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1. Introduction

Traditionally, ontology construction is conducted by knowledge engineers whose task is to formalize
relevant concepts of the application domain and the relationships among them. This process is tedious
and error-prone, and thus various methods to facilitate construction and, to some extent, ensure
completeness of the resulting ontology by querying a domain expert have been investigated. For
instance, learnability of axioms in lightweight DLs from a given set of interpretations has been studied
in [1], and exact learnability of lightweight DL ontologies in Angluin’s framework via queries has
been studied in [2]. In [3, 4, 5, 6, 7], learning DL concepts and axioms from given examples has been
investigated. Learning a DL ontology that is inseparable from a target ontology w.r.t. a query language
and a fixed dataset via querying an oracle has been investigated in [8]. In a recent work [9], PAC
learning of DL concepts has been studied. For an overview on learning DL ontologies see [10, 11]. In
another line of work, Formal Concept Analysis (FCA) [12] was employed for mining an ℰℒ⊥-basis of all
axioms holding in a given model [13, 14]. In [15], a further approach for mining bases with a predefined
and fixed role depth of concept expressions was proposed. In a more recent work [16], an approach for
efficient mining of axioms from graph dataset was introduced and evaluated on large datasets.

The FCA-based approaches have the disadvantage that, in the worst case, they issue exponentially
many queries to the domain expert. In [17], we presented an approach combining the advantages of both
lines of research for completing the missing information in the ontology w.r.t. some given set of concept
descriptions via issuing only polynomially many (w.r.t. the relevant quantities) queries to an expert.
In the present work, we improve and implement the approach from [17] and present a PAC version
of the ontology-completion method, which was initially introduced in [18] and implemented in [19].
Our solution is based on an algorithm for PAC learning a Horn envelope of an arbitrary propositional
formula [20], which is itself based on an algorithm for exactly learning Horn formulas [21]. Our setting
is the following. Given:

• an initial TBox 𝒯0;
• an expert ℰ able to answer subsumption queries w.r.t. a TBox 𝒯ℰ that is unknown to us;
• a set 𝒞 of concept descriptions built over the signature of 𝒯ℰ ;
• a sampling oracle 𝒰 that, when called, returns a subsumption query over 𝒞 according to a

probability distribution 𝒟𝒰 ;
• a probability 𝛿 and error bound 𝜖 with 0 < 𝜖, 𝛿 < 1;

compute a TBox 𝒯 such that 𝒯0 ⊆ 𝒯 and 𝒯 is, with probability at least 1− 𝛿, an 𝜖-approximation of
𝒯ℰ . Building on our work [17], we introduce pacco1, a tool for probably approximately correct (PAC)
completion of DL TBoxes.
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Definition 1. If 𝒯 is a TBox and 𝒞 is a finite set of concept descriptions, we denote by Impl(𝒯 , 𝒞) =
{𝑋 → 𝑌 | 𝑋,𝑌 ⊆ 𝒞 and 𝒯 |= ⊓𝑋 ⊑ ⊓𝑌 } the set of implications corresponding to GCIs over
conjunctions of concepts from 𝒞 entailed by 𝒯 .

Our approach to solving the above problem w.r.t. 𝒯0, 𝒞, and ℰ is to learn a set ℒ of implications
that approximates Impl(𝒯 ℰ , 𝒞). For this, we need an oracle capable of answering membership and
equivalence queries with respect to Impl(𝒯 ℰ , 𝒞). A membership query asks whether a certain subset
of 𝒞 is a model of Impl(𝒯 ℰ , 𝒞), and an equivalence query asks for a subset of 𝒞 that is a model of either
Impl(𝒯 ℰ , 𝒞) or ℒ but not both. We rely on a (domain) expert oracle ℰ answering subsumption queries
over 𝒞 of the form 𝒯 ℰ |= ⊓𝑋 ⊑ 𝐶 , where 𝑋 ⊆ 𝒞 and 𝐶 ∈ 𝒞.

2. Probably Approximately Correct Completion

As a measure of approximation for TBoxes, we consider how often the two TBoxes give the same
answers to subsumption queries:

Definition 2. Let 𝒯1 and 𝒯2 be two TBoxes, 𝒞 be a finite set of concept descriptions, and 𝒟 be a
probability distribution of subsumption queries over 𝒞. We define dist𝒟𝒞 (𝒯1, 𝒯2), the 𝒞-𝒟-distance
between 𝒯1 and 𝒯2, as the probability of getting different responses to a subsumption query w.r.t. 𝒯1
and 𝒯2: Pr𝒟(𝑄 | (𝒯1 |= 𝑄) ⇔ (𝒯2 ̸|= 𝑄)), where 𝑄 is a subsumption query over 𝒞. For a given
0 < 𝜖 < 1, we call a TBox 𝒯 an 𝜖-𝒞-𝒟-approximation of 𝒯 * if dist𝒟𝒞 (𝒯 , 𝒯 *) ≤ 𝜖. If, in addition,
𝒯 * |= 𝒯 , i.e., the set of models of 𝒯 * is a subset of the set of models of 𝒯 , then we say that 𝒯 is an
upper 𝜖-𝒞-𝒟-approximation of 𝒯 *.

Proposition 1. If 𝒯 is an upper 𝜖-𝒞-𝒟-approximation of 𝒯 *, then the 𝒞-𝒟-distance between 𝒯 and
𝒯 * is equal to Pr𝒟(𝑄 | 𝒯 ̸|= 𝑄 and 𝒯 * |= 𝑄).

Our algorithm has access to a sampling oracle 𝒰 simulating a user that, when called, returns a
subsumption query over 𝒞 according to a probability distribution 𝒟𝒰 . Given parameters 0 < 𝜖, 𝛿 < 1,
it uses oracles ℰ and 𝒰 to compute a TBox 𝒯 that, with probability at least 1− 𝛿, is an upper 𝜖-𝒞-𝒟𝒰 -
approximation of 𝒯 ℰ .

The algorithm internally maintains a list of implications over 𝒞 such that, after termination, the
corresponding set of GCIs is a desired approximation of 𝒯 ℰ . It starts with the empty listℒ of implications
and uses counterexamples obtained from (simulated) equivalence queries to update ℒ. In the algorithms
from [21] and [20], both positive and negative counterexamples are possible. A positive counterexample
may be returned if the current hypothesis contains an implication not entailed by the target Horn
formula. In our setting, such an implication corresponds to a CGI not entailed by the target TBox 𝒯 ℰ .
Since our goal is to obtain an upper approximation of 𝒯 ℰ , we do not allow such GCIs. Therefore, we
modify the algorithm to make sure that ℒ always contains only implications corresponding to GCIs
entailed by 𝒯 ℰ . This ensures that the resulting approximation of 𝒯 ℰ is an upper approximation.

We simulate every equivalence query with several calls to the sampling oracle 𝒰 . If not all valid GCIs
are entailed by GCI(ℒ) = {⊓𝑋 ⊑ ⊓𝑌 | 𝑋 → 𝑌 ∈ ℒ}, we expect an equivalence query to return a
subset 𝑋 of 𝒞 closed under ℒ but not under Impl(𝒯 ℰ , 𝒞). Since we aim at an 𝜖-approximation, we must
be able to obtain, with an appropriate probability, such 𝑋 whenever dist𝒟𝒞 (GCI(ℒ), 𝒯 ℰ) > 𝜖.

Every iteration of the algorithm starts with a search for a counterexample 𝑋 to GCI(ℒ). For the 𝑖th

iteration, our algorithm makes
⌈︁
log1−𝜖

𝛿
𝑖(𝑖+1)

⌉︁
attempts to generate a counterexample [22]. Since ℒ

contains only valid implications, the counterexample, if found, is always negative and is a model of ℒ.
The rest of the iteration eliminates some counterexample 𝑌 ⊆ 𝑋 by making sure that, for every 𝐶 ∈ 𝒞,
the responses to the query ⊓𝑌 ⊑ 𝐶 w.r.t. GCI(ℒ) and 𝒯ℰ are identical. To do this, the algorithm
searches ℒ for the first implication 𝑈 → 𝑉 such that 𝑌 = 𝑈 ∩𝑋 ̸= 𝑈 and 𝒯 ℰ |= ⊓𝑌 ⊑ 𝐶 for some
𝐶 ∈ 𝑉 ∖ 𝑌 . If such an implication is found, it is refined to 𝑌 → Compl(𝑌 ), where Compl(𝑌 ) is the
completion of 𝑌 w.r.t. 𝒞 and 𝒯 ℰ , i.e., Compl(𝑌 ) = {𝐶 ∈ 𝒞 | 𝒯 ℰ |= ⊓𝑌 ⊑ 𝐶}. Otherwise, a new
implication 𝑋 → Compl(𝑋) is added to the end of ℒ. In both cases, the new implication is valid w.r.t.



Number of Execution
𝛿 𝜖 samples queries generated axioms unrecovered axioms time (sec.)

0.01 0.01 17502 18628 28 33 283
0.1 3467 6474 23 35 147
0.2 1690 4142 18 38 67
0.3 359 1226 6 46 10

0.1 0.01 14456 16172 27 32 254
0.1 3347 6431 22 34 132
0.2 1084 2719 10 43 44
0.2 745 2458 9 44 34

0.2 0.01 14965 16371 26 36 221
0.1 3338 6383 22 36 128
0.2 502 1533 6 47 16
0.3 209 773 3 48 5

0.3 0.01 14332 16039 26 34 226
0.1 3560 6923 22 34 140
0.2 1375 3735 15 39 56
0.3 19 88 1 49 <1

Table 1
Evalutation results completing GO-Plant. All values are rounded arithmetic means of 5 different runs.

𝒯 ℰ . Note that the computation of completion requires 𝑂(|𝒞|) queries to the oracle ℰ and no calls to the
sampling oracle 𝒰 . Combining this with the results in [20], we obtain

Theorem 1. Given a domain expert oracle ℰ and a sampling oracle 𝒰 , our algorithm computes, with
probability at least 1−𝛿, an upper 𝜖-𝒞-𝒟-approximation of 𝒯 ℰ . The number of queries to ℰ and 𝒰 posed
by the algorithm is polynomial in |𝒞|, 1/𝜖, 1/𝛿, and the minimal size of an implication set equivalent to
Impl(𝒯 ℰ , 𝒞).

3. Experimental Results

We evaluated our approach on a subset of the Gene Ontology (GO) [23], namely, GO-Plant2, which
contains 97 classes and 155 logical axioms, among them 145 subclass axioms between concept names.
For our experiments, we randomly deleted 50 of these subclass axioms and completed the resulting
ontology with pacco in various test settings using the uniform distribution of subsumption queries in
the sampling oracle. As base set 𝒞, we took all the 97 concept names. As expert, we used the Hermit
reasoner in conjunction with GO-Plant.

As expected, increasing 𝜖 results in a smaller number of generated axioms and a larger number of
unrecovered axioms, i.e., TBoxes that have larger 𝒞-𝒟-distance to the original TBox. The effect of
varying 𝛿 is much smaller, since the number of sampling queries used to simulate an equivalence query
depends linearly on 1/𝜖 and only logarithmically on 1/𝛿.

We compared the resulting TBoxes with the original GO-Plant using the ontology diff tool ecco3 [24].
Ecco finds differences between ontologies and reports them in separate categories, one of which contains
axioms from one ontology not entailed by the other. These are listed under unrecovered axioms in
Table 1. The numbers remain relatively large even for small values of 𝜖. The reason is that 𝜖 corresponds
to the target maximal distance between the entire expert and completed TBoxes rather than between
what has been removed and what has been recovered.

In future, we plan to explore the empirical behavior of our algorithm by simulating the expert ℰ and
the sampling oracle 𝒰 from data with different distributions. For example, we may sample frequently
occurring subsets of 𝒞 to learn GCIs with high support in the sense of association rule mining. It could
also be interesting to sample infrequent subsets of 𝒞 and learn GCIs with low support. One could
2https://geneontology.org/docs/download-ontology
3https://github.com/rsgoncalves/ecco

https://geneontology.org/docs/download-ontology


say that GCIs highly supported by data can be accepted without resorting to an expert, whereas, for
low-support GCIs, it is important to get a confirmation. It may be worthwhile to develop a modification
of the algorithm to approximately complete both a TBox and an ABox w.r.t. a specific interpretation.
This may require a slightly different notion of approximation accounting for the information contained
in the ABox to be completed.
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