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Abstract
The extended abstract (an abridged version of [1]) reports about our work investigating the relationships between
a multi-preferential semantics for defeasible reasoning in knowledge representation and a multilayer neural
network model. Weighted knowledge bases for a simple description logic with typicality are considered under
a (many-valued) “concept-wise” multipreference semantics. The semantics is used to provide a preferential
interpretation of MultiLayer Perceptrons (MLPs). A model checking and an entailment based approach are
exploited in the verification of properties of neural networks for the recognition of basic emotions.
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Preferential approaches to commonsense reasoning (e.g., [2, 3, 4, 5, 6, 7, 8, 9]) have their roots
in conditional logics [10, 11], and have been recently extended to Description Logics (DLs), to deal
with defeasible reasoning in ontologies, by allowing non-strict form of inclusions, called defeasible
or typicality inclusions. Different preferential semantics [12, 13, 14] and closure constructions (e.g.,
[15, 16, 17, 18, 19]) have been proposed for defeasible DLs. Among these, the concept-wise multi-
preferential semantics, which allows to account for preferences with respect to different concepts. It has
been first introduced as a semantics of ranked ℰℒ⊥ knowledge bases (KBs) [20], and then for weighted
conditional DL knowledge bases [21], and has been proposed as a semantics for the post-hoc verification
of some neural network models [22, 1].

The idea underlying the multi-preferential semantics is that, for two domain elements spirit and
buddy and two concepts, e.g., Horse and Zebra , spirit might be more typical than buddy as a horse
(spirit <Horse buddy), while less typical than buddy as a zebra (buddy <Zebra spirit ).

As for the DLs with typicality based on a single preference relation (e.g., [14, 17]), a typicality operator
T is introduced in the language to single out the typical instances T(𝐶) of a concept 𝐶 . Concept-
wise multi-preferential interpretations are defined by adding to standard DL interpretations (pairs
𝐼 = ⟨∆, ·𝐼⟩, where ∆ is a domain, and ·𝐼 an interpretation function) preference relations <𝐶1 , . . . , <𝐶𝑛

for a set of distinguished concepts 𝐶1, . . . , 𝐶𝑛, to represent the typicality of individuals in ∆ relative to
the concepts. Each <𝐶𝑖 is assumed to be a modular and well-founded strict partial order on ∆, like
preferences in Kraus, Lehmann and Magidor’s (KLM) ranked models [4].

The preference relations are used to define the meaning of typicality concepts. In the two-valued
case, the concept T(𝐶𝑖) is interpreted as the set of all <𝐶𝑖-minimal elements (𝑥 is an instance of
T(Horse) if there is no other instance of Horse preferred to 𝑥 with respect to <Horse ). The typicality
operator cannot be nested and it allows to define defeasible inclusions (typicality inclusions) of the
form T(𝐶) ⊑ 𝐷, whose intended meaning is that “the typical 𝐶’s are 𝐷’s” or “normally 𝐶’s are 𝐷’s”,
which correspond to KLM conditionals [4]. Defeasible inclusions, unlike strict inclusions 𝐶 ⊑ 𝐷, may
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have exceptions.
In weighted defeasible knowledge bases (KBs) typicality inclusions come with a weight. A concept

𝐶𝑖 can be associated with a set of typicality inclusions (conditionals) of the form T(𝐶𝑖) ⊑ 𝐷𝑗,𝑖, with
a weight 𝑤𝑖𝑗 , representing the prototypical properties of concept 𝐶𝑖. The weight 𝑤𝑖𝑗 is a real number
representing the plausibility or implausibility of the property 𝐷𝑗,𝑖 for members of 𝐶𝑖. For instance, one
may want to represent a situation in which horses are normally tall and run fast, it is very plausible that
they have a tail, but implausible that they have stripes. In a weighted KB these defeasible properties of
horses may be represented as:
T(Horse) ⊑ Tall , 4 .5 T(Horse) ⊑ RunFast , 4 .2
T(Horse) ⊑ ∃has_Tail .⊤, 9 .7 T(Horse) ⊑ ∃has_Stripes.⊤, −20

where negative weights represent implausible properties. The defeasible Tbox above can be used to
define an ordering among domain elements, comparing their typicality as horses. For instance, assuming
that Spirit is tall, has tail, no stripes and does not run fast, while Buddy is tall, has tail, runs fast and has
stripes, we can expect that spirit <Horse buddy . In our approach such features (such as, being tall or
having a tail) are as well represented as concepts in the DL.

In the two valued case, the preference relations <𝐶𝑖 can be constructed from the KB by defining
the weight 𝑊𝐶𝑖(𝑥) of a domain element 𝑥 with respect to a concept 𝐶𝑖, by summing up the weights
of the typicality inclusions for 𝐶𝑖 satisfied by 𝑥. The preference relations are then induced from such
weights as: 𝑥 <𝐶𝑖 𝑦 iff 𝑊𝐶𝑖(𝑥) > 𝑊𝐶𝑖(𝑦). In the example: Spirit satisfies the first and the third
default, hence WHorse(spirit) = 14 .2 , while Buddy satisfies all the defaults, hence, WHorse(buddy) =
−1.6. As WHorse(spirit) > WHorse(buddy) then spirit <Horse buddy . The semantic construction is
in the spirit of other semantics for conditionals [23, 9, 24], but it adopts multiple preferences.

Note that the interpretation of a typicality concept T(𝐶), for an arbitrary 𝐶 (e.g., T(Student
⊓Employee)) would require the definition of a preference <𝐶 for each 𝐶 , or the definition of a global
preference relation <. In [20], e.g., a global preference < is defined based on a (modified) Pareto-
combination of preferences <𝐶𝑖 . An alternative route is to move to a fuzzy interpretation of concepts,
and define <𝐶 based on the fuzzy interpretation of 𝐶 .

Fuzzy and many-valued DLs are well studied in the literature (see, for instance, [25, 26, 27, 28, 29]).
In fuzzy DLs, the idea is that a concept 𝐶 is interpreted as a function 𝐶𝐼 : ∆ → [0, 1] mapping each
domain element to a value in the unit interval [0, 1]. Then, for a domain element 𝑥 ∈ ∆, 𝐶𝐼(𝑥) is
regarded the degree of membership of 𝑥 in concept 𝐶 . In the fuzzy case [21, 1], the preference relation <𝐶

of any concept 𝐶 is induced by the fuzzy interpretation 𝐶𝐼 of concept 𝐶 : 𝑥 <𝐶 𝑦 iff 𝐶𝐼(𝑥) > 𝐶𝐼(𝑦).
In a non-crisp interpretation of typicality [1], the fuzzy interpretation of typicality concepts T(𝐶) in
an interpretation 𝐼 is defined as: (T(𝐶))𝐼(𝑥) = 𝐶𝐼(𝑥), if there is no 𝑦 ∈ ∆ such that 𝑦 <𝐶 𝑥;
(T(𝐶))𝐼(𝑥) = 0, otherwise. This choice has some impact on the (KLM) properties of entailment. When
(T(𝐶))𝐼(𝑥) > 0, we say that 𝑥 is a typical 𝐶-element in 𝐼 (and all typical 𝐶-elements have the same
membership degree in 𝐶).

As in the two-valued case, besides usual fuzzy DL axioms, a weighted KB includes a defeasible TBox,
a set of weighted typicality inclusions T(𝐶𝑖) ⊑ 𝐷𝑗,𝑖, with weight 𝑤𝑖𝑗 , for each distinguished concept
𝐶𝑖. The definition of 𝑊𝐶𝑖(𝑥) in a fuzzy interpretation 𝐼 is defined by considering the degree to which 𝑥
satisfies the properties (being tall, running fast, etc.). The weight 𝑊𝐶𝑖(𝑥) of 𝑥 wrt 𝐶𝑖 in an interpretation
𝐼 = ⟨∆, ·𝐼⟩ is defined as follows: 𝑊𝐶𝑖(𝑥) =

∑︀
ℎ𝑤𝑖ℎ 𝐷𝐼

𝑖,ℎ(𝑥), if 𝐶𝐼
𝑖 (𝑥) > 0; 𝑊𝐶𝑖(𝑥) = −∞, otherwise.

The models of a KB are required to satisfy further properties beyond satisfying fuzzy DL axioms
[30], by enforcing that the membership degree 𝐶𝐼(𝑥) of 𝑥 in 𝐶 is aligned with the weight 𝑊𝐶𝑖(𝑥)
in 𝐼 . For instance, in coherent models [21] of a KB, we require that 𝑥 <𝐶𝑖 𝑦 iff 𝑊𝐶𝑖(𝑥) > 𝑊𝐶𝑖(𝑦).
Faithful models [31] exploit a slightly weaker condition, while the stronger notion of 𝜙-coherence of a
fuzzy interpretation 𝐼 wrt a KB exploits a monotonically non-decreasing function 𝜙 : R → [0, 1]. 𝐼 is
𝜙-coherent with respect to a weighted KB if: for all 𝐶𝑖 ∈ 𝒞 and 𝑥 ∈ ∆, 𝐶𝐼

𝑖 (𝑥) = 𝜙(𝑊𝐶𝑖(𝑥)).
A mapping of a multilayer network to a conditional KB can be be defined in a simple way [21, 1], by

associating a concept name 𝐶𝑖 with each unit 𝑖 in the network and by introducing, for each synaptic
connection from neuron ℎ to neuron 𝑖 with weight 𝑤𝑖ℎ, a conditional T(𝐶𝑖) ⊑ 𝐶ℎ with weight 𝑤𝑖ℎ. If
we assume that 𝜙 is the activation function of all units in the network (having value in the unit interval



[0, 1]), then the 𝜙-coherent semantics characterizes unit activation: 𝐶𝐼
𝑖 (𝑥) corresponds to the activation

of unit 𝑖 for some input stimulus 𝑥. The semantics can also consider multiple functions 𝜙𝑖 to represent
the activation functions of different units. 𝜙-coherent interpretations capture the stationary states of
the network, both for MLPs and for recurrent networks, which allow for feedback cycles (a weighted
KB can indeed have cycles).

Since a multilayer network can be regarded as a conditional KB, entailment in the conditional
logic can be used for the verification of conditional properties of the network for post-hoc verification.
Undecidability results for fuzzy DLs with general inclusion axioms [32, 29] have led to considering a
finitely-valued version of 𝜙-coherent semantics, which provides an approximation of the fuzzy semantics
[1], by taking 𝒞𝑛 = {0, 1

𝑛 , . . . ,
𝑛−1
𝑛 , 1}, for 𝑛 ≥ 1, as the truth space. For the boolean fragment, in

the finitely-valued case, an ASP-based approach has been proposed for defeasible reasoning under
𝜙-coherent entailment [33]. Complexity results have been investigated, as well as the scalability of
different encodings of entailment in ASP, by taking advantage of custom propagators, weak constraints
and weight constraints [34].

In [1] we consider both the entailment based approach and a model checking approach in the verifi-
cation of conditional properties of some trained multilayer feedforward networks for the recognition
of basic emotions, using the Facial Action Coding System (FACS) [35] and the RAF-DB [36] data set,
containing almost 30000 images labeled with basic emotions or combinations of two emotions. The
images were input to OpenFace 2.0 [37], which detects a subset of the Action Units (AUs) in [35],
corresponding to facial muscle contractions; The AUs were used as input layer of an MLP, trained to
recognize four emotions. The relations between such AUs and emotions, studied by psychologists [38],
have been used as a reference for formulae to be verified.

The model checking approach exploits the behavior of the network 𝒩 over a set ∆ of input exemplars
(e.g., the test set), to construct a single multi-preferential interpretation 𝐼𝒩 with domain ∆, considering
only some units of interest (e.g., input and output units). For such units 𝑖, the associated concept 𝐶𝑖 is
interpreted by letting 𝐶𝐼𝒩

𝑖 (𝑥) be the activity of unit 𝑖 for input 𝑥. Graded conditional properties of the
form T(𝐸) ⊑ 𝐹 ≥ 𝑙 (as well as strict properties 𝐸 ⊑ 𝐹 ≥ 𝑙) can then be checked in 𝐼𝒩 . Verifying the
satisfiability of an inclusion in the interpretation 𝐼𝒩 requires polynomial time in the size of 𝐼𝒩 and of
the formula.

The entailment based approach has been experimented for a binary classification task, for the class
happiness vs other emotions. A set of 8 835 images was used. The OpenFace output intensities were
rescaled in order to make their distribution conformant to the expected one in case AUs are recognized
by humans [35]. The resulting 17 AUs were used as input units of a fully connected feed forward NN,
with two hidden layers of 50 and 25 nodes, using the logistic activation function for all layers. The F1
score of the trained network was 0.831. Verification has been performed taking 𝒞5 as the truth value
space (given that a scale of five values, plus absence, is used by humans for AU intensities), and using
minimum t-norm, the associated t-conorm, and standard involutive negation. With truth space 𝒞5 and
17 AUs as input units, the size of the search space for the solver was 617, i.e., more than 1013. The
weighted conditional knowledge base associated to the network contains 2 201 weighted typicality
inclusions. The version of the solver in [34] based on weight constraints and order encoding was used.

Let us consider the two graded inclusion axioms: (a)T(happiness) ⊑ au1⊔au6⊔au12⊔au14 ≥ 𝑘/5
and (b) T(happiness) ⊑ au6 ⊔ au12 ≥ 𝑘/5. The model checking approach, applied to the test set
(2 651 individuals with 390 instances of T(happiness)), finds that both formulae hold for 𝑘 = 3 and do
not hold for 𝑘 = 4.

In the entailment approach, the solver finds in seconds that (a) is not entailed for 𝑘 = 4, and in
minutes that it is entailed for 𝑘 = 1, while for 𝑘 = 2, 3, it does not provide a result in hours. On a
variant of the experiment, using as inputs AU intensities that are not rescaled, the solver finds in seconds
that (a) is not entailed for 𝑘 = 2, and in minutes that it is entailed for 𝑘 = 1. The graded inclusion
axiom (b) is entailed for 𝑘 = 1 and not for 𝑘 = 3. In the latter case, then, a counterexample is found by
entailment, whose search space includes all possible combinations of input vectors, while it is not found
by model checking on the test set. The co-existence of strict and defeasible inclusions in weighted KBs
also allows for combining empirical knowledge with elicited knowledge for reasoning and for post-hoc



verification. A different experiment in the verification of properties of a network trained to classify its
input as an instance of four emotions surprise, fear, happiness, anger, is also reported in [1].

While the model-checking approach does not require to consider the activity of all units to build
a preferential interpretation of a network, in the entailment-based approach all units are considered.
Also, the model-checking approach, based on the conditional multi-preferential semantics, is a general
(model agnostic) approach, which may be suitable to explain different network models (and was first
considered for SOMs [22]). On the other hand, the entailment-based approach is specific for MLPs.
Both approaches are global ones (see, e.g., [39]), as they consider the behavior of the network over a set
∆ of input stimuli. We refer to [1] for detailed results, discussion and related work on this conditional
approach to explainability.
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