K. Mok, E. S. Cho. Obfus: An obfuscation tool for software copyright
and vulnerability protection. In Proceedings of the Eleventh ACM Conference on Data and
Application Security and Privacy, Virtual, 26–28 April 2021, pp. 309–311.

[23] H. Chen, M. Pendleton, L. Njilla and S. Xu. A survey on Ethereum systems security:
Vulnerabilities attacks and defenses, ACM Comput. Surv. (CSUR), 53 3 (2020) 1-43.

[24] F. Feyzi and S. Parsa, A program slicing-based method for effective detection of coincidentally
correct test cases, Computing, 100 9 (2018) 927-969.

[25] M. Zhang, P. Zhang, X. Luo and X. Feng, Source code obfuscation for smart contracts, In
Proceedings of the 2020 27th Asia-Pacific Software Engineering Conference (APSEC), 01-04
December 2020, Singapore, Singapore, pp. 513-514.

[26] G. James, et al. An Introduction to Statistical Learning: with Applications in R. Springer, 2nd
edition, 2021.

[27] K. Hajarnis, J. Dalal, R. Bawale, J. Abraham and A. Matange, A Comprehensive Solution for
Obfuscation Detection and Removal Based on Comparative Analysis of Deobfuscation Tools.
In Proceedings of the 2021 International Conference on Smart Generation Computing,
Communication and Networking, Pune, India, 2021, pp. 1-7.

[28] O. Savenko, A. Sachenko, S. Lysenko, G. Markowsky, N. Vasylkiv. Botnet detection approach
based on the distributed systems. International Journal of Computing, 19, 2 (2020) 190-198.

[29] A. Kashtalian, S. Lysenko, O. Savenko, A. Nicheporuk, T. Sochor, V. Avsiyevych. Multi-
computer malware detection systems with metamorphic functionality. Radioelectronic and
Computer Systems, 1 (2024) 152-175. doi: 10.32620/reks.2024.1.13

[30] G. Markowsky, O. Savenko, S. Lysenko, A. Nicheporuk. The technique for metamorphic
viruses' detection based on its obfuscation features analysis. CEUR-WS, 2104 (2018) 680–687.

[31] O. Savenko, S. Lysenko, A. Nicheporuk, B. Savenko, Approach for the Unknown Metamorphic
Virus Detection, Proceedings of the 8-th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications, Bucharest
(Romania), September 21–23, 2017. Bucharest, 2017. pp. 71–76.

[32] Ildasm.exe (IL Disassembler) tool. URL: https://learn.microsoft.com/en-
us/dotnet/framework/tools/ildasm-exe-il-disassembler.

[33] dotPeek. Free .NET Decompiler and Assembly Browser. URL:
https://www.jetbrains.com/decompiler.

https://doi.org/10.47839/ijc.18.3.1520
https://learn.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler
https://learn.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler
https://www.jetbrains.com/decompiler

	1. Introduction
	2. Main Obfuscation Techniques
	2.1. Identifier Renaming Method in Code Obfuscation
	2.2. Insertion of Dead or Junk Code
	2.3. Control Flow Obfuscation

	3. Improvement of the obfuscation process with AI
	4. Experiments
	5. Conclusions
	References

