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Abstract
This paper is an extended abstract of our recent work on proposing a stable model semantics for Description

Logic terminologies. Our semantics is based on Quantified Equilibrium Logic and overcomes some limitations

of previous approaches. We prove that standard reasoning problems w.r.t. terminologies in 𝒜ℒ𝒞ℐ under the

stable model semantics are decidable in deterministic single exponential time. In contrast, we show that concept

satisfiability w.r.t. general KBs in 𝒜ℒ𝒞ℐ under the stable model semantics is undecidable.
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1. Introduction and Motivation

Description Logics are often seen as fragments of the classical first-order logic, equipped with a syntax

that is more convenient for knowledge representation [1]. In particular, this means that most DLs

nowadays make the open-world assumption (OWA), in which, intuitively, everything that is not forbidden

is considered possible. However, it is acknowledged that supporting the closed-world assumption (CWA)

is also important in order to enable commonsense reasoning in DLs, e.g., by means of default negation

(see, e.g., the overview and the references in [2]). In [3], we consider Description Logics under the

stable model semantics of Quantified Equilibrium Logic (QEL) [4] which provides an elegant logical

formalization of the stable model semantics of logic programs with default negation [5]. The stable model

semantics of QEL turns out to be an appropriate semantics for terminologies in 𝒜ℒ𝒞ℐ . A terminology 𝒯
consists of statements of the form 𝐴 := 𝐶 , where a concept name 𝐴 is defined using a complex concept

expression 𝐶 . A terminology may contain terminological cycles, where a definition of some concept

name may be recursive, as in the following terminology:

BasicUser := User ⊓ ¬PrivilegedUser
PrivilegedUser := Admin ⊔ ∃promotedBy .PrivilegedUser

Here BasicUser and PrivilegedUser are (intensional or defined) concept names defined using (exten-

sional) base predicates User , Admin , and promotedBy . A concrete semantics for terminologies tells us

how to interpret the defined concept names given an extension for the base predicates. Suppose the

base predicates correspond to the following facts:

User(𝑎) User(𝑏) promotedBy(𝑎, 𝑏) promotedBy(𝑏, 𝑎)

In the last three decades, essentially three semantics have been proposed to deal with terminologies:

the least fixpoint semantics, the greatest fixpoint semantics, and the descriptive semantics. The descriptive

semantics [6] is nowadays the classical semantics for DLs, deemed as the most natural semantics and it

sees “:=” as a logical equivalence; in our example, it produces two possible extensions for the defined

concept names:

(i) BasicUser(𝑎),BasicUser(𝑏)
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(ii) PrivilegedUser(𝑎),PrivilegedUser(𝑏)

While the extension (i) is natural and expected, the extension (ii) is questionable: the membership of

𝑎 and 𝑏 in PrivilegedUser is not well-founded (there is only a self-supported justification). Baader [7]

advocates fixpoint semantics to overcome some weaknesses of the descriptive semantics. However, the

semantics of Baader is too strong in this example: it rejects both (i) and (ii). The stable model semantics

based on QEL proposed in [3] is stronger than the classical semantics, in the sense that some classical

models of a KB or terminology will be rejected as implausible (like (ii) in our example above), and

accepts (i). Enabling default negation, the stable model semantics of QEL allows to combine the OWA

and the CWA in a natural way. The reconciliation of OWA and CWA specifically in DL terminologies is

a problem whose relevance is boosted by the new W3C SHACL standard for expressing constraints

over RDF graphs [8]. SHACL is syntactically very close to DL terminologies, but its semantics has not

been fully established yet (but it clearly leans towards CWA). The main contributions of [3] can be

summarized as follows:

• We define a semantics for general DL knowledge bases using Quantified Equilibrium Logic

(QEL) [4]. The use of QEL in defining the semantics allows us to elegantly support fixed predicates,

which are needed for modeling (extensional) base predicates in terminologies.

• We provide a strong undecidability results for reasoning in 𝒜ℒ𝒞ℐ𝒪 and 𝒜ℒ𝒞ℐ in the presence of

role minimization. In particular, for 𝒜ℒ𝒞ℐ𝒪 the proof is given for KBs without negation, which

means that it carries over and applies to circumscribed 𝒜ℒ𝒞ℐ𝒪 KBs where all predicates are set

to be minimized. This complements the negative results in [9], which rely on the use of varying

predicates.

• We define a stable model semantics for DL terminologies. To achieve this, we instantiate our

stable model semantics for general KBs. Intuitively, for a given terminology 𝒯 , we require all

base concept and role names of 𝒯 to be interpreted as fixed predicates, i.e. they are not subject to

minimization. In addition, we provide two alternative definitions of stable models, based on level

mappings and fixpoint computation. We prove that the semantics are equivalent.

• We study the case of 𝒜ℒ𝒞ℐ terminologies and prove ExpTime-completeness for the standard rea-

soning tasks. This is achieved by proving a tree-model property and employing 2-way alternating

tree automata [10].

2. Stable Model Semantics and Contributions

QEL is based on Here-and-There Logic (HT) with an additional minimality requirement. In contrast to

the classical case, an interpretation in the logic HT consists of a pair of structures (ℐ,𝒥 ) sharing the

same domain and interpreting individuals in the same way. The interpretation ℐ is the ‘here’ world

while 𝒥 is the ‘there’ world. We call assumed everything that is true ‘there’, and founded everything

that is true ‘here’. The two ‘worlds’ are related by the inclusion relation, i.e. ℐ ⊆ 𝒥 : ‘here’ is included

in ‘there’, i.e. 𝑝ℐ ⊆ 𝑝𝒥 , for all predicates 𝑝. Fixed predicates can be easily expressed by requiring that ℐ
and 𝒥 agree on a set 𝐹 of predicates. In this case, we write ℐ ⊆𝐹 𝒥 .

Definition 1. A Here-and-There (HT) interpretation is a pair (ℐ,𝒥 ) of interpretations with ℐ ⊆ 𝒥 . We

define an interpretation function ·(ℐ,𝒥 )
using the equations in Figure 1.

In the HT logic, the implication is intuitionistic: in jargon it needs to be ‘founded’, meaning that the

HT interpretation must model it, and ‘assumed’, meaning that the ‘there’ world must model it. In DLs,

the universally quantified concept of the form ∀𝑟.𝐶 can be translated in FOL as ∀𝑦((𝑟(𝑥, 𝑦) → 𝐶(𝑦)).
Thus the interpretation must align with the interpretation of implication in quantified HT. As a matter

of fact, concept inclusions are also affected by this double nature of implication, as they are ‘explicit’

implications in DLs.

Definition 2. Assume a KB 𝒦 = (𝒯 ,𝒜) and an HT interpretation (ℐ,𝒥 ). We write:



𝑎(ℐ,𝒥 ) = 𝑎ℐ 𝐴(ℐ,𝒥 ) = 𝐴ℐ 𝑟(ℐ,𝒥 ) = 𝑟ℐ ⊤(ℐ,𝒥 ) = Δℐ ⊥(ℐ,𝒥 ) = ∅
(𝑟−)(ℐ,𝒥 ) = {(𝑒, 𝑒′) | (𝑒′, 𝑒) ∈ 𝑟ℐ} (¬𝐶)(ℐ,𝒥 ) = Δℐ ∖ 𝐶𝒥

(𝐶1 ⊓ 𝐶2)
(ℐ,𝒥 ) =𝐶

(ℐ,𝒥 )
1 ∩ 𝐶

(ℐ,𝒥 )
2 (𝐶1 ⊔ 𝐶2)

(ℐ,𝒥 ) = 𝐶
(ℐ,𝒥 )
1 ∪ 𝐶

(ℐ,𝒥 )
2

(∃𝑅.𝐶)(ℐ,𝒥 ) = {𝑒 ∈ Δℐ | ∃𝑒′ : (𝑒, 𝑒′) ∈ 𝑅(ℐ,𝒥 ) ∧ 𝑒′ ∈ 𝐶(ℐ,𝒥 )}

(∀𝑅.𝐶)(ℐ,𝒥 ) =
{︁
𝑒 ∈ Δℐ | ∀𝑒′ : (𝑒, 𝑒′) ∈ 𝑅(ℐ,𝒥 ) implies 𝑒′ ∈ 𝐶(ℐ,𝒥 ) and

(𝑒, 𝑒′) ∈ 𝑅𝒥 implies 𝑒′ ∈ 𝐶𝒥

}︁
Figure 1: HT semantics for DLs.

- (ℐ,𝒥 ) |= 𝐶 ⊑ 𝐷, if 𝐶(ℐ,𝒥 ) ⊆ 𝐷(ℐ,𝒥 )
and 𝐶𝒥 ⊆ 𝐷𝒥

;

- (ℐ,𝒥 ) |= 𝒦, if ℐ |= 𝒜 and (ℐ,𝒥 ) |= 𝐶 ⊑ 𝐷, for all 𝐶 ⊑ 𝐷 ∈ 𝒯 .

Definition 3 (Stable model). Given 𝐹 ⊆ 𝑁𝐶 ∪𝑁𝑅, an interpretation 𝒥 is a stable model of a KB 𝒦
under fixed predicates 𝐹 , if

(i) the HT interpretation (𝒥 ,𝒥 ) is a model of 𝒦, and

(ii) there is no ℐ s.t. (ℐ,𝒥 ) is a model of 𝒦 and ℐ ⊂𝐹 𝒥 .

Intuitively, a model is stable if it cannot be further improved in a better ‘here’ world. In the semantics

introduced above, the negation ¬ behaves as negation as failure or default negation in logic programs.

Given an HT model, the ‘there’ is a classical model and a concept 𝐴 true at some domain element in the

‘there’ can be thought of as ‘to be justified’. An HT model is not stable if the truth of an atom in the

‘there’ cannot be proved. Intuitively, the truth of ¬𝐴 at a domain element 𝑑 in a stable model amounts

to ‘we cannot justify 𝐴 at 𝑑’.

The standard reasoning tasks of satisfiability, concept satisfiability, subsumption and instance checking

are adapted to stable models in the obvious way [3]. Identifying a stable model of a KB requires checking

minimality (see (ii) in Definition 3), which is computationally difficult.

Theorem 1. Concept satisfiability in 𝒜ℒ𝒞ℐ𝒪 under the stable model semantics is undecidable.

The result above is based on a reduction from the domino problem. The constructed TBox is negation-

free, thus the undecidability result applies to circumscribed 𝒜ℒ𝒞ℐ𝒪 with all predicates minimized,

extending the results of [9] relying on the use of varying predicates. We prove that under the stable

model semantics reasoning w.r.t. KBs in 𝒜ℒ𝒞ℐ𝒪 can be reduced to reasoning w.r.t. KBs in 𝒜ℒ𝒞ℐ .

Thus standard reasoning problems in 𝒜ℒ𝒞ℐ are undecidable.

Terminologies. A key feature of terminologies is the separation of the predicates in a terminology

𝒯 into two sets: def(𝒯 ) are the intensional predicates that are defined using concept definitions based

on the extensional predicates in base(𝒯 ). In the context of the stable model semantics, it is thus natural

to not require minimization of the predicates in base(𝒯 ), i.e. the extensions of these predicates should

remain fixed during the minimization process. Based on this observation, a stable model semantics for

terminologies 𝒯 can be immediately obtained by instantiating Definition 3, which covers general KBs:

(a) view every concept definition 𝐴 := 𝐶 ∈ 𝒯 as an inclusion 𝐶 ⊑ 𝐴, and (b) use 𝐹 = base(𝒯 ) as the

set of fixed predicates.

In [3], we define an equivalent stable model semantics for terminologies based on level mappings,

similarly to [11]. Level mappings allow tracking the justifications of defined predicates. Roughly

speaking, a model of a terminology is stable if all occurrences of defined concepts are well-founded,

meaning that they are supported by a finite justification. We use level mapping to guide the unraveling

of stable models, preserving the well-foundedness.



Theorem 2. If a terminology 𝒯 has a stable model, then it has a tree-shaped stable model.

Given a terminology 𝒯 , we can construct a 2ATA A (with Büchi acceptance condition) whose number

of states is polynomial in the size of 𝒯 and such that 𝒯 has a tree-shaped stable model iff A is not

empty, i.e. A accepts a tree. The automaton A is the intersection of two automata on labeled trees.

The first automaton A𝑀 checks that the input tree is a classical model of the terminology, it can be

constructed in the usual way [12]. The second automaton A𝐹 checks the well-foundedness of defined

concepts and can be constructed in a similar way of [13].

Theorem 3. For 𝒜ℒ𝒞ℐ terminologies under the stable model semantics, the problems of satisfiability,

concept subsumption, and concept satisfiability are ExpTime-complete.

3. Conclusions

We expect that our result for terminologies in 𝒜ℒ𝒞ℐ can be extended to 𝒜ℒ𝒞ℐ𝒪 following the

techniques of [13]. Finite model reasoning in terminologies under the stable model semantics is also

a relevant open problem: it has the potential to provide new insights into, e.g., the complexity of

static analysis problems for SHACL. Another natural direction (also relevant for SHACL) is to study

terminologies that support regular expressions over roles, which enable recursive navigation of paths in

an interpretation.
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