
On Deciding the Data Complexity of Answering Linear
Monadic Datalog Queries with LTL Operators (Extended
Abstract)
Alessandro Artale1, Anton Gnatenko1, Vladislav Ryzhikov2 and Michael Zakharyaschev2

1

Faculty of Engineering, Free University of Bozen-Bolzano, piazza Domenicani 3, Bozen-Bolzano 39100, Italy

2

Birkbeck, University of London, Malet Street, London WC1E 7HX, UK

Abstract
We study the data complexity of connected linear monadic datalog queries equipped with operators of linear
temporal logic LTL in the rule bodies. We establish that answering a query with the operators ○/○−1 (at the
next/previous moment) is either in AC 0, or in ACC 0 ∖ AC 0, or NC 1-complete, or L-hard and in NL for data
complexity, and show that checking L-hardness of answering a given query is in ExpSpace, while checking
whether it lies in AC 0, ACC 0, or is NC 1-complete is in 2ExpSpace, and that these problems become, respectively,
PSpace-complete and in ExpSpace for queries with just one operator ○ (or ○−1). We prove further that these
problems are undecidable for queries with the operators ♢/♢−1 (sometime in the future/past).

Keywords
Linear monadic datalog, linear temporal logic, ontology mediated query, data complexity.

We consider linear monadic datalog queries, in which predicates in the rule bodies can be prefixed by
the temporal operators ○/○−1 (at the next/previous moment) and ♢/♢−1 (sometime in the future/past)
of linear temporal logic LTL [1]. Data instances for such queries are finite sets of ground atoms that are
timestamped by the moments of time ℓ ∈ Z they happen at. We interpret ♢ under the strict semantics:
♢𝑃 (𝑎) is regarded to be true at ℓ if 𝑃 (𝑎) is true at some later moment ℓ′ > ℓ. The interpretation of ○

is as usual: ○𝑃 (𝑎) is true at ℓ if 𝑃 (𝑎) holds at ℓ+ 1. The semantics of ○−1 and ♢−1 is defined as the
mirror image in the past.

Example 1. Consider a temporal database that represents a schedule of flights between cities 𝑐1, . . . , 𝑐𝑛
in a period of time. It contains the fact Flight(𝑐𝑖, 𝑐𝑗) at time ℓ if there is a flight from city 𝑐𝑖 to city 𝑐𝑗 on
day ℓ. The following temporal conjunctive query finds a city now—at time 0—and and return later:

Goal(𝑋)← Flight(𝑋,𝑌 ) ∧ ♢Flight(𝑌,𝑋). (1)

The following query is recursive. It looks for cities, from which we can travel to a place that is sunny for
at least two consecutive days with the requirement that, on our way, we pass through sunny cities only:

Goal(𝑋)← ReachSun(𝑋),

ReachSun(𝑋)← Sunny(𝑋) ∧○Sunny(𝑋),

ReachSun(𝑋)← Flight(𝑋,𝑌 ) ∧ Sunny(𝑌 ) ∧○ReachSun(𝑌 ).

(2)

The temporal datalog queries above have only monadic predicates on the left-hand side of each
rule, which are known as IDB predicates, and at most one IDB predicate on the right-hand side (body)
together with any number of other (EDB) predicates of arbitrary arity. We refer to such queries as
temporal monadic linear datalog queries. Here, we only consider connected queries, in which each rule
body gives rise to a connected variable graph.

DL 2024: 37th International Workshop on Description Logics, June 18–21, 2024, Bergen, Norway

" artale@inf.unibz.it (A. Artale); anton.gnatenko@student.unibz.it (A. Gnatenko); v.ryzhikov@bbk.ac.uk (V. Ryzhikov);
m.zakharyaschev@bbk.ac.uk (M. Zakharyaschev)
� 0000-0002-3852-9351 (A. Artale); 0000-0003-1499-2090 (A. Gnatenko); 0000-0002-6847-6465 (V. Ryzhikov);
0000-0002-2210-5183 (M. Zakharyaschev)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:artale@inf.unibz.it
mailto:anton.gnatenko@student.unibz.it
mailto:v.ryzhikov@bbk.ac.uk
mailto:m.zakharyaschev@bbk.ac.uk
https://orcid.org/0000-0002-3852-9351
https://orcid.org/0000-0003-1499-2090
https://orcid.org/0000-0002-6847-6465
https://orcid.org/0000-0002-2210-5183
https://creativecommons.org/licenses/by/4.0/deed.en


We are interested in the data complexity of answering temporal linear monadic datalog queries, that
is, in the complexity of the following decision problem (instance checking), for any fixed query 𝑞: given
a temporal data instance 𝒟, an object 𝑎 in its domain and a timestamp ℓ, decide whether Goal(𝑎) is
true at time ℓ in every model of 𝑞 and 𝒟. It is not hard to see that the upper bound on the complexity
of this problem is NL, but for different queries it may vary significantly. For example, answering query
(1) lies in AC 0, while answering query (2) is NL-complete. Note that, if we drop ○ from (2), it can also
be answered in AC 0.

In fact, it is well-known that a pure linear monadic datalog query 𝑞 (without temporal operators) can
either lie in the complexity class AC 0, or in L, or in NL, being at least L-hard in the last two cases. On
the other hand, any pure LTL query 𝑞 (with 0-ary predicates, i.e., propositional variables) lies either in
AC 0 or in ACC 0 ∖ AC 0, or is NC 1-complete [2].

Temporal datalog queries are two-dimensional, being interpreted over the object domain for the
individual variables and the implicit temporal domain (Z, <) for the LTL operators. Our first observation
is that the temporal operators ○/○−1 and ♢/♢−1 provide different levels of interaction between the
two dimensions. Consider, for example, the following program:

Goal(𝑋)← 𝐴(𝑋) ∧○𝑅(𝑋,𝑌 ) ∧○𝐶(𝑌 ), (3)

𝐶(𝑋)← ○𝐶(𝑋), (4)

𝐶(𝑋)← 𝐵(𝑋). (5)

Suppose a data instance contains 𝐴(𝑎) at time 0, 𝑅(𝑎, 𝑏) at time 1, and 𝐵(𝑏) at time 5. We can infer
Goal(𝑎) at 0 by first applying rule (5) to infer 𝐶(𝑏) at 5, then rule (4) to infer 𝐶(𝑏) at 4, 3, 2, and 1,
and finally rule (3) to infer Goal(𝑎) at 0. Rules (4) and (5) work along the timeline of a single object,
𝑏, while the final application passes from one object, 𝑏, to another, 𝑎. To do so, it checks whether a
certain condition holds for the joint timeline of 𝑎 and 𝑏, namely, that they are connected by 𝑅 at the
next moment of time. The operators ○/○−1 can query the joint timeline of several objects by a number
of steps bounded by the size of the query. Therefore, there is a limited interaction between the two
‘phases’ of inference—exploring the object and the temporal domain. On the other hand, a rule that
features the operators ♢/♢−1 can navigate the whole temporal line in addition to the object domain:

𝐶(𝑋)← ♢𝑅(𝑋,𝑌 ) ∧𝐷(𝑌 ). (6)

In this case, inferring 𝐶(𝑎) at time 0 requires checking the existence of an object 𝑏 that is connected to
𝑎 by 𝑅 at some (arbitrarily distant) moment in the future, and then passing to that object and trying to
infer 𝐷(𝑏).

This distinction between ○/○−1 and♢/♢−1 is crucial for the analysis of the behaviour of the respective
queries. A query 𝑞 that only features ○/○−1 is decomposable into a pure datalog part 𝑞𝑑 and a pure
LTL part 𝑞𝑡, which are, however, exponentially larger than 𝑞. These two ‘one-dimensional’ queries can
be analysed separately using the methods of Cosmadakis et al. [3] and Kurucz et al. [4], respectively.
Recall that evaluation of 𝑞𝑑 is either in AC 0 or L-hard for data complexity. In the latter case, answering
the original 𝑞 is also L-hard. Otherwise, it is in NC 1, and its data complexity coincides with that of 𝑞𝑡.
This gives us the following classification:

Theorem1. Answering any temporal linear monadic datalog query is inNL for data complexity. Answering

a connected linear query with the operators ○/○−1
only is either in AC

0
for data complexity, or in

ACC
0 ∖ AC 0

, or NC
1
-complete, or L-hard.

In terms of descriptive complexity, this theorem means that every temporal linear monadic datalog
query can be rewritten to five types of first-order queries over data instances given as two-sorted struc-
tures (one sort for the object domain and the other for the temporal one): FO(<,≡)-queries with unary
predicates 𝑡 ≡ 0 (mod 𝑛), FO(<,MOD)-queries with quantifiers ∃𝑛𝑡 𝜓(𝑡) checking whether the number
of moments of time satisfying 𝜓 is divisible by 𝑛, FO(RPR)-queries with relational primitive recursion,
FO(DTC)-queries with deterministic transitive closure, and FO(TC)-queries with non-deterministic



transitive closure. These extra predicates, quantifiers and operators complement FO(<) with various
types of recursion.

The ultimate question we would like to understand is how hard it is to extablish the exact data
complexity of—and so the type of recursion required for—answering a given temporal linear (or arbitrary)
monadic datalog query. In this paper, we provide partial answers to this question for connected linear
queries. The decomposition of 𝑞 into 𝑞𝑑 and 𝑞𝑡 mentioned above suggests a straightforward approach of
utilising the respective algorithms for pure monadic datalog and pure LTL. For 𝑞𝑡 we use the method of
Kurucz et al. [4] as a black-box. For 𝑞𝑑, we modify the method of Cosmadakis et al. [3] that employs an
automata-theoretic criterion for boundedness. We use automata that work over a two-sorted alphabet
distinguishing between the object domain and the temporal domain. The following theorem summarises
our results.

Theorem 2. (𝑖) The problem of recognising whether answering a given connected linear temporal monadic

datalog query 𝑞 can be done in NC
1

or is L-hard is

• PSpace-complete, if 𝑞 contains occurrences of ○ (or ○−1 ) only;

• in ExpSpace, if 𝑞 contains occurrences of both ○ and ○−1
.

Recognising whether answering 𝑞 can be done in AC
0

or in ACC
0 ∖AC 0

or is NC
1
-complete is in ExpSpace

for 𝑞 containing ○ (or ○−1 ) only, and in 2ExpSpace for 𝑞 containing both ○ and ○−1
.

(𝑖𝑖) For 𝑞 with ♢/♢−1
, the problems in (𝑖) are all undecidable.

Our lower bound, PSpace-hardness, is obtained using the properties of LTL and contrasts with the
only known lower bound for the case of connected queries in pure linear monadic datalog, which is
coNP-hardness [5, 3].

Related Work

The first wave of research related to deciding the data complexity of datalog queries started in the
mid 1980s, when the database community was working on optimisation and parallelisation of datalog
programs; see [6, 7] and references therein. One of the fundamental problems considered was to decide
FO-rewritability aka boundedness of any given datalog query. Boundedness was shown to be NP-
complete for linear monadic single rule programs [8], PSpace-complete for linear monadic programs [9,
10], and 2ExpTime-complete for arbitrary monadic (single rule) programs [11, 12]. Boundedness of
linear datalog queries with binary predicates and of ternary linear datalog queries with a single recursive
rule was proved to be undecidable [13, 14].

The second wave in the 2000s was caused by the Web Ontology Language OWL and the idea of
ontology-based data access, which brought large families of DLs that guarantee FO-rewritability [15, 16]
(the DL-Lite family) and datalog-rewritability [17, 18] (the ℰℒ family) and [19] (the Horn-DL family).
Other types of rule-based languages with FO-rewritability have also been identified, e.g., [20, 21, 22].
The problem of deciding the data complexity and rewritability type of large classes of ontology-mediated
queries (OMQs) has been investigated since the 2010s. For instance, a complete characterisation of
OMQs with an ℰℒ-ontology was obtained in [23], establishing anAC 0/NL/P data complexity trichotomy,
deciding which is ExpTime-complete. A crucial step in understanding this problem for non-Horn DLs
was the discovery in [24, 25] of a connection between OMQs and non-uniform constraint satisfaction
problems (CSPs) with a fixed template via MMSNP of [26]. It was used to show that deciding FO- and
datalog-rewritability of OMQs with an ontology in any DL between 𝒜ℒ𝒞 and 𝒮ℋℐ𝒰 and an atomic
query is NExpTime-complete. The Feder-Vardi dichotomy of CSPs [27, 28] implies a P/coNP dichotomy
of such OMQs, which is decidable in NExpTime. For monadic disjunctive datalog and OMQs with an
𝒜ℒ𝒞ℐ ontology (that is,𝒜ℒ𝒞 with inverse roles) and a CQ, deciding FO-rewritability rises and becomes
2NExpTime-complete; deciding whether such an OMQ is rewritable to monadic datalog is between
2NExpTime and 3NExpTime [29, 25].



The survey [30] provides an overview of OMQ answering for various temporal logics and their
combinations with DLs. It considers various fragments obtained by restricting Boolean and temporal
operators used in ontologies and (uniform) complexity of OMQ answering for them. Any LTL-OMQ
(without an object domain) is in NC 1 in data complexity and can be rewritten into FO(RPR) or MSO(<),
monadic second-order logic with <. Such queries can also be rewritable into FO(<), FO(<,≡), or
FO(<,MOD); see [4]. Checking for each of the latter classes if a given query is rewritable into it is
ExpSpace-complete. The complexity remains the same even if the class of LTL ontologies is restricted
to temporal Horn formulas and the queries are atomic. However, for a further restricted class with
linear Horn ontologies checking rewritability into FO(<) and FO(<,≡) becomes PSpace-complete for
negation-free queries (for atomic queries also FO(<,MOD)-rewritability checking is PSpace-complete).

Finally, [31] studied the data complexity of queries mediated by a non-Horn temporal DL ontology
with temporal operators on both concept and roles. For this logic, checking if the evaluation of an
atomic ontology-mediated query is below coNP-hard is undecidable [32]. As shown in this paper,
monadicity restores decidability when we only have the operators ○/○−1. However, the possibility to
use arbitrary conjunctive queries as rule bodies still keeps the problem undecidable in the presence of
♢/♢−.

References

[1] S. Demri, V. Goranko, M. Lange, Temporal Logics in Computer Science, Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 2016.

[2] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, First-order
rewritability of ontology-mediated queries in linear temporal logic, Artificial Intelligence 299
(2021) 103536. doi:https://doi.org/10.1016/j.artint.2021.103536.

[3] S. Cosmadakis, H. Gaifman, P. Kanellakis, M. Vardi, Decidable optimization problems for database
logic programs, in: Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, STOC ’88, Association for Computing Machinery, New York, NY, USA, 1988, p. 477–490.
doi:10.1145/62212.62259.

[4] A. Kurucz, V. Ryzhikov, Y. Savateev, M. Zakharyaschev, Deciding fo-rewritability of regular
languages and ontology-mediated queries in linear temporal logic, J. Artif. Int. Res. 76 (2023).
doi:10.1613/jair.1.14061.

[5] M. Y. Vardi, Decidability and undecidability results for boundedness of linear recursive queries,
in: Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS ’88, Association for Computing Machinery, New York, NY, USA, 1988, p.
341–351. doi:10.1145/308386.308470.

[6] P. C. Kanellakis, Elements of relational database theory, in: J. van Leeuwen (Ed.), Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, Elsevier and MIT Press,
1990, pp. 1073–1156. URL: https://doi.org/10.1016/b978-0-444-88074-1.50022-6. doi:10.1016/
b978-0-444-88074-1.50022-6.

[7] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic program-
ming, ACM Computing Surveys 33 (2001) 374–425.

[8] M. Y. Vardi, Decidability and undecidability results for boundedness of linear recursive queries,
in: C. Edmondson-Yurkanan, M. Yannakakis (Eds.), Proceedings of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, March 21-23, 1988, Austin,
Texas, USA, ACM, 1988, pp. 341–351. URL: http://doi.acm.org/10.1145/308386.308470. doi:10.
1145/308386.308470.

[9] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, M. Y. Vardi, Decidable optimization problems for
database logic programs (preliminary report), in: STOC, 1988, pp. 477–490.

[10] R. van der Meyden, Predicate boundedness of linear monadic datalog is in PSPACE, Int. J. Found.
Comput. Sci. 11 (2000) 591–612. URL: https://doi.org/10.1142/S0129054100000351. doi:10.1142/
S0129054100000351.

http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103536
http://dx.doi.org/10.1145/62212.62259
http://dx.doi.org/10.1613/jair.1.14061
http://dx.doi.org/10.1145/308386.308470
https://doi.org/10.1016/b978-0-444-88074-1.50022-6
http://dx.doi.org/10.1016/b978-0-444-88074-1.50022-6
http://dx.doi.org/10.1016/b978-0-444-88074-1.50022-6
http://doi.acm.org/10.1145/308386.308470
http://dx.doi.org/10.1145/308386.308470
http://dx.doi.org/10.1145/308386.308470
https://doi.org/10.1142/S0129054100000351
http://dx.doi.org/10.1142/S0129054100000351
http://dx.doi.org/10.1142/S0129054100000351


[11] M. Benedikt, B. ten Cate, T. Colcombet, M. Vanden Boom, The complexity of boundedness
for guarded logics, in: 30th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2015, Kyoto, Japan, July 6-10, 2015, IEEE Computer Society, 2015, pp. 293–304. URL: https:
//doi.org/10.1109/LICS.2015.36. doi:10.1109/LICS.2015.36.

[12] S. Kikot, A. Kurucz, V. V. Podolskii, M. Zakharyaschev, Deciding boundedness of monadic
sirups, in: L. Libkin, R. Pichler, P. Guagliardo (Eds.), PODS’21: Proceedings of the 40th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China,
June 20-25, 2021, ACM, 2021, pp. 370–387. URL: https://doi.org/10.1145/3452021.3458332. doi:10.
1145/3452021.3458332.

[13] G. G. Hillebrand, P. C. Kanellakis, H. G. Mairson, M. Y. Vardi, Undecidable boundedness prob-
lems for datalog programs, J. Log. Program. 25 (1995) 163–190. URL: https://doi.org/10.1016/
0743-1066(95)00051-K. doi:10.1016/0743-1066(95)00051-K.

[14] J. Marcinkowski, Achilles, turtle, and undecidable boundedness problems for small DATALOG
programs, SIAM J. Comput. 29 (1999) 231–257. URL: https://doi.org/10.1137/S0097539797322140.
doi:10.1137/S0097539797322140.

[15] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient
query answering in description logics: The DL-Lite family, J. Autom. Reasoning 39 (2007) 385–429.

[16] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, J.
Artif. Intell. Res. (JAIR) 36 (2009) 1–69.

[17] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: L. P. Kaelbling, A. Saffiotti (Eds.),
Proceedings of the 19th Int. Joint Conf. on Artificial Intelligence, IJCAI-05, Professional Book
Center, 2005, pp. 364–369.

[18] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope further, in: K. Clark, P. F. Patel-Schneider
(Eds.), Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions, 2008.

[19] U. Hustadt, B. Motik, U. Sattler, Data complexity of reasoning in very expressive description
logics, in: L. P. Kaelbling, A. Saffiotti (Eds.), IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005,
Professional Book Center, 2005, pp. 466–471. URL: http://ijcai.org/Proceedings/05/Papers/0326.pdf.

[20] A. Calì, G. Gottlob, A. Pieris, Towards more expressive ontology languages: The query answering
problem, Artificial Intelligence 193 (2012) 87–128.

[21] J.-F. Baget, M. Leclère, M.-L. Mugnier, E. Salvat, On rules with existential variables: Walking the
decidability line, Artificial Intelligence 175 (2011) 1620–1654.

[22] M. König, M. Leclère, M.-L. Mugnier, M. Thomazo, Sound, complete and minimal UCQ-rewriting
for existential rules, Semantic Web 6 (2015) 451–475.

[23] C. Lutz, L. Sabellek, A complete classification of the complexity and rewritability of ontology-
mediated queries based on the description logic EL, Artif. Intell. 308 (2022) 103709. URL: https:
//doi.org/10.1016/j.artint.2022.103709. doi:10.1016/J.ARTINT.2022.103709.

[24] M. Bienvenu, B. ten Cate, C. Lutz, F. Wolter, Ontology-based data access: A study through
disjunctive datalog, CSP, and MMSNP, ACM Transactions on Database Systems 39 (2014) 33:1–44.

[25] C. Feier, A. Kuusisto, C. Lutz, Rewritability in monadic disjunctive datalog, MMSNP, and expressive
description logics, Logical Methods in Computer Science 15 (2019). URL: https://doi.org/10.23638/
LMCS-15(2:15)2019. doi:10.23638/LMCS-15(2:15)2019.

[26] T. Feder, M. Y. Vardi, The computational structure of monotone monadic SNP and constraint
satisfaction: A study through datalog and group theory, SIAM J. Comput. 28 (1998) 57–104. URL:
https://doi.org/10.1137/S0097539794266766. doi:10.1137/S0097539794266766.

[27] A. A. Bulatov, A dichotomy theorem for nonuniform CSPs, in: C. Umans (Ed.), 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-
17, 2017, IEEE Computer Society, 2017, pp. 319–330. URL: https://doi.org/10.1109/FOCS.2017.37.
doi:10.1109/FOCS.2017.37.

[28] D. Zhuk, A proof of CSP dichotomy conjecture, in: C. Umans (Ed.), 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, IEEE
Computer Society, 2017, pp. 331–342. URL: https://doi.org/10.1109/FOCS.2017.38. doi:10.1109/

https://doi.org/10.1109/LICS.2015.36
https://doi.org/10.1109/LICS.2015.36
http://dx.doi.org/10.1109/LICS.2015.36
https://doi.org/10.1145/3452021.3458332
http://dx.doi.org/10.1145/3452021.3458332
http://dx.doi.org/10.1145/3452021.3458332
https://doi.org/10.1016/0743-1066(95)00051-K
https://doi.org/10.1016/0743-1066(95)00051-K
http://dx.doi.org/10.1016/0743-1066(95)00051-K
https://doi.org/10.1137/S0097539797322140
http://dx.doi.org/10.1137/S0097539797322140
http://ijcai.org/Proceedings/05/Papers/0326.pdf
https://doi.org/10.1016/j.artint.2022.103709
https://doi.org/10.1016/j.artint.2022.103709
http://dx.doi.org/10.1016/J.ARTINT.2022.103709
https://doi.org/10.23638/LMCS-15(2:15)2019
https://doi.org/10.23638/LMCS-15(2:15)2019
http://dx.doi.org/10.23638/LMCS-15(2:15)2019
https://doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1137/S0097539794266766
https://doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.38
http://dx.doi.org/10.1109/FOCS.2017.38
http://dx.doi.org/10.1109/FOCS.2017.38


FOCS.2017.38.
[29] P. Bourhis, C. Lutz, Containment in monadic disjunctive datalog, MMSNP, and expressive

description logics, in: C. Baral, J. P. Delgrande, F. Wolter (Eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR
2016, Cape Town, South Africa, April 25-29, 2016, AAAI Press, 2016, pp. 207–216. URL: http:
//www.aaai.org/ocs/index.php/KR/KR16/paper/view/12847.

[30] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Ontology-
mediated query answering over temporal data: A survey (invited talk), in: S. Schewe, T. Schneider,
J. Wijsen (Eds.), 24th International Symposium on Temporal Representation and Reasoning, TIME
2017, October 16-18, 2017, Mons, Belgium, volume 90 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017, pp. 1:1–1:37. URL: https://doi.org/10.4230/LIPIcs.TIME.2017.1. doi:10.4230/
LIPIcs.TIME.2017.1.

[31] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, First-order
rewritability and complexity of two-dimensional temporal ontology-mediated queries, Journal of
Artificial Intelligence Research 75 (2022) 1223–1291. doi:https://doi.org/10.1613/jair.1.
13511.

[32] A. Artale, A. R. Gnatenko, V. Ryzhikov, M. Zakharyaschev, A decidable temporal DL-Lite logic with
undecidable first-order and datalog-rewritability of ontology-mediated atomic queries (extended
abstract), in: O. Kutz, C. Lutz, A. Ozaki (Eds.), Proceedings of the 36th International Workshop on
Description Logics (DL 2023) co-located with the 20th International Conference on Principles of
Knowledge Representation and Reasoning and the 21st International Workshop on Non-Monotonic
Reasoning (KR 2023 and NMR 2023)., Rhodes, Greece, September 2-4, 2023, volume 3515 of CEUR

Workshop Proceedings, CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3515/abstract-3.pdf.

http://dx.doi.org/10.1109/FOCS.2017.38
http://dx.doi.org/10.1109/FOCS.2017.38
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12847
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12847
https://doi.org/10.4230/LIPIcs.TIME.2017.1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
http://dx.doi.org/https://doi.org/10.1613/jair.1.13511
http://dx.doi.org/https://doi.org/10.1613/jair.1.13511
https://ceur-ws.org/Vol-3515/abstract-3.pdf

