
Foundations of Ontology Template Language OTTR
(Extended Abstract)
Erik Snilsberg

1
, Leif Harald Karlsen

1
, Egor V. Kostylev

1
and Martin G. Skjæveland

1

1Department of Informatics, University of Oslo, Norway

Abstract
OTTR is a template language for the Semantic Web data and knowledge representation languages RDF and OWL.

OTTR sees use as a key technology in the Semantic Web systems and already gained popularity both in academia

and industry. OTTR is also in active development, which is, however, limited by the fact that little is known

about its theoretical aspects. In this extended abstract we begin to close this gap by laying the foundations of

OTTR. To this end, we first introduce a mathematical formalisation of the language in terms of its syntax and

semantics. Then, we report bounds for the size of OTTR expansion—that is, of the data encoded by templates.

Finally, we overview our study of the data and combined complexity of an important decision problem associated

with the language and its fragments.

Keywords
OTTR, Semantic Web, ontology management, ontology templates, theoretical foundations

1. Introduction

The Resource Description Framework (RDF) [1] and the Web Ontology Language (OWL) [2] are among

the central knowledge representation languages for practical use. RDF is a generic data model where

statements are expressed as triples, thus giving RDF datasets a graph-like structure, favourable for many

applications. OWL is an ontology language based on description logics [3], which ensure desirable

computational properties. OWL can be serialised in RDF by means of a simple mapping [4]. Both

languages are standardised (see https://www.w3.org/RDF/, https://www.w3.org/OWL/) and supported

by a wide range of software. Although RDF and OWL are popular, engineering and maintaining such

knowledge bases are not trivial [5]. This is caused in part by the lack of support for user-defined

abstraction, which forces all expressions to be made as RDF triples and OWL axioms, which often

appears too low-level for users.

Reasonable Ontology Templates (OTTR) [6] is a recent template language designed to increase the

efficiency and quality of constructing and maintaining RDF and OWL knowledge bases. The utility of

OTTR comes from its ability to represent and instantiate user-defined parameterised modelling patterns.

OTTR allows to introduce sound modelling principles to knowledge base engineering that are not

well-supported by established semantic technologies, such as encapsulation of modelling complexity,

modelling uniformity, separation of concerns, and avoiding repetitions. OTTR can thereby provide

actionable resources that promote correct use of the vocabulary—similar to what programming APIs

provide to software engineers [7].

In a nutshell, an OTTR dataset consists of templates and instances. An OTTR template represents

a parameterised encoding of a (knowledge base) modelling pattern, and an instance of a template

represents a replica of the pattern where the template’s parameters are substituted by the instance’s

arguments. Templates form a (non-cyclic) recursive structure; the pattern of a template is specified by a

DL 2024: 37th International Workshop on Description Logics, June 18–21, 2024, Bergen, Norway
$ eriksni@ifi.uio.no (E. Snilsberg); leifhka@ifi.uio.no (L. H. Karlsen); egork@ifi.uio.no (E. V. Kostylev); martige@ifi.uio.no

(M. G. Skjæveland)

� https://www.mn.uio.no/ifi/english/people/aca/eriksni/ (E. Snilsberg); http://leifhka.org (L. H. Karlsen);

https://www.mn.uio.no/ifi/english/people/aca/egork/ (E. V. Kostylev);

https://www.mn.uio.no/ifi/english/people/aca/martige/ (M. G. Skjæveland)

� 0009-0005-3039-3778 (E. Snilsberg); 0000-0001-5131-5246 (L. H. Karlsen); 0000-0002-8886-6129 (E. V. Kostylev);

0000-0002-9736-8316 (M. G. Skjæveland)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://www.w3.org/RDF/
https://www.w3.org/OWL/
mailto:eriksni@ifi.uio.no
mailto:leifhka@ifi.uio.no
mailto:egork@ifi.uio.no
mailto:martige@ifi.uio.no
https://www.mn.uio.no/ifi/english/people/aca/eriksni/
http://leifhka.org
https://www.mn.uio.no/ifi/english/people/aca/egork/
https://www.mn.uio.no/ifi/english/people/aca/martige/
https://orcid.org/0009-0005-3039-3778
https://orcid.org/0000-0001-5131-5246
https://orcid.org/0000-0002-8886-6129
https://orcid.org/0000-0002-9736-8316
https://creativecommons.org/licenses/by/4.0/deed.en


set of template instances which may use template parameters as arguments. Base templates are used to

directly represent structures in the base language (e.g., RDF). A set of instances can be translated to

the base language by means of (template) expansion, which recursively replaces instances with their

corresponding template replicas until only instances of base templates are left. To have a feeling for

OTTR, let us consider a dataset with two templates, with names ex:Person and o-rdf:Type, taking two

parameters each:

ex:Person[?person, ?name] :: {
o-rdf:Type(?person, foaf:Person), ottr:Triple(?person, foaf:name, ?name) } .

o-rdf:Type[?instance, ?class] :: { ottr:Triple(?instance, rdf:type, ?class) } .

Note that ex:Person relies on o-rdf:Type and another template, ottr:Triple, which is a base template whose

instances represent RDF triples. The dataset also has an instance ex:Person(:Bob, "Bobby Jackson"),
which expands in two steps to two RDF triples: (:Bob, rdf:type, foaf:Person) and (:Bob, foaf:name,
"Bobby Jackson"). This example illustrates only the basic OTTR functionality. However, OTTR has

more advanced features, including special treatment for possibly nested lists and sophisticated list

expansion, which we illustrate later.

An OTTR specification, as well as its serialisation formats, are available as technical reports [8, 9, 10];

there is an open-source reference implementation of OTTR, Lutra (http://www.ottr.xyz). OTTR is in

active development and is used by a wide range of projects [11, 12, 13]. There are several approaches

with a purpose similar to the one of OTTR [14, 15, 16, 17, 18]. However, OTTR has features that are not

present in the other systems, most prominently, list expansion.

While OTTR has been gaining in popularity, its development is limited by the fact that it lacks a

mathematical formalisation and that little is known about its theoretical properties. In this extended

abstract, we report that we begin to close this gap and lay down the foundations of OTTR. In particular,

we first introduce a mathematical formalisation of a core of the OTTR language, including its key

advanced features, thus enabling its formal studies; we then report several upper bounds on the size

of the result of OTTR expansion, giving an indication of how concisely OTTR can encode ontologies;

finally, we overview our study combined and data computational complexity of OTTR expansion and

establish fine-grained borders between OTTR fragments, separating those that can be easily evaluated

from those that are more difficult.

2. Key Features of OTTR

The key features covered in our formalisation are optional parameters, default values, and list expansion

modes (the latter of which is the most interesting and demanding from the theoretical point of view), and

we introduce them in this section by means of examples. Note, however, that OTTR specifications [8, 19]

include additional features, such as type system for parameters, non-blank parameters, which are omitted

from our formalisation for brevity.

We begin with our first two features. As illustrated by the following example, parameters marked

as optional with symbol ? allow a special term none to be used as an argument for these parameters.

Meanwhile, for non-optional parameters, if none is given as an argument in some instance, then the

entire instance is ignored during expansion. A parameter may also have a default value, specified as

a predefined constant. When none is given as an argument for a parameter with a default value, it is

replaced by the default value.

For example, we can extend the ex:Person template of the example in the introduction to include

information about the email address and the location of the person:

ex:Person[?person, ?name, ? ?mail, ?loc=ex:Norway] :: {
o-rdf:Type(?person, foaf:Person), ottr:Triple(?person, foaf:name, ?name),

ottr:Triple(?person, foaf:mbox, ?mail), ottr:Triple(?person, foaf:based, ?loc) } .

Since parameter ?mail is marked by (another) ? as optional, we may give none as the corresponding

argument. In that case, all occurrences of ?mail are replaced with none in the ex:Person template

http://www.ottr.xyz


during its expansion. However, since the ottr:Triple template is non-optional for all parameters, the

second instance of ottr:Triple would be ignored. Next, since ?location has a default value, we can also

give none as the corresponding argument. In this case, ?location uses its default value instead. So,

overall, expanding the instance ex:Person(:Bob, "Bobby Jackson", none, none) results in the triple (:Bob,
foaf:based, ex:Norway), in addition to the two triples generated in the original example.

We move on to the third key feature, list expansions, which is used to access the elements of list

terms. There are three expansion modes: cross, zipMin, and zipMax. Instances can be specified as

having one of these modes, indicating special treatment for list arguments during expansion. Only

arguments marked with ++ are affected, while unmarked arguments are treated as normal, even if they

are lists. An error is raised if a non-list argument is marked with ++. For all three expansion modes,

new instances are created during expansion, with the elements of the lists replacing the lists themselves

as instance arguments. In particular, cross combines the list elements via the Cartesian product of the

input lists, while zipMin and zipMax combines elements that have the same position in the input lists.

The difference between the latter two is that zipMin combines elements up the length of the shortest

list, while zipMax pads shorter lists with none up to the length of the longest list.

For example, given two lists of people (:Bob, :John, :Jane) and (:Stephanie, :Ross) we can specify

which people in the first list knows the people in the second list. If each person in the first list knows

everyone in the second list, then we can use expansion mode cross:

ex:Knows[?knowers, ?knowees] :: {
cross | ottr:Triple(++ ?knowers, foaf:knows, ++ ?knowees) } .

Then, expanding the instance ex:Knows((:Bob, :John, :Jane), (:Steph, :Ross)) results in the six triples

with all possible combinations of list elements, from (:Bob, foaf:knows, :Steph) to (:Jane, foaf:knows,
:Ross). If instead the knowing-relation corresponds with position in the two lists (i.e., :Bob knows

:Steph, :John knows :Ross, etc.), then we can use zipping modes zipMin or zipMax instead of cross. For

example, replacing cross with zipMin results in the two triples (:Bob, foaf:knows, :Steph) and (:John,
foaf:knows, :Ross). Since position of person :Jane exceeds the length of the shorter list, this element is

simply ignored with zipMin. Replacing zipMin with zipMax and expanding the same instance results in

the additional intermediate instance ottr:Triple(:Jane, foaf:knows, none), which is, however, ignored

since the third parameter of ottr:Triple is non-optional, resulting in the same triples as for zipMin.

Finally, we bring attention to the fact that lists inside templates may have variables as elements, as

in, for example, (:Bob, :John, ?person, :Jane). This is a way to construct new terms during expansion,

which has a significant impact on the expressivity and complexity or OTTR.

3. Overview of Results

We first report several upper bounds for the size of expansion with respect to the size of datasets, which

gives us an indication of the conciseness of OTTR. We established a general bound for full OTTR, as well

as bounds for two of its important fragments: a fragment without list expansion and a fragment where

all lists are ground (i.e., variable-free). In particular, the size of expansion is bounded exponentially by

both template nesting depth and by maximal template arity. If no list expansion is allowed, then only

template nesting is in the exponent (in fact, only cross mode is essential); if all lists are ground, then

only template arity is in the exponent.

We next report our studies of the computational (combined) complexity of a central decision problem

associated with the expansion process, namely, the problem Expansion of determining whether a given

instance occurs in the expansion of a given error-free OTTR dataset. Studying Expansion helps us

understand how difficult it is to retrieve the data stored in OTTR datasets. We consider Expansion for

different syntactic fragments of OTTR, which allows us to separate the types of datasets which are easy

to expand from the ones that are more difficult. In particular, we established a fine border, separating

fragments of OTTR for which the combined complexity of Expansion is NP-complete and for which it



is NL-complete. It is worth to note that the former includes the full OTTR, while the latter includes

essentially the simplest possible fragment.

Finally, we report our results on data complexity of Expansion. In this setting, we assume that the

templates of an OTTR dataset are ‘fixed,’ and only the instances of the dataset are considered to form

the input. This gives a more practical view of the complexity of Expansion, because the number of

templates is usually rather small, while the number of instances may be arbitrarily big. In this case, all

relevant OTTR fragments fall into two complexity classes, TC
0
-complete (under AC

0
reductions) and

AC
0
, and the separating property is the presence of lists and expansion modes zipMin or zipMax.

4. Conclusion and Future Work

In this extended abstract we report our results on the foundations of OTTR. This is just the beginning of

OTTR formal studies, which opens up many further research avenues: we plan to formalise remaining

OTTR features, including types, look at DL ontologies produced by OTTR, and study OTTR under a

generalisation of OBDA. We also plan to investigate how our algorithms can be used to improve the

efficiency of real-life OTTR systems, such as Lutra.

References

[1] R. Cyganiak, D. Wood, M. Lanthaler, RDF 1.1 Concepts and Abstract Syntax, Technical Report,

W3C, 2014.

[2] B. Motik, P. F. Patel-Schneider, B. Parsia, OWL 2 Web Ontology Language Structural Specification

and Functional-Style Syntax, Technical Report, W3C, 2012.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description

Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, 2003.

[4] P. F. Patel-Schneider, B. Motik, OWL 2 Web Ontology Language Mapping to RDF Graphs, Technical

Report, W3C, 2012.

[5] T. Tudorache, Ontology engineering: Current state, challenges, and future directions, Semantic

Web 11 (2020) 125–138.

[6] M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, J. W. Klüwer, OTTR: Formal Templates for Pattern-

Based Ontology Engineering, in: Workshop on Ontology Design and Patterns (WOP), volume 51,

2021, pp. 349–377.

[7] M. G. Skjæveland, H. Forssell, J. W. Klüwer, D. P. Lupp, E. Thorstensen, A. Waaler, Reasonable

Ontology Templates: APIs for OWL, in: ISWC Posters&Demonstrations and Industry Tracks,

2017.

[8] L. H. Karlsen, M. G. Skjæveland, Concepts and Abstract Model for Reasonable Ontology Templates

(mOTTR), Technical Report, 2023.

[9] M. G. Skjæveland, Web Reasonable Ontology Templates (wOTTR), Technical Report, 2023.

[10] M. G. Skjæveland, L. H. Karlsen, Terse Syntax for Reasonable Ontology Templates (stOTTR),

Technical Report, 2023.

[11] M. Hodkiewicz, J. W. Klüwer, C. Woods, T. Smoker, E. Low, An ontology for reasoning over

engineering textual data stored in fmea spreadsheet tables, Computers in Industry 131 (2021)

103496.

[12] Y. Svetashova, B. Zhou, T. Pychynski, S. Schmidt, Y. Sure-Vetter, R. Mikut, E. Kharlamov, Ontology-

Enhanced Machine Learning: a Bosch Use Case of Welding Quality Monitoring, in: International

Semantic Web Conference (ISWC), 2020, pp. 531–550.

[13] A. Ekelhart, F. J. Ekaputra, E. Kiesling, Automated Knowledge Graph Construction from Raw Log

Data, in: ISWC Posters&Demonstrations and Industry Tracks, 2020.

[14] D. Vrandec̆ić, Explicit Knowledge Engineering Patterns with Macros, in: Ontology Patterns for

the Semantic Web Workshop, 2005.



[15] B. Krieg-Brückner, T. Mossakowski, Generic Ontologies and Generic Ontology Design Patterns,

in: Workshop on Ontology Design and Patterns, 2017.

[16] L. Iannone, A. L. Rector, R. Stevens, Embedding Knowledge Patterns into OWL, in: Extended

Semantic Web Conference (ESWC), 2009, pp. 218–232.

[17] M. Lefrançois, A. Zimmermann, N. Bakerally, A SPARQL Extension for Generating RDF from

Heterogeneous Formats, in: Extended Semantic Web Conference (ESWC), 2017.

[18] P. Lord, The Semantic Web takes Wing: Programming Ontologies with Tawny-OWL, in: Interna-

tional Workshop on OWL: Experiences and Directions (OWLED), 2013.

[19] L. H. Karlsen, M. G. Skjæveland, Adapting Reasonable Ontology Templates to RDF (rOTTR),

Technical Report, 2019.


	1 Introduction
	2 Key Features of OTTR
	3 Overview of Results
	4 Conclusion and Future Work

