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Abstract 
The described information technology for joint decision-making in machine embroidery leverages 
augmented reality (AR) and artificial intelligence (AI) to significantly enhance the design and 
production process. AR enables real-time visualization of embroidery patterns projected onto 
garments, allowing designers and stakeholders to interactively see and adjust designs directly on the 
clothing. This immersive visualization helps in identifying design flaws and making immediate 
adjustments, ensuring the design aligns perfectly with the intended outcome. 
The AI system processes a comprehensive set of input data, including the input video signal from 
cameras, initial embroidery images, the geometry of the human body and clothes, general design 
requirements, and expert recommendations. The AI system uses this data to iteratively refine the 
embroidery design, continuously improving the quality and precision of the embroidery through 
sophisticated neural network models. The AI-generated correction signal is fed back into the AR 
system, updating the virtual embroidery projection in real-time. This dynamic feedback loop ensures 
that the design is constantly optimized to meet both aesthetic and technical standards. The 
integration of AR and AI fosters seamless collaboration among designers, production teams, and 
clients, allowing efficient communication and consensus building. This results in higher quality, more 
precise, and personalized embroidery designs, ultimately leading to more efficient production 
processes and enhanced customer experience. 
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1. Introduction 

The advent of Industry 4.0 has changed traditional manufacturing processes significantly, 
including machine embroidery. Cyber-physical systems (CPS) integrate computational and 
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physical processes, enabling seamless interaction between humans, machines, and data. 
Information technologies play a crucial role in facilitating joint decision-making within these 
systems, enhancing efficiency, quality, and innovation in machine embroidery. The real-time 
data analytics [1] is pivotal in CPS for machine embroidery. Internet of Things (IoT) sensors 
embedded in embroidery machines collect data on machine performance, thread tension, stitch 
quality, and operational status. This data is transmitted to a central system where it is analyzed 
to provide actionable insights. Decision-makers can monitor production in real-time, identify 
issues, and make informed decisions to optimize operations. 

The modern cloud computing technologies provide a robust platform for collaborative 
decision-making. By centralizing data storage and processing, cloud platforms enable multiple 
stakeholders, including designers, production managers, and quality control teams, to access 
and share information simultaneously. This fosters a collaborative environment where 
decisions can be made based on the latest data and insights, ensuring coherence and alignment 
across the production process. 

AI and machine learning (ML) algorithms are useful to optimizing decision-making in CPS. 
Predictive maintenance algorithms analyze historical data to forecast machine failures, allowing 
for proactive maintenance scheduling. ML models can also optimize embroidery patterns by 
analyzing previous designs and production outcomes, suggesting improvements to enhance 
quality and efficiency. 

AR systems enhance joint decision-making by providing a visual and interactive platform 
for design and production planning. Designers can use AR to visualize embroidery designs on 
garments in a 3D space, making real-time adjustments collaboratively with other stakeholders. 
AR tools enable virtual prototyping, reducing the need for physical samples and accelerating 
the design approval process.  

It should be noted that collaborative platforms, such as cloud-based project management 
tools, facilitate communication and coordination among teams. These platforms enable 
stakeholders to share updates, provide feedback, and track project progress in real-time. 
Features like version control, task assignments, and milestone tracking ensure that everyone is 
aligned and informed, leading to more effective joint decision-making. 

Thus, information technologies can improve machine embroidery by enabling more efficient 
and effective joint decision-making within cyber-physical systems. Real-time data analytics, 
cloud computing, AI, AR and collaborative platforms collectively enhance the ability of 
stakeholders to make informed decisions, optimize processes, and innovate continuously. As 
Industry 4.0 continues to evolve, these technologies will play an increasingly important role in 
driving the future of machine embroidery. 

2. The known joint decision making technologies in machine 
embroidery 

In the context of Industry 4.0, machine embroidery has been revolutionized through various 
information technologies that enhance joint decision-making. These technologies include 
real-time data analytics, cloud computing, AI, ML, AR, blockchain, and digital twins, each 
playing a critical role in the decision-making process. 



2.1. Real-time data analytics 

Real-time data analytics techniques play a crucial role in information technologies for joint 
decision-making in machine embroidery, leveraging various methodologies to optimize 
production processes, enhance design quality, and ensure efficient operation. These 
techniques utilize a range of data sources, including IoT sensors, ML algorithms, and 
advanced data processing tools, to provide actionable insights. One of the primary 
techniques used is sensor data collection and monitoring. IoT sensors embedded in 
embroidery machines collect real-time data on various parameters such as thread tension, 
stitch density, machine speed, and operational status. This data is transmitted to a central 
system where it is processed and analyzed. For instance, sensors can detect anomalies in 
thread tension or stitch patterns, prompting immediate adjustments to prevent defects and 
ensure consistent quality. Real-time monitoring allows for proactive maintenance, reducing 
downtime and extending machine lifespan. Studies have shown that integrating IoT sensors 
in manufacturing can significantly enhance process efficiency and product quality [1]. 

Data visualization tools are also useful in real-time data analytics. These tools transform 
complex data sets into easily interpretable visual formats such as graphs, charts, and 
dashboards. Real-time dashboards provide a comprehensive view of the production 
process, highlighting key performance indicators and alerting stakeholders to any 
deviations from the norm. This immediate visibility enables quick decision-making and 
fosters collaboration among team members. Visualization tools are particularly valuable in 
joint decision-making as they ensure that all stakeholders, regardless of technical expertise, 
can understand and act on the data [2]. Advanced statistical methods and algorithms are 
employed to analyze the data and derive insights. Techniques such as regression analysis, 
anomaly detection, and time-series analysis are used to understand trends and make 
predictions. For instance, regression analysis can identify the relationship between machine 
speed and stitch quality, enabling optimization of machine settings. Anomaly detection 
algorithms can identify outliers in the data that may indicate potential issues, allowing for 
quick intervention. Time-series analysis helps in understanding how production metrics 
evolve over time, providing insights into seasonal trends and helping in capacity planning 
[3]. 

In joint decision-making, these real-time data analytics techniques facilitate informed 
and timely decisions. By providing a continuous stream of actionable insights, stakeholders 
can collaborate effectively, address issues promptly, and optimize production processes. 
The integration of these techniques into machine embroidery systems represents a 
significant advancement, driving the industry towards greater efficiency, quality, and 
innovation. 

2.2. Cloud computing 

Cloud computing techniques impact significantly the joint decision-making in machine 
embroidery, leveraging advanced data storage, processing, and collaboration capabilities to 
enhance efficiency and innovation. One of the primary techniques is data centralization, 
where cloud platforms store vast amounts of data collected from embroidery machines and 



other sources. This centralization ensures that all stakeholders have access to the same 
data, facilitating real-time collaboration and decision-making. Cloud platforms such as 
Amazon Web Services (AWS), Microsoft Azure, and Google Cloud provide scalable storage 
solutions that can handle the large volumes of data generated in modern embroidery 
processes. This scalability is crucial for accommodating fluctuating workloads and ensuring 
that data is readily available when needed [4]. Another key cloud computing technique is 
the use of cloud-based analytics tools. These tools enable the processing and analysis of data 
in the cloud, eliminating the need for significant on-premises infrastructure. For example, 
cloud-based ML services can analyze historical and real-time data to identify patterns and 
predict future trends. These insights help in optimizing embroidery designs, improving 
machine performance, and reducing production costs. The ability to perform complex 
analytics in the cloud also allows for more sophisticated decision-making processes, as 
stakeholders can leverage advanced algorithms and models without needing specialized 
hardware or software on-site [5]. 

Cloud computing also supports the integration of IoT devices in machine embroidery. 
IoT sensors embedded in embroidery machines collect real-time data on various 
parameters, such as thread tension, stitch quality, and machine status. This data is 
transmitted to the cloud, where it can be processed and analyzed. The integration of IoT 
with cloud computing enables real-time monitoring and control of embroidery machines, 
allowing for immediate adjustments to improve quality and efficiency. Furthermore, cloud 
platforms can aggregate data from multiple machines and locations, providing a 
comprehensive view of the entire production process [6]. 

Collaboration and communication are further enhanced by cloud computing through the 
use of cloud-based project management and collaboration tools. These tools, such as Slack, 
Trello, and Asana, enable teams to share updates, provide feedback, and track project 
progress in real-time. This fosters a collaborative environment where all stakeholders can 
contribute to decision-making processes, regardless of their physical location. The use of 
these tools ensures that everyone is aligned and informed, leading to more effective and 
efficient decision-making [7]. Cloud computing also facilitates the deployment of digital 
twins in machine embroidery. Digital twins are virtual replicas of physical machines and 
processes, allowing stakeholders to simulate and optimize production scenarios without 
disrupting actual operations. By leveraging cloud computing, digital twins can be updated 
in real-time with data from IoT sensors, providing an accurate and up-to-date 
representation of the physical system. This enables stakeholders to experiment with 
different configurations and settings, identify potential issues, and implement 
improvements before making changes to the actual production environment [8]. 

2.3. Artificial intelligence and machine learning 

AI and ML algorithms are pivotal in the modern information technologies for joint decision-
making in machine embroidery, offering advanced methods to optimize design, production, 
and maintenance processes. These technologies use large datasets and sophisticated 
computational models to provide insights and predictions that enhance decision-making 
capabilities [9]. One key AI technique is predictive maintenance, which uses historical data 



and real-time monitoring to predict equipment failures before they occur. ML algorithms 
such as support vector machines, neural networks, and decision trees analyze data from IoT 
sensors embedded in embroidery machines to identify patterns indicative of potential 
issues. By predicting when a machine is likely to fail, maintenance can be scheduled 
proactively, thus preventing unexpected breakdowns and minimizing downtime [10]. This 
predictive capability is vital for maintaining continuous production and high-quality output. 
Another crucial application is design optimization. ML models can analyze vast amounts of 
historical design data to identify trends and preferences. Algorithms such as k-means 
clustering and principal component analysis can segment designs based on various 
features, helping designers understand which attributes are most popular or effective. This 
analysis can guide the creation of new designs that are more likely to succeed in the market. 
Additionally, generative adversarial networks are used to generate new embroidery 
patterns by learning from existing designs, fostering innovation and creativity [11]. 

Real-time quality control is also enhanced through AI and ML. Convolutional neural 
networks (CNNs), a type of deep learning model, are employed to inspect the quality of 
embroidery in real-time. These models can detect defects such as misaligned stitches, color 
inconsistencies, or thread breakages by analyzing images captured during the embroidery 
process. When a defect is detected, the system can automatically adjust machine settings to 
correct the issue or alert human operators for intervention [12]. This immediate feedback 
loop ensures high-quality production and reduces waste. 

AI and ML also improve supply chain management in machine embroidery. By analyzing 
data from various stages of the supply chain, algorithms can optimize inventory levels, 
forecast demand, and manage logistics more efficiently. Techniques such as linear 
regression, time-series forecasting, and reinforcement learning are used to predict demand 
trends and optimize stock levels, ensuring that materials are available when needed 
without overstocking [13]. This optimization leads to cost savings and improved 
operational efficiency. Moreover, collaborative AI platforms facilitate joint decision-making 
by integrating insights from various data sources and stakeholders. These platforms use 
natural language processing (NLP) to understand and process human language, enabling 
seamless communication between machines and human operators. NLP algorithms can 
analyze feedback from designers, operators, and customers to provide comprehensive 
insights that inform decision-making processes [14]. This integration ensures that decisions 
are based on a holistic view of the entire production ecosystem. 

Thus, AI and ML algorithms significantly enhance joint decision-making in machine 
embroidery by providing predictive maintenance, design optimization, real-time quality 
control, supply chain management, and collaborative decision-making platforms. These 
technologies leverage sophisticated computational models and large datasets to offer 
insights and predictions that drive efficiency, quality, and innovation in the industry [15]. 

2.4. Augmented reality systems 

AR systems improve joint decision-making in machine embroidery by providing immersive, 
interactive environments for design, visualization, and collaboration. These systems 
overlay digital information onto the physical world, enabling users to see and interact with 



embroidery designs in real-time. One of the primary applications of AR in this field is design 
visualization. Designers can use AR to project embroidery patterns onto fabrics, allowing 
them to see how the final product will look and make adjustments on the fly. This capability 
is particularly useful for customizing designs to meet specific customer requirements, as it 
provides a tangible preview before production begins [16]. AR also enhances collaborative 
decision-making by enabling multiple stakeholders to view and interact with the same 
design simultaneously, regardless of their location. Using AR headsets or mobile devices, 
team members can discuss and modify designs in real-time, ensuring that all feedback is 
incorporated before the final approval. This level of collaboration is facilitated by platforms 
like Microsoft HoloLens and Google Glass, which support AR applications tailored for 
industrial use [17]. 

Besides, AR systems provide interactive tutorials and simulations that help new 
designers and machine operators learn complex embroidery techniques more effectively. 
For instance, AR can guide users through the steps of setting up an embroidery machine or 
troubleshooting common issues, overlaying instructions directly onto the physical 
equipment. This hands-on approach to training accelerates learning and improves 
retention, ultimately enhancing overall productivity [18]. 

It should be noted that AR is also used for quality control in machine embroidery. By 
overlaying design templates onto finished products, AR systems can quickly identify 
deviations from the intended pattern, such as misaligned stitches or incorrect colors. This 
real-time inspection capability allows for immediate corrections, reducing waste and 
ensuring that the final products meet high-quality standards. Advanced AR systems can 
even integrate with machine vision technology to automate this inspection process, further 
enhancing efficiency [19]. 

In addition to these applications, AR supports marketing and customer engagement by 
providing interactive experiences. For example, customers can use AR applications on their 
smartphones to visualize custom embroidery designs on their clothing before purchasing. 
This personalized shopping experience enhances customer satisfaction and can drive sales 
by showcasing the potential of custom embroidery in a compelling way [20]. 

2.5. Collaborative platforms 

Collaborative platforms are essential in the joint decision-making processes within machine 
embroidery, particularly through their ability to facilitate real-time communication, project 
management, and data sharing. These platforms integrate various functionalities that allow 
designers, production managers, and clients to collaborate seamlessly, ensuring that all 
parties are aligned and informed throughout the production cycle. 

Slack is one of the most widely used collaborative platforms, offering real-time 
messaging, file sharing, and integration with other tools. Its channel-based communication 
system allows teams to organize discussions by projects or topics, ensuring that relevant 
information is easily accessible. Slack's integration capabilities enable users to connect with 
other software tools commonly used in machine embroidery, such as design software and 
project management applications, enhancing workflow efficiency [21]. Trello and Asana are 
popular project management tools that help teams track progress, assign tasks, and manage 



deadlines. Trello uses a card-based system to represent tasks, which can be moved across 
different stages of a project pipeline. This visual approach to task management helps teams 
understand the status of ongoing projects at a glance. Asana, on the other hand, offers more 
detailed task management features, including dependencies, milestones, and custom 
workflows. Both platforms facilitate collaboration by allowing team members to comment 
on tasks, upload files, and set reminders, ensuring that everyone stays on the same page 
[22]. Microsoft Teams combines the communication features of Slack with the project 
management capabilities of Trello and Asana. It offers chat, video conferencing, and 
integration with Microsoft Office applications, making it a comprehensive tool for 
collaboration. Teams' ability to host virtual meetings is particularly valuable for 
geographically dispersed teams, enabling real-time discussions and decision-making 
without the need for physical presence.  

Additionally, Teams supports integration with various third-party apps, allowing users 
to customize their workspace to fit their specific needs [23]. Google Workspace, formerly 
known as G Suite, provides a suite of cloud-based productivity tools, including Google Docs, 
Sheets, and Drive. These tools allow multiple users to work on the same document 
simultaneously, making real-time collaboration straightforward. The commenting and 
suggestion features in Google Docs are particularly useful for reviewing and refining design 
documents, while Google Sheets can be used for project tracking and data analysis. Google 
Drive offers secure cloud storage, ensuring that all project files are accessible to authorized 
team members from any location [24]. 

Collaborative platforms also incorporate advanced data sharing and security features to 
protect sensitive information. Platforms like Slack and Microsoft Teams offer end-to-end 
encryption and compliance with industry standards such as GDPR and HIPAA, ensuring that 
data privacy is maintained.  

Furthermore, these platforms provide detailed access controls, allowing administrators 
to define who can view, edit, or share specific information [25]. 

Comparing the described information technologies in terms of overall effectiveness and 
practical application, real-time data analytics and cloud computing stand out for their broad 
applicability and immediate impact on decision-making processes. AI and ML offer 
substantial long-term benefits through continuous learning and optimization. AR provide 
powerful visualization and simulation capabilities, crucial for design and planning stages. 
Each technology has its unique properties, and their combined use can significantly enhance 
the joint decision-making process in machine embroidery, driving the industry towards 
greater efficiency and innovation. 

3. The information technology for joint decision making in 
machine embroidery with augmented reality 

The use of AR systems in machine embroidery technologies offers several significant 
advantages. Firstly, AR enhances design visualization by overlaying digital embroidery 
patterns onto physical garments in real-time. This allows designers and stakeholders to see 
how the final product will look and make immediate adjustments, ensuring the design 
meets aesthetic expectations. AR also facilitates collaborative decision-making by enabling 



multiple users to view and interact with the same virtual design simultaneously, regardless 
of their physical location. This fosters better communication and quicker consensus, 
reducing the time needed for approvals. 

Moreover, AR improves training and education for new designers and machine 
operators. Interactive AR tutorials can guide users through complex tasks, such as setting 
up embroidery machines or troubleshooting common issues, providing hands-on learning 
experiences that are more effective than traditional methods. In quality control, AR systems 
can overlay design templates onto finished products to quickly identify and correct 
deviations, ensuring high-quality output. This real-time inspection capability reduces waste 
and enhances production efficiency. 

3.1. The joint decision-making information technology for machine 
embroidery 

The information technology for joint decision-making in machine embroidery, integrating AR 
and AI systems, involves a complex, interactive process designed to optimize embroidery design 
and production. The system starts with the collection of multiple input data streams: video data 
from a camera, initial embroidery data, geometry of the human body, geometry of the clothes, 
general design requirements, and expert recommendations. These inputs are important for 
creating a personalized and precise embroidery design.  
The diagram of the proposed information technology for digital embroidery with means of AR 
is presented in Fig. 1. 

 

Figure 1: The diagram of proposed information technology for digital embroidery with AR. 



The AR device receives video data and initial embroidery data to generate AR visuals. This 
allows designers, experts and other participants to see how the embroidery will appear on the 
garment in real time, facilitating immediate feedback and adjustments. The AI system 
simultaneously processes additional inputs such as the body and clothes geometries, design 
requirements, and expert recommendations to optimize the embroidery parameters. Using 
advanced algorithms, the AI system analyzes these data to refine the embroidery technique, 
coordinates, and colors, ensuring that the design meets both aesthetic and technical criteria. 

After optimization, the AI system sends a correction signal back to the AR device, updating 
the embroidery technique, coordinates, and colors. This ensures that the AR representation 
remains accurate and synchronous with the real time. The output is a dynamic, real-time 
visualization of the optimized embroidery on the clothes, enabling effective collaboration 
among designers, production teams, and clients [26]. 

This integration of AR and AI facilitates a seamless and iterative design process, where 
continuous feedback loops between the AI and AR systems allow for constant refinement of the 
designs. The technology enhances joint decision-making by providing a visual, interactive 
platform for evaluating and optimizing embroidery designs, leading to higher quality outcomes 
and more efficient production processes. 

3.2. The design requirements and conditions 

For the efficient realization of the information technology for joint decision making in machine 
embroidery with AR, the AR device and AI system must meet specific technical requirements. 
The AR device requires high-performance graphics processing units (GPUs) to handle the 
rendering of complex embroidery designs in real-time. These GPUs must support advanced 
shading techniques and high frame rates to ensure smooth and realistic visualizations. 
Additionally, the device should incorporate precise tracking systems, such as optical trackers 
or inertial measurement units (IMUs), to maintain accurate alignment of virtual elements with 
the physical garment, even during rapid movements. The AR device must also include high-
fidelity audio components to provide auditory feedback and enhance the immersive experience. 
This involves integrating spatial audio technology, which allows sounds to be placed and moved 
in 3D space, aligning with the visual elements. The device should support multiple input 
modalities, including voice commands, hand gestures, and touch interfaces, to facilitate intuitive 
interaction with the virtual environment and design elements. Connectivity is a critical aspect, 
requiring the AR device to support low-latency wireless communication standards like Wi-Fi 6 
or 5G. This ensures seamless data transfer between the device and cloud-based AI systems, 
enabling real-time processing and feedback. The device must also feature robust security 
protocols to protect sensitive design data and user information, employing encryption 
standards and secure authentication methods. 

For the AI system, the requirements include powerful computational resources capable of 
handling large-scale data processing and ML tasks. This necessitates the use of multi-core 
processors and high-memory bandwidth to support deep learning frameworks. The AI system 
should be equipped with extensive storage capacity to manage vast datasets, including historical 
design data, user preferences, and sensor readings. The AI system must incorporate advanced 
neural network architectures tailored for image recognition, pattern detection, and optimization 
tasks. These models should be trained on diverse datasets to ensure high accuracy and 
generalization across different embroidery designs and fabric types. Additionally, the system 
should employ real-time inference engines to deliver instantaneous feedback and adjustments 



to the AR device. Integration with cloud services is essential for the AI system to leverage 
distributed computing resources and facilitate collaborative design processes. The system 
should support scalable cloud infrastructure, allowing for dynamic allocation of resources based 
on computational demands. It should also include robust APIs and software development kits 
to enable seamless integration with various AR devices and third-party applications. The AI 
system must feature comprehensive data analytics capabilities, utilizing ML algorithms to 
derive insights from user interactions and design outcomes. This involves implementing 
predictive analytics to anticipate design trends and recommend optimizations. Furthermore, the 
system should support continuous learning, updating its models based on new data and user 
feedback to improve performance over time. 

User interface design is another critical component, requiring the AI system to present data 
and recommendations in a clear, actionable format. This involves developing intuitive 
dashboards and visualization tools that allow users to monitor design progress, review 
suggestions, and make informed decisions. The system should also provide collaborative 
features, enabling multiple users to contribute to the design process simultaneously, regardless 
of their physical location (Table 1). 

3.3. The proposed mathematical model 

The information technology for joint decision-making in machine embroidery, as shown in the 
structure diagram (Fig. 1), integrates AR and AI systems to optimize embroidery designs and 
processes. The input data includes the video signal { , , }R G BV v v v=  from the camera, initial 

embroidery image { , , , }R G BX x x x= … , geometry of the human body 1 2{ , , , }MH h h h= … , 

geometry of the clothes 1 2{ , , , }LG g g g= … , general embroidery design requirements 

1 2{ , , , }NR r r r= … , and expert recommendations 1 2{ , , , }KD d d d= … . The output data is the 

AR video image { , , }R G BY y y y= , which displays the virtual embroidery projected onto the 

real clothes. 
The AR system functions by projecting the embroidery image X onto the cloth surface 

depicted in the video signal V . This process is described by the model ( , )Y F X V= , where Y  
represents the AR output. The AR system ensures that the embroidery design is correctly 
aligned and proportioned on the garment as seen in the video feed. 

The AI system plays a critical role by analyzing both the input data (including X , H ,G , R
, D ,) and the AR output Y . Using a neural network model ( , , , , , )C W X Y H G R D= , the AI 
system optimizes the embroidery technique, coordinates, and colors. The correction signal 

{ , , }R G BC c c c=  generated by the AI system is then transmitted back to the AR system. This 

signal adjusts the embroidery parameters, ensuring that the virtual projection is refined and 
improved continuously. The neural network model within the AI system processes the multi-
dimensional input data to identify optimal settings for the embroidery process. It uses learning 
algorithms to evaluate various configurations and predict the best outcomes based on historical 
data and expert inputs. This iterative optimization ensures that the final embroidery design not 
only meets aesthetic requirements but also adheres to technical constraints, such as thread 
tension and stitch density. 

 



Table 1 
Technical requirements for the information technology realization 

The objective is to minimize the error E  between the desired AR output optY  and the actual 

AR output Y . The error function E  can be defined as the mean squared error (MSE) between 
the two outputs: 

 2
opt opt ,

1

1( , ) ( )
N

i i
i

E Y Y Y Y
N =

= −∑ . (1) 

Component Technical 
Requirement 

AR Device AI System 

Processing 
Power 

High-
performance 
CPUs and GPUs 

Advanced shading 
techniques, high frame rates 

Multi-core processors, 
high-memory 
bandwidth 

Tracking 
Systems 

Precise tracking 
systems 

Optical trackers, IMUs N/A 

Input 
Modalities 

Multiple input 
methods 

Voice commands, hand 
gestures, touch interfaces 

N/A 

Connectivity Low-latency 
wireless 

Wi-Fi, 5G recommended N/A 

Security 
Protocols 

Robust security Encryption standards, 
secure authentication  

N/A 

Neural 
Network 
Models 

Advanced neural 
network 
architectures 

N/A Tailored for image 
recognition, pattern 
detection, optimization 

Real-time 
Inference 

Real-time 
processing and 
feedback 

N/A Real-time inference 
engines 

Cloud 
Integration 

Scalable cloud 
infrastructure 

Low-latency wireless 
communication with AI  

Distributed, scalable 
computing resources  

Data Analytics Comprehensive 
data analytics 

N/A Predictive analytics, 
continuous learning, 
deriving insights from 
user interactions 

User Interface 
Design 

Intuitive and 
actionable data 
presentation 

High-resolution display, 
intuitive interaction 
interfaces 

Intuitive dashboards, 
visualization tools, 
collaborative features 



The neural network aims to minimize this error by finding the optimal correction signal C  that 
adjusts the AR projection. Thus, the optimization problem can be expressed as: 

 optmin ( , ( , , ))C E Y F X V C . (2) 

Subject to the constraint that the correction signal C  is generated by the neural network model: 

 ( , , , , , )=C W X Y H G R D . (3) 

The neural network model W  processes the input data and current AR output through multiple 
layers, each with its own set of weights and activation functions. The goal is to iteratively adjust 
these weights to minimize the error function E . 

The neural network (3) is a complex multilayer model designed to determine the vector of 
embroidery correction parameters C  based on diverse input data: initial embroidery data X , 
AR data Y , human body geometry H , garment geometry G , design requirements R , and 
expert recommendations D . This network leverages a hierarchical structure where each layer 
is tailored to process different aspects of the input data, integrating them to produce optimized 
outputs. The primary learning method employed here is the minimization of an error function, 
augmented by attention mechanisms that direct the network's focus to the most critical 
parameters of the embroidery. 

The first layer of the neural network consists of input units for each data type. These units 
are followed by specialized sub-networks that process the respective data types individually. 
For instance, CNNs handle the image data from X  and Y , extracting features such as edges, 
textures, and patterns. These CNNs can be mathematically represented by a series of 
convolution operations: 

 
1

( ) *σ
=

 
= + 

 
∑

N

i i i
i

f X W X b , (4) 

where σ  denotes the activation function, iW  are the convolution filters, *  represents the 

convolution operation, iX  are the input image patches, and ib  are the biases. 

Parallel to the image-processing sub-networks, recurrent neural networks (RNNs) or 
transformers process sequential data from R  and D , capturing temporal dependencies and 
semantic context. The operations in an RNN layer can be represented as: 

 1( )σ −= + +t h t x th W h W x b , (5) 

where th  is the hidden state at time t , hW  and xW  are weight matrices, tx  is the input at time 

t , and b  is the bias. 
The geometric data H  and G  are processed through fully connected layers, transforming 

these spatial coordinates into a feature space. This transformation can be represented as: 



 ( ) ( )σ= +h hg H W H b , (6) 

 ( ) ( )σ= +g gg G W G b , (7) 

where hW  and gW  are the weight matrices, and hb  and gb  are the biases. 

The outputs from these specialized sub-networks are concatenated to form a comprehensive 
feature vector. This vector serves as the input to subsequent fully connected layers that 
integrate the information and perform higher-level feature extraction. The integrated feature 
vector F  is then passed through attention mechanisms, which enhance the network's focus on 
the most relevant parts of the input data. 

The attention mechanism can be mathematically described using the concept of attention 
weights. Let P  be the query, K  the key, and V  the value, which are derived from the 
integrated feature vector F . The attention output A  is given by: 

 softmax
 

=   
 

T

k

PKA V
d

, (8) 

where kd  is the dimensionality of the key vectors. The attention weights softmax
 
  
 

T

k

PK
d

 

determine the importance of each value V  based on the query P  and the key K . 
Finally, the output of the attention mechanism is fed into the final fully connected layers, 

which compute the embroidery correction parameters C . The overall transformation can be 
represented as: 

 ( )φ=C A , (9) 

where φ  denotes the non-linear transformation applied by the fully connected layers. 

The learning process involves minimizing an error function p tr( , )E C C , where pC  is the 

predicted correction vector and trC  is the true correction vector. The error function is typically 

the mean squared error (MSE): 

 2
p tr p, tr,

1

1( , ) ( )
=

= −∑
N

i i
i

E C C C C
N

. (10) 

The network parameters are optimized using gradient descent techniques. The gradient of the 
error function with respect to the network parameters u  is computed as: 

 p,
p, tr,

1

1 ( )
=

∂
∇ = −

∂∑
N

i
u i i

i

C
E C C

N u
. (11) 



It should be noted that the optimization (11) can be improved by using of fractional calculus 
methodologies with accounting of relaxation-like processes [27,28]. But, such calculations add 
a significant computational burden with the known algorithms which require the further 
development of fast discrete fractional transforms. 

The parameters are then updated using the Adam optimization algorithm [12-14,16], which 
adjusts the learning rate adaptively: 

 1 η+ = −
+
t

t t
t

mu u
v s

. (12) 

Here, tu  represents the parameters at iteration t , η  is the learning rate, tm  is the first moment 

estimate (mean of the gradients), tv  is the second moment estimate (uncentered variance of the 

gradients), and s  is a small constant to prevent division by zero. 
The Adam algorithm initializes the first moment vector 0m  and the second moment vector 

0v  as zeros. It also initializes a timestep 0=t . The hyperparameters 1β  and 2β  are set to 

control the exponential decay rates for the moment estimates, typically with values 1 0.9β =  

and 2 0.999β = . At each iteration t , the gradient of the objective function ( )E u  with respect 

to the parameters tu  is computed: 

 ( )= ∇t u tg E u . (13) 

Next, the first moment estimate tm  is updated as an exponential moving average of the 

gradients: 

 1 1 1(1 )β β−= + −t t tm m g . (14) 

The second moment estimate tv  is updated as an exponential moving average of the squared 

gradients: 

 2
2 1 2(1 )β β−= + −t t tv v g . (15) 

Because tm  and tv  are biased towards zero initially, the algorithm computes bias-corrected 

first and second moment estimates: 

 
1

ˆ
1 β

=
−

t
t t

mm , (16) 

 
2

ˆ
1 β

=
−

t
t t

vv . (17) 



The bias-corrected first moment estimate ˆ tm  is an estimate of the mean of the gradients, while 

the bias-corrected second moment estimate t̂v  is an estimate of the uncentered variance of the 

gradients. These bias corrections are crucial for maintaining accurate estimates during the 
initial stages of training. 

The Adam optimization algorithm's strength lies in its ability to adapt the learning rates of 
each parameter individually based on the first and second moment estimates of the gradients. 
This adaptability makes Adam particularly effective for training deep neural networks with 
large and noisy datasets. The algorithm combines the benefits of AdaGrad's ability to handle 
sparse gradients and RMSProp's ability to handle non-stationary objectives, providing a robust 
and efficient optimization method. 

Incorporating attention mechanisms ensures that the network focuses on the most 
significant parameters, dynamically weighting different parts of the input data based on their 
relevance. This allows the network to make more accurate predictions and optimizations, 
leading to improved performance in joint decision-making for machine embroidery with AR. 
The integration of advanced learning methods and attention mechanisms within this multilayer 
neural network facilitates the efficient and effective realization of the described information 
technology. 

4. Results and Discussion 

In this experiment setup, we aim to demonstrate the functionality and efficiency of the 
information technology for joint decision making in machine embroidery with AR. The setup 
involves a smartphone with an integrated high-resolution camera acting as the Virtual Reality 
(VR) device [29]. This smartphone captures real-time video data of the garment on which the 
embroidery is to be performed [30]. The AI system, deployed on a personal computer, processes 
this data to optimize the embroidery design. The smartphone and the personal computer are 
connected via WiFi, enabling seamless data transmission between the two devices. 

The AI system uses an external GPT model to analyze the recommendations from experts, 
creating an array D  that encapsulates the expert advice. This array, along with other input 
data such as the initial embroidery design X , the video data Y , the human body geometry H
, the garment geometry G , and the design requirements R , is processed by the neural network 
to produce optimized embroidery data C .  

The personal computer, equipped with sufficient computational power and storage, ensures 
that the AI system can handle these complex data inputs and perform real-time optimization. 
The optimized embroidery data C  and the AR output Y  are crucial outcomes of this process. 
The Y  data allows for real-time visualization of the embroidery on the garment through the 
VR interface on the smartphone.  

This visualization helps in making immediate adjustments and ensures that the final design 
aligns with the intended specifications.  

The C  data is used to generate the sequence of commands required by the digital 
embroidery machine to execute the design. 

The Janome Memory Craft 350E digital embroidery machine was used to test the proposed 
information technology.  



This machine is known for its precision and advanced features, making it ideal for complex 
embroidery tasks. The technical characteristics of the Janome Memory Craft 350E include a 
maximum embroidery speed of 650 stitches per minute, an embroidery area of 5.5 x 7.9 inches, 
and a variety of built-in embroidery designs and fonts. It supports USB connectivity, allowing 
it to receive embroidery designs directly from a computer.  

The Janome Memory Craft 350E supports a variety of file formats, including JEF, which is 
specific to Janome machines. This compatibility allows users to import a wide range of designs 
from different sources. The machine's backlit LCD screen provides a clear and intuitive interface 
for selecting and customizing designs, adjusting settings, and monitoring the embroidery 
process.  

The screen displays essential information such as stitch count, design size, and estimated 
time to completion, helping users manage their projects effectively. Furthermore, the machine 
includes features like an auto-declutch bobbin winder, which automatically stops winding when 
the bobbin is full, ensuring consistent thread tension and reducing waste.  

The Janome Memory Craft 350E also offers multiple hoop sizes, allowing users to switch 
between different hoop configurations based on their project requirements. The machine's 
sturdy construction and durable components contribute to its reliability and longevity, making 
it a dependable choice for continuous use. 

Once the optimized embroidery data C  is ready, it is transformed into a sequence of 
commands compatible with the Janome Memory Craft 350E. This transformation involves 
converting the design data into a format that the machine can understand, such as JEF files, 
which are specific to Janome embroidery machines.  

The personal computer sends these commands to the Janome Memory Craft 350E via USB 
or direct computer connectivity.  

The embroidery machine then executes the design, stitching the optimized embroidery 
pattern onto the garment with high precision. 

  

Figure 2: The machine embroidery process (Janome Memory Craft 350E embroidery machine). 

Throughout the embroidery process, the smartphone VR device continues to provide real-
time visual feedback, allowing for any necessary adjustments to be made promptly.  

This integrated system ensures that the final embroidered garment meets the desired quality 
and design specifications. The combination of advanced AI optimization, AR visualization, and 
precise embroidery execution demonstrates the effectiveness of this information technology for 
joint decision making in machine embroidery.  



The integration of AR and AI in machine embroidery for joint decision-making offers several 
advantages and disadvantages. 

One of the main advantages is enhanced design visualization. AR enables designers to 
overlay digital embroidery patterns onto physical garments in real-time, allowing stakeholders 
to see how the final product will look and make immediate adjustments. This interactive 
visualization ensures that the design aligns with aesthetic expectations and reduces the 
likelihood of errors. Additionally, the use of AI for optimizing embroidery techniques, 
coordinates, and colors ensures that the final product meets high-quality standards. The AI 
system continuously analyzes input data, including the geometry of the human body and 
clothes, to refine the embroidery parameters, leading to a more precise and tailored outcome. 

Another significant advantage is improved collaboration. By utilizing AR, multiple users can 
view and interact with the same virtual design simultaneously, regardless of their physical 
location. This facilitates better communication and faster consensus among designers, 
production teams, and clients. The iterative optimization process enabled by AI allows for 
continuous improvement of the design based on real-time feedback, ensuring that all 
stakeholders are satisfied with the final product before production begins. 

Training and education also benefit from this technology. AR provides interactive tutorials 
that guide new designers and machine operators through complex tasks, enhancing their 
learning experience and improving retention. This hands-on approach to training can accelerate 
the onboarding process and increase overall productivity. 

However, there are also disadvantages to consider. The implementation of AR and AI 
systems requires significant investment in advanced hardware and software. High-quality AR 
devices and powerful AI computational resources can be expensive, potentially limiting 
accessibility for smaller companies.  

Additionally, the technology necessitates specialized skills for development and 
maintenance, which may require additional training for existing staff or hiring new personnel 
with the necessary expertise. 

Data privacy and security are also concerns, especially when dealing with sensitive design 
information and customer data. Ensuring that the AI system complies with data protection 
regulations and implementing robust security measures can be challenging and costly. 
Furthermore, the reliance on continuous data input and feedback loops means that any 
disruption in data flow can impact the accuracy and effectiveness of the system. 

Therefore, the described information technology for joint decision-making in machine 
embroidery with AR and AI offers significant advantages in terms of design visualization, 
collaboration, and training. However, it also presents challenges related to cost, technical 
complexity, and data security. Balancing these factors is crucial for successful implementation 
and maximizing the benefits of this advanced technology. 

5. Conclusions 

The integration of AR and AI in machine embroidery for joint decision-making presents 
significant advantages and promising prospects. The primary advantages include enhanced 
design visualization, where AR allows stakeholders to see and interact with embroidery designs 
in real-time, ensuring alignment with aesthetic and technical requirements. This technology 
also facilitates improved collaboration, enabling simultaneous input from geographically 



dispersed teams, and providing interactive training modules that accelerate skill acquisition and 
productivity. AI’s role in optimizing embroidery techniques, coordinates, and colors ensures 
high-quality outputs tailored to individual garments. 

The prospects of this technology are promising as it drives innovation, efficiency, and 
quality in the embroidery industry. It allows for continuous improvement through real-time 
data analysis and iterative optimization, leading to more precise and customized designs. As the 
technology matures and becomes more accessible, it can revolutionize the industry by reducing 
errors, speeding up the design-to-production cycle, and enhancing customer satisfaction 
through personalized, high-quality products. The future of machine embroidery with AR and 
AI looks bright, promising significant advancements and broader adoption across the industry. 
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